JP3620660B2 - Water purification equipment - Google Patents

Water purification equipment Download PDF

Info

Publication number
JP3620660B2
JP3620660B2 JP20440294A JP20440294A JP3620660B2 JP 3620660 B2 JP3620660 B2 JP 3620660B2 JP 20440294 A JP20440294 A JP 20440294A JP 20440294 A JP20440294 A JP 20440294A JP 3620660 B2 JP3620660 B2 JP 3620660B2
Authority
JP
Japan
Prior art keywords
water
photocatalyst
titanium oxide
light
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20440294A
Other languages
Japanese (ja)
Other versions
JPH0847687A (en
Inventor
貞夫 村澤
英司 野村
徳雄 吹田
昭 藤嶋
和仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP20440294A priority Critical patent/JP3620660B2/en
Publication of JPH0847687A publication Critical patent/JPH0847687A/en
Application granted granted Critical
Publication of JP3620660B2 publication Critical patent/JP3620660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

【0001】
【産業上の利用分野】
本発明は、水の浄化装置に関し、さらに詳細には酸化チタンの光触媒機能を利用した水の浄化装置に関する。
【0002】
【従来の技術】
生活排水、灌漑排水または産業排水には、窒素・リンなどの物質を多量に含むものがあり、これらは湖沼、河川、海湾における富栄養化現象を起こしている。富栄養化によってプランクトン、ピコプランクトン、アオコ、アカコなどの藻類が増殖すると、プランクトンの一種であるホルミディウムあるいはオシラトリアが作る臭気物質の2−メチルイソボルネオールなどにより水がかび臭くなり、生活環境、特に生活用水に悪影響を及ぼしたり、あるいは湖沼や河川の水を緑色、褐色に着色するいわゆる水の華、淡水青潮や淡水赤潮を形成したり、また、海水を赤褐色、桃色、褐色に着色するいわゆる赤潮を形成し、景観を損ねたり、水中の酸素を消化して酸素不足の状態を引き起こしたり、発生したプランクトンが魚のえらに付着し、呼吸困難を引き起こしたりして水産に多大な被害を与える。さらに、増殖した藻類は、浄水場、ダムなどの濾過池や濾過用スクリーンをつまらせるなど浄水処理に支障をきたしたりする。
また、生活排水、灌漑排水または産業排水には、カビなどの真菌類や放線菌などの菌類、大腸菌などの細菌類が含まれ、これらは湖沼、河川、海湾などで増殖する場合がある。菌類には、チフスや赤痢菌のような伝染病菌、腐食を促進する硫黄細菌、鉄細菌、硫酸塩還元菌、スライムを作る細菌類や真菌類、水に臭気をつける放線菌など有害なものも少なくなく、種々の被害が発生している。特に、魚類、貝類、カニ、エビ、カエルなどを養殖した池や水槽、魚類などを飼育した観賞用の池や水槽などの飼養域では、排泄物、餌の腐敗物などによっても、水が汚れ、悪臭が発散したり、排泄物、餌の腐敗物などから細菌類や菌類が発生する被害が頻繁に起こっている。
さらに、生活排水、灌漑排水または産業排水には、上記以外に洗剤、油などの酸素要求物質、半導体製造工場などの排水に含まれる有機ハロゲン化合物や農薬などの有害な物質が含まれる場合があり、湖沼、河川、海湾を汚染し、生物に被害を及ぼす場合がある。
【0003】
増殖した藻類、菌類、細菌類を殺藻あるいは殺菌するには、たとえば、塩素、オゾン、硫酸銅などを注入したり、紫外線の照射などによって処理する方法が採用されている。また、藻類、菌類、細菌類により発生した臭気物質や着色物質を取り除くには、たとえば、活性炭などに吸着させる方法が採用されている。特に、汚染の進んだ湖沼、河川から取水する浄水場では、多量の活性炭を投与して水質の向上につとめている。一方、酸化チタンにそのバンドギャップ以上のエネルギーを持つ波長の光を照射すると光励起により伝導帯に電子を、価電子帯に正孔を生じるが、この光励起して生じた電子の持つ強い還元力や正孔の持つ強い酸化力を利用して殺菌、有機物の分解あるいは脱臭する方法が提案されている。
