JPH0847687A - Water purifier - Google Patents

Water purifier

Info

Publication number
JPH0847687A
JPH0847687A JP20440294A JP20440294A JPH0847687A JP H0847687 A JPH0847687 A JP H0847687A JP 20440294 A JP20440294 A JP 20440294A JP 20440294 A JP20440294 A JP 20440294A JP H0847687 A JPH0847687 A JP H0847687A
Authority
JP
Japan
Prior art keywords
water
photocatalyst
titanium oxide
light
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20440294A
Other languages
Japanese (ja)
Other versions
JP3620660B2 (en
Inventor
Sadao Murasawa
貞夫 村澤
Eiji Nomura
英司 野村
Tokuo Fukita
徳雄 吹田
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP20440294A priority Critical patent/JP3620660B2/en
Publication of JPH0847687A publication Critical patent/JPH0847687A/en
Application granted granted Critical
Publication of JP3620660B2 publication Critical patent/JP3620660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PURPOSE:To conveniently and efficiently exterminate the harmful organism such as algae, to decompose harmful matter and to purify water by providing a water purifier with a photocatalyst, a fixed-bed photocatalyst reactor, a means for supplying water to the reactor and a means for irradiating the photocatalyst with a UV-contg. light and cascade-controlling the water current. CONSTITUTION:A photocatalyst A consisting of a filler carrying titanium oxide is arranged at the bottom of a fixed-bed photocatalyst reactor 1, white fluorescent lamp 2 is set above the reactor 1, and a pump 3 is installed to supply water to the reactor 1. This water purifier 1 is placed above a water tank 4, water in the tank 4 is introduced into the purifier, the water is fed back, and the water current is cascade-controlled. Titanium oxide as the photocatalyst is deposited on a light-transmissive filler to obtain the photocatalyst A, and a light selected from a group consisting of sunlight, florescent lamp, black lamp, sterilizing lamp, mercury lamp incandescent lamp is used as the light contg. UV.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水の浄化装置に関し、
さらに詳細には酸化チタンの光触媒機能を利用した水の
浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification device,
More specifically, the present invention relates to a water purification device that utilizes the photocatalytic function of titanium oxide.

【0002】[0002]

【従来の技術】生活排水、灌漑排水または産業排水に
は、窒素・リンなどの物質を多量に含むものがあり、こ
れらは湖沼、河川、海湾における富栄養化現象を起こし
ている。富栄養化によってプランクトン、ピコプランク
トン、アオコ、アカコなどの藻類が増殖すると、プラン
クトンの一種であるホルミディウムあるいはオシラトリ
アが作る臭気物質の2−メチルイソボルネオールなどに
より水がかび臭くなり、生活環境、特に生活用水に悪影
響を及ぼしたり、あるいは湖沼や河川の水を緑色、褐色
に着色するいわゆる水の華、淡水青潮や淡水赤潮を形成
したり、また、海水を赤褐色、桃色、褐色に着色するい
わゆる赤潮を形成し、景観を損ねたり、水中の酸素を消
化して酸素不足の状態を引き起こしたり、発生したプラ
ンクトンが魚のえらに付着し、呼吸困難を引き起こした
りして水産に多大な被害を与える。さらに、増殖した藻
類は、浄水場、ダムなどの濾過池や濾過用スクリーンを
つまらせるなど浄水処理に支障をきたしたりする。ま
た、生活排水、灌漑排水または産業排水には、カビなど
の真菌類や放線菌などの菌類、大腸菌などの細菌類が含
まれ、これらは湖沼、河川、海湾などで増殖する場合が
ある。菌類には、チフスや赤痢菌のような伝染病菌、腐
食を促進する硫黄細菌、鉄細菌、硫酸塩還元菌、スライ
ムを作る細菌類や真菌類、水に臭気をつける放線菌など
有害なものも少なくなく、種々の被害が発生している。
特に、魚類、貝類、カニ、エビ、カエルなどを養殖した
池や水槽、魚類などを飼育した観賞用の池や水槽などの
飼養域では、排泄物、餌の腐敗物などによっても、水が
汚れ、悪臭が発散したり、排泄物、餌の腐敗物などから
細菌類や菌類が発生する被害が頻繁に起こっている。さ
らに、生活排水、灌漑排水または産業排水には、上記以
外に洗剤、油などの酸素要求物質、半導体製造工場など
の排水に含まれる有機ハロゲン化合物や農薬などの有害
な物質が含まれる場合があり、湖沼、河川、海湾を汚染
し、生物に被害を及ぼす場合がある。
2. Description of the Related Art Some domestic wastewater, irrigation wastewater, and industrial wastewater contain a large amount of substances such as nitrogen and phosphorus, which cause eutrophication in lakes, marshes, rivers, and sea bays. When algae such as plankton, picoplankton, water-bloom, and red-crown grow due to eutrophication, water becomes musty due to odorous substances such as holmium, which is a type of plankton, or 2-methylisoborneol, which is an odor substance produced by oscillatria. It has a bad influence on water supply or forms so-called water flower, freshwater blue tide or freshwater red tide, which colors lake or river water green or brown, or so-called red tide, which colors seawater reddish brown, pink or brown. , Which damages the landscape, digests oxygen in the water to cause oxygen deficiency, and causes plankton to adhere to the gills of fish, causing respiratory distress, which causes great damage to fisheries. In addition, the algae that have multiplied may impede water purification treatment by, for example, pinching filter ponds and filtration screens in water purification plants and dams. In addition, domestic wastewater, irrigation wastewater, or industrial wastewater contains fungi such as molds, fungi such as actinomycetes, and bacteria such as Escherichia coli, which may multiply in lakes, marshes, rivers, sea bays, and the like. Fungi include harmful diseases such as infectious disease bacteria such as typhoid fever and Shigella, sulfur bacteria that promote corrosion, iron bacteria, sulfate-reducing bacteria, slime-producing bacteria and fungi, and actinomycetes that smell water. Not a few, various types of damage have occurred.
Especially, in the ponds and aquariums where fish, shellfish, crabs, shrimp, frogs, etc. are cultivated, and in the ornamental ponds and aquariums where fish etc. are raised, the water is contaminated by excrement and food spoilage. , Foul odors are emitted, and excrements, spoilage of foods, etc. frequently cause damages caused by bacteria and fungi. In addition to the above, domestic wastewater, irrigation wastewater, or industrial wastewater may contain oxygen-requiring substances such as detergents and oils, and harmful substances such as organic halogen compounds and pesticides contained in the wastewater of semiconductor manufacturing plants. , May pollute lakes, rivers, sea bays and cause damage to living things.

【0003】増殖した藻類、菌類、細菌類を殺藻あるい
は殺菌するには、たとえば、塩素、オゾン、硫酸銅など
を注入したり、紫外線の照射などによって処理する方法
が採用されている。また、藻類、菌類、細菌類により発
生した臭気物質や着色物質を取り除くには、たとえば、
活性炭などに吸着させる方法が採用されている。特に、
汚染の進んだ湖沼、河川から取水する浄水場では、多量
の活性炭を投与して水質の向上につとめている。一方、
酸化チタンにそのバンドギャップ以上のエネルギーを持
つ波長の光を照射すると光励起により伝導帯に電子を、
価電子帯に正孔を生じるが、この光励起して生じた電子
の持つ強い還元力や正孔の持つ強い酸化力を利用して殺
菌、有機物の分解あるいは脱臭する方法が提案されてい
る。
In order to kill or sterilize the algae, fungi, and bacteria that have grown, for example, a method of injecting chlorine, ozone, copper sulfate, or the like, or a method of treating by irradiation with ultraviolet rays is adopted. To remove odorous substances and coloring substances generated by algae, fungi and bacteria, use
The method of adsorbing on activated carbon is adopted. In particular,
At water purification plants that take water from polluted lakes and rivers, a large amount of activated carbon is administered to improve water quality. on the other hand,
When titanium oxide is irradiated with light having a wavelength having energy higher than its band gap, photoexcitation causes electrons to be generated in the conduction band,
Although holes are generated in the valence band, there has been proposed a method of sterilizing, decomposing or deodorizing an organic substance by utilizing the strong reducing power of the electrons generated by the photoexcitation and the strong oxidizing power of the holes.