【0004】
【発明が解決しようとする課題】
前記の塩素やオゾンなどで処理する方法では藻類、菌類、細菌類を減少させることはできるものの、その効果は充分でなく、また、処理時間が長くかかったり、使用した薬剤やその薬剤から生じた化合物が水中に残留するなどの問題がある。活性炭吸着法では、臭気や着色を減少できるものの、藻類、菌類、細菌類を死滅させるものではない。酸化チタン光触媒による方法は、藻類、菌類の死滅化、また死滅した藻類、菌類や溶存している有機物の分解、アンモニアの酸化、脱臭等の幅広い水の浄化作用が期待できるものの、照射する光の利用効率を良くし、高い光触媒機能を得るために、通常、超微粒子の酸化チタンを個々に分散した状態で処理を行っている。このため、酸化チタンを処理系から分離、回収する必要があるが、この分離、回収する操作が極めて困難なこともあり、実用化が難しい状況にある。
【0005】
【課題を解決するための手段】
本発明者らは、酸化チタンの持つ光触媒機能に着目し、簡便、且つ効率良く水に含まれる藻類、菌類、細菌類などの有害生物を死滅させ、有害な物質を分解して水を浄化する方法を種々検討した結果、(1)酸化チタンを配置した固定床光触媒反応器に水を送液し、該固定床光触媒反応器内で、紫外線を含有した光の存在下、水流をカスケード制御しながら水を処理すると、意外にも殺藻、殺菌、脱臭、脱色あるいは有害な物質の分解が効率良く行われ、水の浄化ができること、しかも、酸化チタンを分離、回収する操作が不要であることから簡便、且つ容易に水の浄化が行われること、(2)固定床光触媒反応器から排出する水に含まれる処理対象物の濃度を測定し、その結果を送液手段や光源などの制御器にフィードバックして制御することにより、より高度な水の浄化ができること、(3)酸化チタンを充填材の表面に担持すると、光触媒である酸化チタンと処理水との接触が良好となり、処理水中の藻類、細菌の死滅化や有害な有機物の分解による浄化作用が向上すること、(4)水流をカスケード制御するために、固定床反応装置内に酸化チタンを担持した充填材を装填することにより、光触媒である酸化チタンと処理水との接触が良好となり、処理水中の藻類、細菌の死滅化や有害な有機物の分解による浄化作用が一層向上すること、さらに、(5)水流をカスケード制御するために、装置内に充填層を多段階に区分し、より好ましくは、さらにその各々の段階または全体での処理水の一部を前段にフィードバックすることにより、一定の滞留時間を保持、制御することができ、処理対象物を目標の処理濃度まで効率良く処理することが可能となること、(6)特に、充填材が照射する光の透過率が50%以上の光透過性材質であり、且つ、2種類以上のサイズの充填材を組み合わせて、それらの表面に酸化チタンを担持して光触媒体として用いて充填密度を高くすると共に、光触媒体の充填層の厚みを照射する光の進入方向に50mm以下とすることにより、光触媒体への光と水の接触をさらに良好にすることができること、(7)特に、藻類、菌類、細菌類が繁殖しやすい、(a)貯蔵タンクなどの貯水器の水、太陽エネルギーなどを利用した給水・給湯設備や冷暖房設備内の水、風呂水、プール用水、上水、飲料水などの生活用水、工業用水、農業用水あるいはこれらの用水に利用される原水、(b)水棲生物の飼養域の水、さらには、(c)生活排水、製造業、農業、水産業などの産業排水、下水処理場排水、ゴルフ場からの農薬汚染排水などの排水、(d)閉鎖性の海域、湾、湖、沼、ダム、修景池、鑑賞池などの汚染された水、などの浄化に最適であることなどを見出した。これらの知見に基づき、さらに、研究して本発明を完成した。
【0006】
すなわち、本発明は、酸化チタンを充填材の表面に担持した光触媒体、該光触媒体を配置した固定床光触媒反応器、該反応器に水を送液する手段及び紫外線を含有した光を該光触媒体に照射する手段とを備えた水の浄化装置であって、酸化チタンを担持する充填材が、照射する光に対して透過率が50%以上の光透過性材質であり、且つ、2種類以上のサイズの充填材を用いると共に、該光触媒体の充填層の厚みを照射する光の進入方向に50mm以下とし、しかも、充填層を多段階に区分し各段階に順番に水を流して水の流れを多段に制御することを特徴とする水の浄化装置である。
【0007】
本発明は簡便、且つ効率良く水を浄化する装置および方法を提供することにある。
【0008】