【0004】[0004]

【発明が解決しようとする課題】前記の塩素やオゾンな
どで処理する方法では藻類、菌類、細菌類を減少させる
ことはできるものの、その効果は充分でなく、また、処
理時間が長くかかったり、使用した薬剤やその薬剤から
生じた化合物が水中に残留するなどの問題がある。活性
炭吸着法では、臭気や着色を減少できるものの、藻類、
菌類、細菌類を死滅させるものではない。酸化チタン光
触媒による方法は、藻類、菌類の死滅化、また死滅した
藻類、菌類や溶存している有機物の分解、アンモニアの
酸化、脱臭等の幅広い水の浄化作用が期待できるもの
の、照射する光の利用効率を良くし、高い光触媒機能を
得るために、通常、超微粒子の酸化チタンを個々に分散
した状態で処理を行っている。このため、酸化チタンを
処理系から分離、回収する必要があるが、この分離、回
収する操作が極めて困難なこともあり、実用化が難しい
状況にある。
Although the above-mentioned method of treating with chlorine or ozone can reduce algae, fungi, and bacteria, its effect is not sufficient, and the treatment time is long, There is a problem that the drug used and the compound generated from the drug remain in water. The activated carbon adsorption method can reduce odor and coloring, but
It does not kill fungi and bacteria. The titanium oxide photocatalyst method is expected to have a wide range of water purification effects such as killing of algae and fungi, decomposition of dead algae, fungi and dissolved organic substances, oxidation of ammonia, deodorization, etc. In order to improve the utilization efficiency and obtain a high photocatalytic function, the treatment is usually performed in a state where ultrafine particles of titanium oxide are individually dispersed. For this reason, it is necessary to separate and recover titanium oxide from the treatment system, but this separation and recovery operation may be extremely difficult, making it difficult to put it into practical use.

【0005】[0005]

【課題を解決するための手段】本発明者らは、酸化チタ
ンの持つ光触媒機能に着目し、簡便、且つ効率良く水に
含まれる藻類、菌類、細菌類などの有害生物を死滅さ
せ、有害な物質を分解して水を浄化する方法を種々検討
した結果、(1)酸化チタンを配置した固定床光触媒反
応器に水を送液し、該固定床光触媒反応器内で、紫外線
を含有した光の存在下、水流をカスケード制御しながら
水を処理すると、意外にも殺藻、殺菌、脱臭、脱色ある
いは有害な物質の分解が効率良く行われ、水の浄化がで
きること、しかも、酸化チタンを分離、回収する操作が
不要であることから簡便、且つ容易に水の浄化が行われ
ること、(2)固定床光触媒反応器から排出する水に含
まれる処理対象物の濃度を測定し、その結果を送液手段
や光源などの制御器にフィードバックして制御すること
により、より高度な水の浄化ができること、(3)酸化
チタンを充填材の表面に担持すると、光触媒である酸化
チタンと処理水との接触が良好となり、処理水中の藻
類、細菌の死滅化や有害な有機物の分解による浄化作用
が向上すること、(4)水流をカスケード制御するため
に、固定床反応装置内に酸化チタンを担持した充填材を
装填することにより、光触媒である酸化チタンと処理水
との接触が良好となり、処理水中の藻類、細菌の死滅化
や有害な有機物の分解による浄化作用が一層向上するこ
と、さらに、(5)水流をカスケード制御するために、
装置内に充填層を多段階に区分し、より好ましくは、さ
らにその各々の段階または全体での処理水の一部を前段
にフィードバックすることにより、一定の滞留時間を保
持、制御することができ、処理対象物を目標の処理濃度
まで効率良く処理することが可能となること、(6)特
に、充填材が照射する光の透過率が50%以上の光透過
性材質であり、且つ、2種類以上のサイズの充填材を組
み合わせて、それらの表面に酸化チタンを担持して光触
媒体として用いて充填密度を高くすると共に、光触媒体
の充填層の厚みを照射する光の進入方向に50mm以下
とすることにより、光触媒体への光と水の接触をさらに
良好にすることができること、(7)特に、藻類、菌
類、細菌類が繁殖しやすい、(a)貯蔵タンクなどの貯
水器の水、太陽エネルギーなどを利用した給水・給湯設
備や冷暖房設備内の水、風呂水、プール用水、上水、飲
料水などの生活用水、工業用水、農業用水あるいはこれ
らの用水に利用される原水、(b)水棲生物の飼養域の
水、さらには、(c)生活排水、製造業、農業、水産業
などの産業排水、下水処理場排水、ゴルフ場からの農薬
汚染排水などの排水、(d)閉鎖性の海域、湾、湖、
沼、ダム、修景池、鑑賞池などの汚染された水、などの
浄化に最適であることなどを見出した。これらの知見に
基づき、さらに、研究して本発明を完成した。
[Means for Solving the Problems] The present inventors focused on the photocatalytic function of titanium oxide and simply and efficiently killed harmful organisms such as algae, fungi, and bacteria contained in water, and As a result of various studies on methods for decomposing substances to purify water, (1) water was sent to a fixed-bed photocatalytic reactor in which titanium oxide was placed, and light containing ultraviolet rays was generated in the fixed-bed photocatalytic reactor. Surprisingly, if water is treated while controlling the flow of water in the presence of water, algae killing, sterilizing, deodorizing, decolorizing or decomposing harmful substances can be performed efficiently, and water can be purified. , The purification of water is performed easily and easily because there is no need to collect it. (2) The concentration of the object to be treated contained in the water discharged from the fixed bed photocatalytic reactor is measured, and the result is Controllers such as liquid transfer means and light source It is possible to purify water more advanced by feedback control. (3) When titanium oxide is carried on the surface of the filler, the contact between titanium oxide, which is a photocatalyst, and the treated water becomes good, and algae in the treated water , Enhancement of purification action by killing bacteria and decomposition of harmful organic substances, (4) by loading a titanium oxide-supported packing material into a fixed bed reactor in order to control the water flow in a cascade, The contact between titanium oxide and treated water is improved, and the purifying action by killing algae and bacteria in the treated water and decomposing harmful organic substances is further improved. Furthermore, (5) for cascade control of water flow ,
It is possible to maintain and control a constant residence time by dividing the packed bed into multiple stages in the apparatus, and more preferably, by feeding back a part of the treated water in each stage or the whole to the preceding stage. The object to be processed can be efficiently processed up to a target processing concentration. (6) In particular, the filling material is a light transmissive material having a light transmittance of 50% or more, and 2 A combination of fillers of different sizes or more is used to support titanium oxide on the surface of the fillers to be used as a photocatalyst to increase the packing density, and the packed layer of the photocatalyst is irradiated with light having a thickness of 50 mm or less in the light entrance direction. By so doing, it is possible to further improve the contact between light and water on the photocatalyst, (7) In particular, algae, fungi, and bacteria are easily proliferated, and (a) Water in water storage tanks such as storage tanks. , Solar energy Water in water supply / hot water supply equipment and air conditioning equipment using ghee, bath water, pool water, domestic water such as tap water, drinking water, industrial water, agricultural water or raw water used for these water, (b) Water in the aquatic animal rearing area, and further (c) domestic wastewater, industrial wastewater from manufacturing, agriculture, fisheries, sewage treatment plant wastewater, pesticide-contaminated wastewater from golf courses, etc. (d) closure Waters, bays, lakes,
It was found that it is optimal for cleaning polluted water such as swamps, dams, scenic ponds, and viewing ponds. Based on these findings, the present inventors have further studied and completed the present invention.

【0006】すなわち、本発明は、酸化チタンから成る
光触媒体、該光触媒体を配置した固定床光触媒反応器、
該反応器に水を送液する手段及び紫外線を含有した光を
該光触媒体に照射する手段とを備え、且つ、水流をカス
ケード制御することを特徴とする水の浄化装置及び浄化
方法である。
That is, the present invention relates to a photocatalyst body made of titanium oxide, a fixed-bed photocatalyst reactor in which the photocatalyst body is arranged,
A water purification apparatus and a water purification method comprising: a means for sending water to the reactor; and a means for irradiating the photocatalyst with light containing ultraviolet rays, and performing cascade control of the water flow.