本発明において、光触媒反応器は固定床が望ましく、流動床などの反応器は酸化チタンの分離操作が必要となるため望ましくない。固定床光触媒反応器としては、たとえば、固定層反応器、ラジアルフロー式反応器、パラレルパッセージ式反応器、モノリス式反応器、薄層型反応器、管壁式反応器などが用いられる。前記の固定床光触媒反応器に酸化チタンから成る光触媒体を配置する。固定床反応器をシリーズに連結し、また固定床反応器の内部を多段階に区切り、且つ、各段階または全系の処理した水の一部を前段階にフィードバックすることが、水の浄化処理の上でより好ましい。この場合、固定床反応器の内部に光触媒体である酸化チタンの成形物を配置したり、酸化チタンを充填材、反応器内の壁面、金網などに付着して配置することができる。特に、酸化チタンを充填材の表面に付着するのが好ましい。充填材は、無機材料、金属材料、有機材料などの種々のものを用いることができ、石などの鉱物も用いることができる。望ましい材質としては、光透過性の石英及び石英ガラス、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラスなどの種々のガラス類、さらに種々のプラスチック類などがあり、照射する光成分の50%以上、望ましくは70%以上を透過させる材質のものが望ましい。このような光透過性の充填材を用いると、照射光を一層効率的に利用でき、光触媒機能をより発揮させることができる。充填材は、水流をカスケード制御するのに相応しいものが好ましい。水流のカスケード制御とは、固定床光触媒反応器内の光触媒体の表面に光を照射しつつ、処理水を接触させる上において、出来る限り広い接触面で均一に且つ、一定の滞留時間を保持するために、水の流れを多段に、より好ましくは、さらに処理水の一部をフィードバックするように制御することである。水のカスケード制御に相応しい充填材としては、無定形状、球状、板状などのほか、ラシヒリング、レッシングリング、ベルルサドル、インタロックスサドル、テラレット、ポールリングなどの種々の形状のものが挙げられる。充填材の大きさは直径100μm〜5cm程度が適当であり、好ましくは0.1〜3cm、より好ましくは0.2〜2cmである。本発明においては、光触媒体全部に光が照射されるようにするために、光触媒体の厚みを、照射する光の進入方向に50mm以下、好ましくは40mm以下、より好ましくは30mm以下とする。光触媒体の厚みを前記範囲にするために、光を照射する光源の数を増やしたり、該光源を固定床光触媒反応器内に装入したりして調節することができる。
【0009】
本発明において、光触媒として用いる酸化チタンとは、酸化チタンのほか、含水酸化チタン、水和酸化チタン、メタチタン酸、オルトチタン酸、水酸化チタンなどと一般に呼ばれているものを含み、その結晶型は問わない。前記の酸化チタンは種々の公知の方法で得ることができる。たとえば、▲1▼硫酸チタニル、塩化チタン、有機チタン化合物などのチタン化合物を、必要に応じて核形成用種子の存在下に、加水分解する方法、▲2▼必要に応じて核形成用種子の存在下に、硫酸チタニル、塩化チタン、有機チタン化合物などのチタン化合物にアルカリを添加し、中和する方法、▲3▼塩化チタン、有機チタン化合物などを気相酸化する方法、▲4▼前記▲1▼、▲2▼の方法で得られた酸化チタンを焼成する方法が挙げられる。特に、前記▲1▼、▲2▼の方法で得られた酸化チタンは光触媒機能が高いため好ましい。酸化チタンの光触媒機能を向上させるために、該酸化チタンの表面に白金、金、銀、銅、パラジウム、ロジウム、ルテニウムなどの金属、酸化ルテニウム、酸化ニッケルなどの金属酸化物を被覆しても良い。このようにして得られた酸化チタンを、たとえば、水、アルコール、トルエンなどの溶媒に懸濁させる。必要に応じて種々の分散剤や結着剤を加えても良い。得られた懸濁液を、たとえば、含浸法、ディップコーティング法、スピナーコーティング法、ブレードコーティング法、ローラーコーティング法、ワイヤーバーコーティング法、リバースロールコーティング法などの塗布方法やスプレーコーティング法などの吹き付け方法などを用いて、充填材、反応器内の壁面、金網などの表面に塗布し、あるいは吹き付けし、次いで、乾燥して酸化チタンを付着させる。特に、前記▲1▼、▲2▼の方法で得られた酸化チタンを溶媒に高度に分散させて酸化チタンゾルとし、この酸化チタンゾルを塗布あるいは吹き付けるのが好ましい。付着した酸化チタンは必要に応じて焼成しても良く、この焼成により、酸化チタンを充填材、反応器内の壁面、金網などの表面に強固に接着させることができる。前記の焼成は100℃以上、好ましくは200〜800℃、特に好ましくは300〜800℃の温度で焼成するのが適当である。また、前記の硫酸チタニル、塩化チタン、有機チタン化合物などを、充填材の存在下に、加水分解あるいは中和して、酸化チタンを充填材の表面に析出、付着させ、次いで乾燥し、さらに必要に応じて焼成することによっても、充填材に酸化チタンを担持することができる。
【0010】