【0007】本発明は簡便、且つ効率良く水を浄化する
装置および方法を提供することにある。
The present invention is to provide an apparatus and method for purifying water simply and efficiently.

【0008】本発明において、光触媒反応器は固定床が
望ましく、流動床などの反応器は酸化チタンの分離操作
が必要となるため望ましくない。固定床光触媒反応器と
しては、たとえば、固定層反応器、ラジアルフロー式反
応器、パラレルパッセージ式反応器、モノリス式反応
器、薄層型反応器、管壁式反応器などが用いられる。前
記の固定床光触媒反応器に酸化チタンから成る光触媒体
を配置する。固定床反応器をシリーズに連結し、また固
定床反応器の内部を多段階に区切り、且つ、各段階また
は全系の処理した水の一部を前段階にフィードバックす
ることが、水の浄化処理の上でより好ましい。この場
合、固定床反応器の内部に光触媒体である酸化チタンの
成形物を配置したり、酸化チタンを充填材、反応器内の
壁面、金網などに付着して配置することができる。特
に、酸化チタンを充填材の表面に付着するのが好まし
い。充填材は、無機材料、金属材料、有機材料などの種
々のものを用いることができ、石などの鉱物も用いるこ
とができる。望ましい材質としては、光透過性の石英及
び石英ガラス、ソーダ石灰ガラス、鉛ガラス、アルミノ
ホウケイ酸ガラス、ホウケイ酸ガラス、アルミノケイ酸
ガラスなどの種々のガラス類、さらに種々のプラスチッ
ク類などがあり、照射する光成分の50%以上、望まし
くは70%以上を透過させる材質のものが望ましい。こ
のような光透過性の充填材を用いると、照射光を一層効
率的に利用でき、光触媒機能をより発揮させることがで
きる。充填材は、水流をカスケード制御するのに相応し
いものが好ましい。水流のカスケード制御とは、固定床
光触媒反応器内の光触媒体の表面に光を照射しつつ、処
理水を接触させる上において、出来る限り広い接触面で
均一に且つ、一定の滞留時間を保持するために、水の流
れを多段に、より好ましくは、さらに処理水の一部をフ
ィードバックするように制御することである。水のカス
ケード制御に相応しい充填材としては、無定形状、球
状、板状などのほか、ラシヒリング、レッシングリン
グ、ベルルサドル、インタロックスサドル、テラレッ
ト、ポールリングなどの種々の形状のものが挙げられ
る。充填材の大きさは直径100μm〜5cm程度が適
当であり、好ましくは0.1〜3cm、より好ましくは
0.2〜2cmである。本発明においては、光触媒体全
部に光が照射されるようにするために、光触媒体の厚み
を、照射する光の進入方向に50mm以下、好ましくは
40mm以下、より好ましくは30mm以下とする。光
触媒体の厚みを前記範囲にするために、光を照射する光
源の数を増やしたり、該光源を固定床光触媒反応器内に
装入したりして調節することができる。
In the present invention, the photocatalytic reactor is preferably a fixed bed, and the reactor such as a fluidized bed is not desirable because it requires a separation operation of titanium oxide. As the fixed bed photocatalytic reactor, for example, a fixed bed reactor, a radial flow type reactor, a parallel passage type reactor, a monolith type reactor, a thin layer type reactor, a tube wall type reactor and the like are used. A photocatalyst body made of titanium oxide is placed in the fixed bed photocatalytic reactor. The fixed-bed reactor is connected to the series, the inside of the fixed-bed reactor is divided into multiple stages, and a part of the treated water of each stage or the whole system is fed back to the previous stage. Is more preferable. In this case, a molded product of titanium oxide, which is a photocatalyst, can be arranged inside the fixed bed reactor, or titanium oxide can be arranged by adhering it to a filler, a wall surface inside the reactor, a metal net, or the like. In particular, it is preferable to attach titanium oxide to the surface of the filler. As the filler, various materials such as inorganic materials, metal materials, and organic materials can be used, and minerals such as stones can also be used. Desirable materials include various glasses such as light-transmissive quartz and quartz glass, soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass, and aluminosilicate glass, and various plastics. It is desirable to use a material that transmits 50% or more, preferably 70% or more of the light component to be transmitted. When such a light-transmissive filler is used, the irradiation light can be used more efficiently and the photocatalytic function can be further exerted. The filler is preferably suitable for cascading water flow. Cascade control of water flow means that the surface of the photocatalyst in the fixed bed photocatalyst reactor is irradiated with light and the treated water is brought into contact with the surface so that the contact surface is as wide as possible and the residence time is kept constant. Therefore, the flow of water is controlled in multiple stages, and more preferably, a part of the treated water is fed back. Fillers suitable for cascade control of water include various shapes such as Raschig rings, Lessing rings, Berlu saddles, Interlocks saddles, terrarettes, and pole rings, as well as amorphous shapes, spherical shapes, and plate shapes. A suitable size of the filler is about 100 μm to 5 cm in diameter, preferably 0.1 to 3 cm, and more preferably 0.2 to 2 cm. In the present invention, the thickness of the photocatalyst is set to 50 mm or less, preferably 40 mm or less, and more preferably 30 mm or less in the entrance direction of the irradiated light so that the entire photocatalyst is irradiated with the light. In order to adjust the thickness of the photocatalyst body to the above range, the number of light sources for irradiating light can be increased, or the light sources can be installed in a fixed bed photocatalytic reactor.

【0009】本発明において、光触媒として用いる酸化
チタンとは、酸化チタンのほか、含水酸化チタン、水和
酸化チタン、メタチタン酸、オルトチタン酸、水酸化チ
タンなどと一般に呼ばれているものを含み、その結晶型
は問わない。前記の酸化チタンは種々の公知の方法で得
ることができる。たとえば、硫酸チタニル、塩化チタ
ン、有機チタン化合物などのチタン化合物を、必要に応
じて核形成用種子の存在下に、加水分解する方法、必
要に応じて核形成用種子の存在下に、硫酸チタニル、塩
化チタン、有機チタン化合物などのチタン化合物にアル
カリを添加し、中和する方法、塩化チタン、有機チタ
ン化合物などを気相酸化する方法、前記、の方法
で得られた酸化チタンを焼成する方法が挙げられる。特
に、前記、の方法で得られた酸化チタンは光触媒機
能が高いため好ましい。酸化チタンの光触媒機能を向上
させるために、該酸化チタンの表面に白金、金、銀、
銅、パラジウム、ロジウム、ルテニウムなどの金属、酸
化ルテニウム、酸化ニッケルなどの金属酸化物を被覆し
ても良い。このようにして得られた酸化チタンを、たと
えば、水、アルコール、トルエンなどの溶媒に懸濁させ
る。必要に応じて種々の分散剤や結着剤を加えても良
い。得られた懸濁液を、たとえば、含浸法、ディップコ
ーティング法、スピナーコーティング法、ブレードコー
ティング法、ローラーコーティング法、ワイヤーバーコ
ーティング法、リバースロールコーティング法などの塗
布方法やスプレーコーティング法などの吹き付け方法な
どを用いて、充填材、反応器内の壁面、金網などの表面
に塗布し、あるいは吹き付けし、次いで、乾燥して酸化
チタンを付着させる。特に、前記、の方法で得られ
た酸化チタンを溶媒に高度に分散させて酸化チタンゾル
とし、この酸化チタンゾルを塗布あるいは吹き付けるの
が好ましい。付着した酸化チタンは必要に応じて焼成し
ても良く、この焼成により、酸化チタンを充填材、反応
器内の壁面、金網などの表面に強固に接着させることが
できる。前記の焼成は100℃以上、好ましくは200
〜800℃、特に好ましくは300〜800℃の温度で
焼成するのが適当である。また、前記の硫酸チタニル、
塩化チタン、有機チタン化合物などを、充填材の存在下
に、加水分解あるいは中和して、酸化チタンを充填材の
表面に析出、付着させ、次いで乾燥し、さらに必要に応
じて焼成することによっても、充填材に酸化チタンを担
持することができる。
In the present invention, the titanium oxide used as the photocatalyst includes, in addition to titanium oxide, those generally called hydrous titanium oxide, hydrated titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and the like. The crystal form does not matter. The above-mentioned titanium oxide can be obtained by various known methods. For example, a method of hydrolyzing a titanium compound such as titanyl sulfate, titanium chloride, or an organotitanium compound in the presence of seeds for nucleation, if necessary, and titanyl sulfate in the presence of seeds for formation of nucleation, if necessary. , A method of neutralizing by adding an alkali to a titanium compound such as titanium chloride or an organic titanium compound, a method of vapor-phase oxidizing titanium chloride or an organic titanium compound, a method of firing the titanium oxide obtained by the above method Is mentioned. In particular, titanium oxide obtained by the above method is preferable because of its high photocatalytic function. In order to improve the photocatalytic function of titanium oxide, platinum, gold, silver,
A metal such as copper, palladium, rhodium, or ruthenium, or a metal oxide such as ruthenium oxide or nickel oxide may be coated. The titanium oxide thus obtained is suspended in a solvent such as water, alcohol or toluene. Various dispersants and binders may be added as needed. The obtained suspension is applied, for example, by an impregnation method, a dip coating method, a spinner coating method, a blade coating method, a roller coating method, a wire bar coating method, a reverse roll coating method, or a spraying method. Etc., is used to apply or spray to the surface of the filler, the wall surface in the reactor, the wire mesh, etc., and then dried to deposit titanium oxide. In particular, it is preferable to highly disperse the titanium oxide obtained by the above method in a solvent to form a titanium oxide sol, and to apply or spray the titanium oxide sol. The adhering titanium oxide may be fired if necessary, and by this firing, the titanium oxide can be firmly adhered to the surface of the filler, the wall surface in the reactor, the wire netting and the like. The above-mentioned firing is 100 ° C. or higher, preferably 200
It is suitable to bake at a temperature of ˜800 ° C., particularly preferably 300˜800 ° C. In addition, the above-mentioned titanyl sulfate,
By hydrolyzing or neutralizing titanium chloride, an organic titanium compound or the like in the presence of the filler, depositing and adhering titanium oxide on the surface of the filler, then drying, and further firing if necessary. Also, titanium oxide can be supported on the filler.

【0010】本発明は、固定床光触媒反応器に処理しよ
うとする水を加圧下、減圧下または大気圧下で送液する
手段を備える。通常、ポンプや重力などで送液するのが
好ましく、装置内を流通させる手段としては、ポンプや
重力による自然落下による方法などが好ましい。さら
に、固定床光触媒反応器内の酸化チタンから成る光触媒
体に紫外線を含有した光を照射する手段を備え、該固定
床光触媒反応器内で、紫外線を含有した光の存在下、水
を浄化させる。紫外線を含有した光としては、たとえ
ば、太陽光や蛍光灯、ブラックライト、ハロゲンラン
プ、キセノンフラッシュランプ、殺菌灯、水銀灯、白熱
ランプなどの光が挙げられる。特に、300〜400n
mの近紫外線を含有した光が好ましい。紫外線を含有し
た光の照射量や照射時間などは処理する水の汚染の程度
や紫外線の含有量などによって適宜設定できる。本発明
で用いる固定床光触媒反応器は、後述の実施例1〜6に
用いた反応器の形のほか、これらを適宜改良したり、ま
たこれらの反応器を2つ以上連結させて用いても良い。
The present invention comprises means for feeding water to be treated to a fixed bed photocatalytic reactor under pressure, reduced pressure or atmospheric pressure. Usually, it is preferable to use a pump or gravity to send the liquid, and as a means for circulating the liquid in the apparatus, a method such as a spontaneous drop by the pump or gravity is preferable. Furthermore, a means for irradiating the photocatalyst made of titanium oxide in the fixed-bed photocatalytic reactor with light containing ultraviolet rays is provided, and water is purified in the fixed-bed photocatalytic reactor in the presence of light containing ultraviolet rays. . Examples of the light containing ultraviolet rays include sunlight, fluorescent lamps, black lights, halogen lamps, xenon flash lamps, germicidal lamps, mercury lamps and incandescent lamps. Especially 300-400n
Light containing m near-ultraviolet rays is preferred. The irradiation amount and irradiation time of the light containing ultraviolet rays can be appropriately set depending on the degree of contamination of the water to be treated and the content of ultraviolet rays. The fixed bed photocatalytic reactor used in the present invention may have the form of the reactor used in Examples 1 to 6 described later, or may be appropriately modified, or two or more reactors may be connected and used. good.

【0011】本発明の浄化装置は、さらにフィードバッ
ク制御する手段を備えることができる。本発明におい
て、フィードバック制御とは、固定床光触媒反応器から
排出する水に含まれる処理対象物の濃度を測定し、その
結果を送液手段、光源などの制御器にフィードバック
し、制御器は与えられた目標と測定結果とを比較して次
の操作を決める方式を言う。測定結果が目標より高い濃
度であれば、送液量を低くしたり、光の照射量を強くし
たりして濃度を目標に近づける操作を行う。これらの操
作はコンピューターを用いて制御できる。
The purifying device of the present invention may further comprise means for feedback control. In the present invention, the feedback control is to measure the concentration of the object to be treated contained in the water discharged from the fixed bed photocatalytic reactor, and feed back the result to a controller such as a liquid feeding means or a light source, and the controller gives It is a method that determines the next operation by comparing the obtained target with the measurement result. If the measurement result is a concentration higher than the target, an operation is performed to reduce the liquid supply amount or increase the light irradiation amount to bring the concentration close to the target. These operations can be controlled using a computer.

【0012】本発明の浄化装置を用いて、酸化チタンを
光触媒として用いた固定床光触媒反応器に水を送液し、
該酸化チタンに紫外線を含有した光を照射して、該固定
床光触媒反応器内で水を浄化することができる。
Using the purifying apparatus of the present invention, water is sent to a fixed-bed photocatalytic reactor using titanium oxide as a photocatalyst,
Water can be purified in the fixed bed photocatalytic reactor by irradiating the titanium oxide with light containing ultraviolet rays.

【0013】[0013]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 実施例1 硫酸チタニルを加熱加水分解して得られた酸性チタニア
ゾル(石原産業社製、CS−C)をTiO2 基準で40
g/lに水で希釈した。次に、この希釈液に、球状であ
り、且つ光透過率が85%である、透光性を有するガラ
ス玉(直径1cm)の充填材を2時間含浸させた後、ア
ンモニア水を添加してpH7に中和して充填材の表面に
酸化チタンを付着させた。引き続き、酸化チタンを付着
させた充填材を濾別分離し、乾燥した後、大気中600
℃の温度で2時間焼成した。次いで、焼成した充填材を
水洗し、乾燥し、光触媒体Aを得た。この光触媒体Aの
酸化チタンの担持量は充填材100重量部に対して1.
6重量部であった。この光触媒体A300gを、第1図
に示すように、照射する光の進入方向に30mmの充填
層の厚さになるように容器の床に配置し、固定床光触媒
反応器1とした。この固定床光触媒反応器の上方15c
mの距離に20Wの白色蛍光灯2を設置し、さらにこの
固定床光触媒反応器に水を送液するポンプ3を備え、本
発明の浄化装置とした。金魚20匹を飼育した水槽4
(水50リットル)の上にこの浄化装置を置き、水槽内
の水を浄化装置に送液し、水をフィードバックし、植物
プランクトンの発生や水の汚れを調べた。水の流れはカ
スケード制御された。なお、ポンプの水流量は10リッ
トル/分とした。この水槽には0.5gの餌を1日2回
投与した。この結果、この水槽には、2週間を経過して
も植物プランクトンの発生は認められなかった。また、
試験開始から4週間後の水中の生菌数と大腸菌群数を下
記の方法で調べたところ、生菌数6620個/mlであ
り、大腸菌群数3640個/mlであり、下記の比較例
1に比し菌類、細菌類の増殖を抑制できた。さらに、表
1に示したように、水の透過率の変化は比較例1に比し
て少なく、水の汚れはほとんどなかった。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Example 1 An acidic titania sol (CS-C, manufactured by Ishihara Sangyo Co., Ltd.) obtained by hydrolyzing titanyl sulfate was heated to 40 on a TiO 2 basis.
Diluted with water to g / l. Next, the diluting solution was impregnated with a filler of glass beads (diameter 1 cm) having a spherical shape and a light transmittance of 85% and having a light transmitting property for 2 hours, and then ammonia water was added thereto. It was neutralized to pH 7 and titanium oxide was attached to the surface of the filler. Subsequently, the filler to which titanium oxide is attached is separated by filtration, dried, and then dried in the air at 600
It was baked at a temperature of ° C for 2 hours. Next, the baked filler was washed with water and dried to obtain a photocatalyst A. The amount of titanium oxide supported on the photocatalyst A was 1.
It was 6 parts by weight. As shown in FIG. 1, 300 g of this photocatalyst A was placed on the floor of the container so that the packed bed had a thickness of 30 mm in the entrance direction of the irradiation light, to obtain a fixed bed photocatalytic reactor 1. 15c above this fixed bed photocatalytic reactor
A white fluorescent lamp 2 of 20 W was installed at a distance of m, and a pump 3 for feeding water to the fixed bed photocatalytic reactor was further provided, and the purification device of the present invention was obtained. Aquarium 4 with 20 goldfish
This purification device was placed on (50 liters of water), the water in the water tank was sent to the purification device, and the water was fed back to examine the occurrence of phytoplankton and the contamination of the water. The water flow was cascade controlled. The water flow rate of the pump was 10 liters / minute. 0.5 g of food was administered to this aquarium twice a day. As a result, no phytoplankton was observed in this aquarium even after 2 weeks. Also,
When the number of viable bacteria and the number of coliforms in water 4 weeks after the start of the test were examined by the following method, the viable count was 6620 / ml and the coliform count was 3640 / ml. Compared with the above, the growth of fungi and bacteria could be suppressed. Further, as shown in Table 1, the change in water transmittance was smaller than that in Comparative Example 1, and there was almost no water stain.