本発明は、固定床光触媒反応器に処理しようとする水を加圧下、減圧下または大気圧下で送液する手段を備える。通常、ポンプや重力などで送液するのが好ましく、装置内を流通させる手段としては、ポンプや重力による自然落下による方法などが好ましい。さらに、固定床光触媒反応器内の酸化チタンから成る光触媒体に紫外線を含有した光を照射する手段を備え、該固定床光触媒反応器内で、紫外線を含有した光の存在下、水を浄化させる。紫外線を含有した光としては、たとえば、太陽光や蛍光灯、ブラックライト、ハロゲンランプ、キセノンフラッシュランプ、殺菌灯、水銀灯、白熱ランプなどの光が挙げられる。特に、300〜400nmの近紫外線を含有した光が好ましい。紫外線を含有した光の照射量や照射時間などは処理する水の汚染の程度や紫外線の含有量などによって適宜設定できる。本発明で用いる固定床光触媒反応器は、後述の実施例1〜6に用いた反応器の形のほか、これらを適宜改良したり、またこれらの反応器を2つ以上連結させて用いても良い。
【0011】
本発明の浄化装置は、さらにフィードバック制御する手段を備えることができる。本発明において、フィードバック制御とは、固定床光触媒反応器から排出する水に含まれる処理対象物の濃度を測定し、その結果を送液手段、光源などの制御器にフィードバックし、制御器は与えられた目標と測定結果とを比較して次の操作を決める方式を言う。測定結果が目標より高い濃度であれば、送液量を低くしたり、光の照射量を強くしたりして濃度を目標に近づける操作を行う。これらの操作はコンピューターを用いて制御できる。
【0012】
本発明の浄化装置を用いて、酸化チタンを光触媒として用いた固定床光触媒反応器に水を送液し、該酸化チタンに紫外線を含有した光を照射して、該固定床光触媒反応器内で水を浄化することができる。
【0013】
【実施例】
以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。
比較例1
硫酸チタニルを加熱加水分解して得られた酸性チタニアゾル(石原産業社製、CS−C)をTiO2 基準で40g/lに水で希釈した。次に、この希釈液に、球状であり、且つ光透過率が85%である、透光性を有するガラス玉(直径1cm)の充填材を2時間含浸させた後、アンモニア水を添加してpH7に中和して充填材の表面に酸化チタンを付着させた。引き続き、酸化チタンを付着させた充填材を濾別分離し、乾燥した後、大気中600℃の温度で2時間焼成した。次いで、焼成した充填材を水洗し、乾燥し、光触媒体Aを得た。この光触媒体Aの酸化チタンの担持量は充填材100重量部に対して1.6重量部であった。この光触媒体A300gを、第1図に示すように、照射する光の進入方向に30mmの充填層の厚さになるように容器の床に配置し、固定床光触媒反応器1とした。この固定床光触媒反応器の上方15cmの距離に20Wの白色蛍光灯2を設置し、さらにこの固定床光触媒反応器に水を送液するポンプ3を備え、浄化装置とした。金魚20匹を飼育した水槽4(水50リットル)の上にこの浄化装置を置き、水槽内の水を浄化装置に送液し、水をフィードバックし、植物プランクトンの発生や水の汚れを調べた。水の流れはカスケード制御された。なお、ポンプの水流量は10リットル/分とした。この水槽には0.5gの餌を1日2回投与した。この結果、この水槽には、2週間を経過しても植物プランクトンの発生は認められなかった。また、試験開始から4週間後の水中の生菌数と大腸菌群数を下記の方法で調べたところ、生菌数6620個/mlであり、大腸菌群数3640個/mlであり、下記の比較例に比し菌類、細菌類の増殖を抑制できた。さらに、表1に示したように、水の透過率の変化は比較例に比して少なく、水の汚れはほとんどなかった。
【0014】
<生菌類及び大腸菌群数の測定方法>
採取した水を無菌水で10倍、100倍希釈し、滅菌したシャーレ5枚に1mlずつ分注し、次いで、培地を10ml添加し、攪拌した後、37℃で1晩培養させ、翌日、コロニー数を数えた。
<使用した培地>
生菌数:ブレインハートインフュージョンブイヨン(ニッスイ社製)
大腸菌群数:デゾキシコレート培地(ニッスイ社製)
【0015】
比較例
50リットルの水を水槽に入れ、金魚20匹を飼育して、植物プランクトンの発生や水の汚れを比較例1と同様に観察した。この結果、この水槽には、2週間経過後、植物プランクトンが多数発生して水槽の反対側が見えなくなる程汚染された。また、試験開始から4週間後の水中の生菌数と大腸菌群数を比較例1と同様な方法で調べたところ、生菌数8000個/mlであり、大腸菌群数4700個/mlであった。さらに、表1に示したように、水の透過率の変化が大きく、水の汚れが進んだ。
【0016】
【表1】

Figure 0003620660
【0017】
比較例3
硫酸チタニルを加熱加水分解して得られた、TiO2 基準で400g/lの酸性チタニアゾル(石原産業社製、CS−C)に、球状であり、且つ光透過率が65%である、透光性を有するガラス玉(