【0014】<生菌類及び大腸菌群数の測定方法>採取
した水を無菌水で10倍、100倍希釈し、滅菌したシ
ャーレ5枚に1mlずつ分注し、次いで、培地を10m
l添加し、攪拌した後、37℃で1晩培養させ、翌日、
コロニー数を数えた。 <使用した培地> 生菌数:ブレインハートインフュージョンブイヨン(ニ
ッスイ社製) 大腸菌群数:デゾキシコレート培地(ニッスイ社製)
<Method for measuring the number of viable bacteria and coliforms> The collected water is diluted 10 times or 100 times with sterile water, dispensed in 1 ml aliquots on 5 sterilized petri dishes, and then the medium is diluted to 10 m.
After adding, stirring and culturing at 37 ° C. overnight, the next day,
The number of colonies was counted. <Medium used> Number of viable bacteria: Brain Heart Infusion Bouillon (Nissui) Number of coliforms: Desoxycholate medium (Nissui)

【0015】比較例1 50リットルの水を水槽に入れ、金魚20匹を飼育し
て、植物プランクトンの発生や水の汚れを実施例1と同
様に観察した。この結果、この水槽には、2週間経過
後、植物プランクトンが多数発生して水槽の反対側が見
えなくなる程汚染された。また、試験開始から4週間後
の水中の生菌数と大腸菌群数を実施例1と同様な方法で
調べたところ、生菌数8000個/mlであり、大腸菌
群数4700個/mlであった。さらに、表1に示した
ように、水の透過率の変化が大きく、水の汚れが進ん
だ。
Comparative Example 1 50 liters of water was placed in a water tank, 20 goldfish were bred, and phytoplankton generation and water stains were observed in the same manner as in Example 1. As a result, after 2 weeks, a large amount of phytoplankton was generated in the aquarium and the opposite side of the aquarium was contaminated so that it could not be seen. Further, when the number of viable bacteria and the number of coliforms in water 4 weeks after the start of the test were examined by the same method as in Example 1, the viable count was 8000 / ml and the coliform count was 4700 / ml. It was Further, as shown in Table 1, the change in the water transmittance was large, and the water was contaminated.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 硫酸チタニルを加熱加水分解して得られた、TiO2
準で400g/lの酸性チタニアゾル(石原産業社製、
CS−C)に、球状であり、且つ光透過率が65%であ
る、透光性を有するガラス玉(直径1cm)の充填材を
2日間含浸させた後、充填材を濾別分離し、乾燥して、
充填材の表面に酸化チタンを付着させた。引き続き、酸
化チタンを付着させた充填材を大気中600℃の温度で
2時間焼成した。次いで、焼成した充填材を水洗し、乾
燥し、光触媒体Bを得た。この光触媒体Bの酸化チタン
の担持量は充填材100重量部に対して3.6重量部で
あった。この光触媒体B300gを、照射する光の進入
方向に50mmの充填層の厚さになるように容器の床に
配置させ、固定床光触媒反応器とした。この固定床光触
媒反応器の上方にブラックライトを設置し、さらにこの
固定床光触媒反応器に水を送液するポンプを備えて、本
発明の浄化装置とした。本浄化装置では、紫外光の強度
は充填材の表面で1.55mW/cm2 とし、また、ポ
ンプの水流量は10リットル/分とした。生活用水に利
用される琵琶湖の水50リットルを入れた水槽の横に前
記の浄化装置を置き、水槽内の水を浄化装置に送液し、
水をフィードバックし、カビ臭さの成分である2−メチ
ルイソボルネオールの濃度の変化を調べた。水の流れは
カスケード制御された。この結果を表2に示す。2−メ
チルイソボルネオールの濃度が10ppt以下になると
ほとんどの人間がカビ臭さを感じない。なお、前記の浄
化装置を用いて、生活排水を同様に処理したところ、生
活排水に含まれていた有機物を分解して、COD値が低
下した。
Example 2 400 g / l acidic titania sol based on TiO 2 obtained by heating and hydrolyzing titanyl sulfate (manufactured by Ishihara Sangyo Co., Ltd.)
CS-C) was impregnated with a filler of spherical glass beads (diameter 1 cm) having a light transmittance of 65% for 2 days, and then the filler was separated by filtration. Dried
Titanium oxide was attached to the surface of the filler. Subsequently, the filler to which titanium oxide was attached was fired in the atmosphere at a temperature of 600 ° C. for 2 hours. Then, the fired filler was washed with water and dried to obtain a photocatalyst B. The amount of titanium oxide supported on this photocatalyst B was 3.6 parts by weight with respect to 100 parts by weight of the filler. 300 g of this photocatalyst B was placed on the floor of the container so that the packed bed had a thickness of 50 mm in the entrance direction of the irradiation light, to obtain a fixed bed photocatalytic reactor. A black light was installed above the fixed-bed photocatalytic reactor, and a pump for feeding water to the fixed-bed photocatalytic reactor was further provided to provide the purification apparatus of the present invention. In the present purifier, the intensity of ultraviolet light was 1.55 mW / cm 2 on the surface of the filling material, and the water flow rate of the pump was 10 liters / minute. The purification device is placed next to the aquarium containing 50 liters of water from Lake Biwa used for daily life, and the water in the aquarium is sent to the purification device.
Water was fed back to examine the change in the concentration of 2-methylisoborneol, which is a musty odor component. The water flow was cascade controlled. The results are shown in Table 2. Most humans do not feel a musty odor when the concentration of 2-methylisoborneol is 10 ppt or less. When the domestic wastewater was treated in the same manner using the above-mentioned purification device, the organic matter contained in the domestic wastewater was decomposed and the COD value was lowered.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例3 実施例2の光触媒体B1kgを、第2図に示すように、
ドーナツ型円筒容器に充填させ、固定床光触媒反応器5
とした。光触媒体の充填層の厚みは照射する光の進入方
向に50mmとした。この固定床光触媒反応器には、そ
の内側にブラックライト6を備え、内壁面にはミラーを
張り、また、この固定床光触媒反応器に水を送液するポ
ンプ7を備えて、本発明の浄化装置とした。本浄化装置
では、紫外光の強度は固定床光触媒反応器内側表面で
1.55mW/cm2 とし、また、ポンプの水流量は1
0リットル/分とし、排出した水の一部をフィードバッ
クした。水の流れはカスケード制御された。この浄化装
置の上方から実施例2で用いたのと同じ琵琶湖の水を送
液し、浄化装置通過後の2−メチルイソボルネオールの
濃度を調べた。この結果、2−メチルイソボルネオール
の濃度は10ppt以下であった。
Example 3 1 kg of the photocatalyst B of Example 2 was used as shown in FIG.
Fixed bed photocatalytic reactor 5 filled in a donut type cylindrical container
And The thickness of the packed layer of the photocatalyst was 50 mm in the entrance direction of the irradiation light. This fixed-bed photocatalytic reactor is provided with a black light 6 inside, a mirror is attached to the inner wall surface, and a pump 7 for feeding water to the fixed-bed photocatalytic reactor is provided to purify the present invention. The device. In this purification device, the intensity of ultraviolet light was 1.55 mW / cm 2 on the inner surface of the fixed bed photocatalytic reactor, and the water flow rate of the pump was 1
It was set to 0 liter / min, and a part of the discharged water was fed back. The water flow was cascade controlled. The same water of Lake Biwa as used in Example 2 was fed from above the purification device, and the concentration of 2-methylisoborneol after passing through the purification device was examined. As a result, the concentration of 2-methylisoborneol was 10 ppt or less.

【0020】実施例4 実施例1の光触媒体Aを、第3図に示すように、多段階
に区切った容器に50mmの充填層の厚さになるように
配置し、固定床光触媒反応器8とした。この固定床光触
媒反応器の上方15cmの距離に10Wのブラックライ
ト9を設置し、さらにこの固定床光触媒反応器に水を送
液するポンプ10を備え、本発明の浄化装置とした。金
魚20匹を飼育した水槽11(水50リットル)の上に
この装置を置き、水槽内の水を浄化装置に送液し、水を
フィードバックし、CODの変化を調べた。なお、ポン
プの水流量は10リットル/分とした。この水槽には
0.5gの餌を1日2回投与した。水の流れはカスケー
ド制御された。この結果、表3に示すように、下記比較
例2に比しCODは低く抑えられ、有機物が効率的に分
解されることが確認された。
Example 4 As shown in FIG. 3, the photocatalyst A of Example 1 was placed in a container divided into multiple stages so as to have a packed bed thickness of 50 mm, and the fixed bed photocatalytic reactor 8 was used. And A black light 9 of 10 W was installed at a distance of 15 cm above the fixed-bed photocatalytic reactor, and a pump 10 for feeding water to the fixed-bed photocatalytic reactor was further provided, and the purification device of the present invention was obtained. This device was placed on an aquarium 11 (50 liters of water) in which 20 goldfish were bred, the water in the aquarium was sent to a purification device, and the water was fed back to examine the change in COD. The water flow rate of the pump was 10 liters / minute. 0.5 g of food was administered to this aquarium twice a day. The water flow was cascade controlled. As a result, as shown in Table 3, it was confirmed that the COD was suppressed to be lower than that in Comparative Example 2 below, and the organic matter was efficiently decomposed.

【0021】実施例5 硫酸チタニルを加水分解して得られた酸性チタニアゾル
(石原産業製、CS−C)をTiO2 基準で40g/l
に水で希釈した。次にこの希釈液に、球状であり、且つ
光透過率が60%である、透光性を有するガラス玉(直
径0.5cm)の充填材を2時間含浸させた後、アンモ
ニア水を添加してpH7に中和して、充填材の表面に酸
化チタンを担持した。引き続き、酸化チタンを担持させ
た充填材を濾別分離し、乾燥した後、大気中600℃の
温度で2時間焼成した。次いで焼成した充填材を水洗
し、乾燥し、光触媒体Eを得た。この光触媒体Eの酸化
チタン担持量は充填材100重量部に対して2.5重量
部であった。この光触媒体Eと実施例1の光触媒体Aと
を同体積量混合し、実施例4で用いた容器に50mmの
充填層の厚さになるように配置し、固定床光触媒反応器
とした。この固定床光触媒反応器の上方15cmの距離
に10Wのブラックライトを設置し、さらにこの固定床
光触媒反応器に水を送液するポンプを備え、本発明の浄
化装置とした。金魚20匹を飼育した水槽(水50リッ
トル)の上にこの装置を置き、水槽内の水を浄化装置に
送液し、水をフィードバックし、CODの変化を調べ
た。なお、ポンプの水流量は10リットル/分とした。
この水槽には0.5gの餌を1日2回投与した。水の流
れはカスケード制御された。この結果、表3に示すよう
に、下記比較例2に比しCODは低く抑えられ、有機物
が効率的に分解されることが確認された。
Example 5 Acidic titania sol (CS-C manufactured by Ishihara Sangyo) obtained by hydrolyzing titanyl sulfate was 40 g / l based on TiO 2.
Diluted with water. Next, this diluting solution was impregnated with a filler of glass balls (diameter 0.5 cm) having a spherical shape and a light transmittance of 60% and having a light transmitting property for 2 hours, and then ammonia water was added. It was neutralized to pH 7 and titanium oxide was supported on the surface of the filler. Subsequently, the filler supporting titanium oxide was separated by filtration, dried, and then fired in the atmosphere at a temperature of 600 ° C. for 2 hours. Next, the baked filler was washed with water and dried to obtain a photocatalyst E. The amount of titanium oxide supported on this photocatalyst E was 2.5 parts by weight with respect to 100 parts by weight of the filler. This photocatalyst E and the photocatalyst A of Example 1 were mixed in the same volume, and the mixture was placed in the container used in Example 4 so that the packed bed had a thickness of 50 mm to obtain a fixed bed photocatalytic reactor. A black light of 10 W was installed at a distance of 15 cm above the fixed-bed photocatalytic reactor, and a pump for feeding water to the fixed-bed photocatalytic reactor was further provided, and the purification device of the present invention was obtained. This device was placed on an aquarium (50 liters of water) in which 20 goldfish were bred, the water in the aquarium was sent to a purification device, and the water was fed back to examine the change in COD. The water flow rate of the pump was 10 liters / minute.
0.5 g of food was administered to this aquarium twice a day. The water flow was cascade controlled. As a result, as shown in Table 3, it was confirmed that the COD was suppressed to be lower than that in Comparative Example 2 below, and the organic matter was efficiently decomposed.

【0022】比較例2 実施例1で用いた容器の床に市販のプラスチック濾過綿
を50mmの厚さに充填した。この容器の上方15cm
の距離に10Wのブラックライトを設置し、さらにこの
容器に水を送液するポンプを備え、比較のための浄化装
置とした。金魚20匹を飼育した水槽(水50リット
ル)の上にこの装置を置き、水槽内の水を浄化装置に送
液し、水をフィードバックし、CODの変化を調べた。
なお、ポンプの水流量は10リットル/分とした。この
水槽には0.5gの餌を1日2回投与した。この結果、
表3に示すように、CODは短期間に高くなり、有機物
が蓄積していくことが確認された。
Comparative Example 2 The floor of the container used in Example 1 was filled with a commercially available plastic filter cotton to a thickness of 50 mm. 15 cm above this container
A black light of 10 W was installed at a distance of, and a pump for feeding water was further provided in this container to provide a purification device for comparison. This device was placed on an aquarium (50 liters of water) in which 20 goldfish were bred, the water in the aquarium was sent to a purification device, and the water was fed back to examine the change in COD.
The water flow rate of the pump was 10 liters / minute. 0.5 g of food was administered to this aquarium twice a day. As a result,
As shown in Table 3, it was confirmed that COD increased in a short period of time and organic substances accumulated.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例6 実施例3に記載した浄化装置に、フィードバック制御す
る手段を備えた。すなわち、本浄化装置から排出する水
に含まれる2−メチルイソボルネオールの濃度を測定
し、その結果に基づき、ポンプの送液量を5〜20リッ
トル/分の範囲で、且つ光源の出力量を紫外光の強度が
1〜4mW/cm2 になるように制御した。この結果、
2−メチルイソボルネオールの濃度は5ppt以下に制
御できた。
Example 6 The purification apparatus described in Example 3 was equipped with means for feedback control. That is, the concentration of 2-methylisoborneol contained in the water discharged from this purification apparatus was measured, and based on the result, the pumped liquid flow rate was in the range of 5 to 20 liters / minute, and the light source output power was adjusted. The intensity of ultraviolet light was controlled to be 1 to 4 mW / cm 2 . As a result,
The concentration of 2-methylisoborneol could be controlled to 5 ppt or less.

【0025】[0025]

【発明の効果】本発明は、酸化チタンから成る光触媒
体、該光触媒体を配置した固定床光触媒反応器、該反応
器に水を送液する手段及び紫外線を含有した光を該酸化
チタンに照射する手段とを備え、且つ水流をカスケード
制御する水の浄化装置であって、酸化チタンの光触媒機
能により、水に含まれる藻類、菌類、細菌類などの有害
生物の死滅、有害な物質の分解、さらには脱臭、脱色を
迅速、且つ効率良く行えるので、産業用途ばかりでなく
一般家庭用の水浄化装置として極めて有用なものであ
る。特に、魚類などの飼養域で発生するオグサレ病、ハ
クハン病などの病原菌を殺菌でき、魚類などの死滅を防
ぐことができる。本発明の浄化装置は、酸化チタンを用
いているため、安全性が高く、適応できる有害な物質の
範囲が広く、廃棄しても環境を汚さないため、産業上極
めて有用なものである。さらに、本発明の浄化装置は、
水流をカスケード制御するために、光触媒である酸化チ
タンを担持した充填材を固定床反応器内に装填したり、
或いは固定床反応器内部を多段階に区分したり、個々の
固定床反応器を多段に連結し、さらにより好ましくは、
処理した水を前段階にフィードバックすることにより、
光触媒に対して水と光との接触が良好になり、酸化チタ
ンの光触媒機能をより一層高めることができるほか、酸
化チタンの流出がなく、光触媒体の入れ換えが容易とな
る。また、本発明は、酸化チタンから成る光触媒体、該
光触媒体を配置した固定床光触媒反応器、該反応器に水
を送液する手段及び紫外線を含有した光を該光触媒体に
照射する手段とを備え、水流をカスケード制御し、且
つ、フィードバック制御する水の浄化装置であって、処
理対象物の濃度を正確に制御することができる。また、
本発明は、酸化チタンを光触媒として用いた固定床光触
媒反応器に水を送液させ、該酸化チタンに紫外線を含有
した光を照射して、該固定床光触媒反応器内で水を浄化
させる水の浄化方法であって、湾、湖沼、ダム、河川の
海水や水または生活用水、工業用水、農業用水などの用
水、あるいはこれらの用水に利用される原水、水棲生物
の飼養域の水、さらには、生活排水や製造業、農業、水
産業などの産業排水、下水処理場排水、ゴルフ場からの
農業汚染排水などの排水など種々の水を簡便、且つ容易
に浄化することができるなど、有用な方法である。
INDUSTRIAL APPLICABILITY According to the present invention, a photocatalyst body made of titanium oxide, a fixed bed photocatalytic reactor in which the photocatalyst body is arranged, a means for feeding water to the reactor, and a light containing ultraviolet rays are applied to the titanium oxide. And a means for purifying water that cascade-controls the flow of water, wherein the photocatalytic function of titanium oxide kills harmful organisms such as algae, fungi, and bacteria contained in water, decomposes harmful substances, Furthermore, since deodorization and decolorization can be performed quickly and efficiently, it is extremely useful as a water purification device for not only industrial use but also general household use. In particular, it is possible to sterilize pathogenic bacteria such as Ogusale's disease and Hakuhan's disease that occur in a feeding area of fish and the like, and prevent the death of fish and the like. Since the purification apparatus of the present invention uses titanium oxide, it is highly safe, has a wide range of applicable harmful substances, and does not pollute the environment even if it is discarded, and thus is extremely useful industrially. Furthermore, the purification device of the present invention,
In order to control the water flow in cascade, a packing material carrying titanium oxide, which is a photocatalyst, is loaded into a fixed bed reactor,
Alternatively, the inside of the fixed bed reactor is divided into multiple stages, or individual fixed bed reactors are connected in multiple stages, and even more preferably,
By feeding back the treated water to the previous stage,
The contact between water and light is improved with respect to the photocatalyst, the photocatalytic function of titanium oxide can be further enhanced, and there is no outflow of titanium oxide, which facilitates replacement of the photocatalyst. Further, the present invention includes a photocatalyst body comprising titanium oxide, a fixed bed photocatalytic reactor in which the photocatalyst body is arranged, means for feeding water to the reactor, and means for irradiating the photocatalyst body with light containing ultraviolet rays. It is a water purifying apparatus that includes the above, and controls the flow of water in a cascade manner and also performs feedback control, and can accurately control the concentration of the object to be treated. Also,
The present invention provides water for purifying water in a fixed-bed photocatalytic reactor by feeding water to a fixed-bed photocatalytic reactor using titanium oxide as a photocatalyst and irradiating the titanium oxide with light containing ultraviolet rays. A method for purifying water, such as water for seawater or water of rivers, lakes, dams, rivers or domestic water, industrial water, agricultural water, or raw water used for these water, water for aquatic animals, and Is useful for easily and easily purifying various water such as domestic wastewater, industrial wastewater from manufacturing industry, agriculture, fisheries, wastewater from sewage treatment plants, agricultural polluted wastewater from golf courses, etc. That's the method.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における本発明の浄化装置の概念図で
ある。
FIG. 1 is a conceptual diagram of a purification device of the present invention in a first embodiment.

【図2】実施例3における本発明の浄化装置の概念図で
ある。
FIG. 2 is a conceptual diagram of a purifying device of the present invention in a third embodiment.

【図3】実施例4における本発明の浄化装置の概念図で
ある。
FIG. 3 is a conceptual diagram of a purification device of the present invention in a fourth embodiment.

【符号の説明】 A、B・・・・光触媒体 1、5、8・・・固定床光触媒反応器 2・・・・・・・ 白色蛍光灯 3、7、10・・・・・ 送液ポンプ 4、11・・・・・・・ 水槽 6、9、・・・・・ブラックライト → ・・・・ 水の流れの方向[Explanation of Codes] A, B ... Photocatalyst 1, 5, 8 ... Fixed-bed photocatalytic reactor 2 ... White fluorescent lamp 3, 7, 10. Pumps 4, 11 --- Water tanks 6, 9, --- Black light → --- Direction of water flow

フロントページの続き (72)発明者 野村 英司 滋賀県草津市西渋川二丁目3番1号 石原 産業株式会社中央研究所内 (72)発明者 吹田 徳雄 滋賀県草津市西渋川二丁目3番1号 石原 産業株式会社中央研究所内 (72)発明者 藤嶋 昭 神奈川県川崎市中原区中丸子710番地5 (72)発明者 橋本 和仁 神奈川県横浜市栄区小菅ケ谷町2000番地の 10南小菅ケ谷住宅2棟506号Front page continuation (72) Inventor Eiji Nomura 2-3-1, Nishi-Shibukawa, Kusatsu City, Shiga Ishihara Sangyo Co., Ltd. Central Research Laboratory (72) Inventor Tokuo Suita 2-3-1, Nishi-Shibukawa, Kusatsu City, Shiga Prefecture Ishihara (72) Inventor Akira Fujishima, 710 Nakamaruko, Nakahara-ku, Kawasaki City, Kanagawa Prefecture 5 (72) Kazuhito Hashimoto, Inori, Kosugaya-cho, 2000, Sakae-ku, Yokohama-shi, Kanagawa Prefecture 2 Minami-Kosugaya Houses 2 506

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】酸化チタンから成る光触媒体、該光触媒体
を配置した固定床光触媒反応器、該反応器に水を送液す
る手段及び紫外線を含有した光を該光触媒体に照射する
手段とを備え、且つ水流をカスケード制御することを特
徴とする水の浄化装置。
1. A photocatalyst body comprising titanium oxide, a fixed-bed photocatalytic reactor in which the photocatalyst body is arranged, means for feeding water to the reactor, and means for irradiating the photocatalyst body with light containing ultraviolet rays. A water purifying apparatus comprising: a water flow cascade control.
【請求項2】フィードバック制御する手段を備えてなる
ことを特徴とする請求項1記載の水の浄化装置。
2. The water purifying apparatus according to claim 1, further comprising means for feedback control.
【請求項3】酸化チタンを充填材の表面に担持した光触
媒体を固定床光触媒反応器に配置することを特徴とする
請求項1記載の水の浄化装置。
3. The water purifying apparatus according to claim 1, wherein a photocatalyst having titanium oxide supported on the surface of the filler is arranged in a fixed bed photocatalytic reactor.
【請求項4】光触媒である酸化チタンを担持した充填材
を光触媒体として用い、且つ水流をカスケード制御する
ことを特徴とする請求項1記載の水の浄化装置。
4. The water purifying apparatus according to claim 1, wherein a filler supporting titanium oxide as a photocatalyst is used as a photocatalyst, and the water flow is cascade-controlled.
【請求項5】光透過性を有する充填材に、光触媒である
酸化チタンを担持して光触媒体とし、且つ、水流をカス
ケード制御することを特徴とする請求項1記載の水の浄
化装置。
5. The water purifying apparatus according to claim 1, wherein titanium oxide, which is a photocatalyst, is supported on a light-transmissive filler to form a photocatalyst, and the water flow is cascade-controlled.
【請求項6】紫外線を含有した光が太陽光、蛍光灯、ブ
ラックライト、殺菌灯、水銀灯、ハロゲンランプ及び白
熱ランプの光より成る群から選ばれる少なくとも一種の
光であることを特徴とする請求項1記載の水の浄化装
置。
6. The light containing ultraviolet light is at least one light selected from the group consisting of sunlight, fluorescent light, black light, germicidal lamp, mercury lamp, halogen lamp and incandescent lamp. Item 1. The water purification device according to item 1.
【請求項7】生活用水、工業用水、農業用水、あるいは
これらに利用される原水を浄化することを特徴とする請
求項1記載の水の浄化装置。
7. The water purifying apparatus according to claim 1, which purifies domestic water, industrial water, agricultural water, or raw water used therein.
【請求項8】水棲生物の飼養域の水を浄化することを特
徴とする請求項1記載の水の浄化装置。
8. The water purifying apparatus according to claim 1, which purifies water in a breeding area of aquatic organisms.
【請求項9】生活排水、産業排水または下水処理場排水
を浄化することを特徴とする請求項1記載の水の浄化装
置。
9. The water purification apparatus according to claim 1, which purifies domestic wastewater, industrial wastewater, or wastewater from a sewage treatment plant.
【請求項10】光触媒を担持する充填材が、照射する光
に対して透過率が50%以上の光透過性材質であり、且
つ、2種類以上のサイズの充填材を組み合わせて光触媒
体として用いると共に、該光触媒体の充填層の厚みを照
射する光の進入方向に50mm以下とすることを特徴と
する請求項1記載の水の浄化装置。
10. The photocatalyst-carrying filler is a light-transmitting material having a transmittance of 50% or more with respect to irradiation light, and a filler of two or more sizes is used in combination as a photocatalyst body. At the same time, the water purifying apparatus according to claim 1, wherein the thickness of the packed layer of the photocatalyst body is set to 50 mm or less in the entrance direction of the irradiating light.
【請求項11】酸化チタンを光触媒として用いた請求項
1記載の固定床光触媒反応器に水を送液し、該酸化チタ
ンに紫外線を含有した光を照射して、水流をカスケード
制御しながら、該固定床光触媒反応器内で水を浄化する
ことを特徴とする水の浄化方法。
11. A fixed bed photocatalytic reactor according to claim 1, wherein titanium oxide is used as a photocatalyst, and water is sent to the titanium oxide, and the titanium oxide is irradiated with light containing ultraviolet rays to control the water flow in cascade. A method for purifying water, comprising purifying water in the fixed bed photocatalytic reactor.
【請求項12】酸化チタンを光触媒として用いた請求項
1記載の固定床光触媒反応器に水を送液し、該酸化チタ
ンに紫外線を含有した光を照射して、水流をカスケード
制御しながら、且つ、フィードバック制御しながら、該
固定床光触媒反応器内で水を浄化することを特徴とする
水の浄化方法。
12. A fixed bed photocatalytic reactor according to claim 1, wherein titanium oxide is used as a photocatalyst, and water is fed to the titanium oxide, and the titanium oxide is irradiated with light containing ultraviolet rays to control the water flow in cascade. In addition, a method for purifying water, which comprises purifying water in the fixed bed photocatalytic reactor while performing feedback control.
JP20440294A 1994-08-04 1994-08-04 Water purification equipment Expired - Fee Related JP3620660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20440294A JP3620660B2 (en) 1994-08-04 1994-08-04 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20440294A JP3620660B2 (en) 1994-08-04 1994-08-04 Water purification equipment

Publications (2)

Publication Number Publication Date
JPH0847687A true JPH0847687A (en) 1996-02-20
JP3620660B2 JP3620660B2 (en) 2005-02-16

Family

ID=16489957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20440294A Expired - Fee Related JP3620660B2 (en) 1994-08-04 1994-08-04 Water purification equipment

Country Status (1)

Country Link
JP (1) JP3620660B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248468A (en) * 1996-03-18 1997-09-22 Toto Ltd Photocatalyst material, polyfunctional material using the same and its production
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
US6589912B2 (en) 1999-07-01 2003-07-08 Hiroshi Kawai Composition for being sprayed on foliage of plant and use of the same
WO2004108605A1 (en) * 2003-06-04 2004-12-16 Jong-Seob Shim Photocatalyst sterilizer
WO2004110937A1 (en) * 2003-06-13 2004-12-23 Reiken, Inc. Photocatalyst water treating apparatus
JP2008161815A (en) * 2006-12-28 2008-07-17 Hitachi Plant Technologies Ltd Apparatus and method for cleaning ground water
CN106957081A (en) * 2017-05-11 2017-07-18 西南交通大学 Wawter bloom governing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856983B1 (en) 2011-12-06 2018-05-15 코웨이 주식회사 Ultraviolet sterilization apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248468A (en) * 1996-03-18 1997-09-22 Toto Ltd Photocatalyst material, polyfunctional material using the same and its production
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
US6589912B2 (en) 1999-07-01 2003-07-08 Hiroshi Kawai Composition for being sprayed on foliage of plant and use of the same
WO2004108605A1 (en) * 2003-06-04 2004-12-16 Jong-Seob Shim Photocatalyst sterilizer
US7230255B2 (en) 2003-06-04 2007-06-12 Jong-Seob Shim Photocatalyst sterilizer
WO2004110937A1 (en) * 2003-06-13 2004-12-23 Reiken, Inc. Photocatalyst water treating apparatus
JP2008161815A (en) * 2006-12-28 2008-07-17 Hitachi Plant Technologies Ltd Apparatus and method for cleaning ground water
CN106957081A (en) * 2017-05-11 2017-07-18 西南交通大学 Wawter bloom governing system

Also Published As

Publication number Publication date
JP3620660B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US5541096A (en) Photocatalyst and process for purifying water with same
CN204714652U (en) A kind of industrialized culture circular water treating system
JPS588812B2 (en) How to purify water for fish tanks
JP2613179B2 (en) Photocatalyst and water purification method using the same
JP3620660B2 (en) Water purification equipment
CN210869388U (en) Multifunctional fry incubator
JPS588811B2 (en) Method for suppressing and removing green algae growth
CN201609067U (en) Seawater electrode membrane disinfectant generator for breeding abalone
JP2001231395A (en) System for improving collapsed death rate of fry using photocatalyst
JPH0724451A (en) Method for purifying water in aquatic organism breeding area
JPH0646719A (en) Culturing apparatus for fishery
CN107509674A (en) A kind of intelligent plant metaplasia produces cultivation equipment
CN206298473U (en) Natural drink water bromate processing system
CN102976534A (en) Method and device of killing staphylococcus aureus in sewage
JP2001190166A (en) Method for culturing or cultivating and system therefor
CN109095722A (en) A kind of application of ozone technology in Hospital Sewage Treatment
KR20120133763A (en) Aquarium water automatic purifier
WO2000078680A1 (en) Method and apparatus for purifying water
CN214546597U (en) Separation system for cryptocaryon irritans of marine teleost
JPH0778A (en) Cleaning device for feeding water
CN217459107U (en) Treatment device for aquaculture water
JPH0622664A (en) Device for purifying water
TWM616004U (en) Pressurized water clarifier
CN208308630U (en) A kind of disinfection treatment of organic wastewater containing bacterium system
Semenov et al. Method of ultraviolet disinfection of water when growing fish in recirculating systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees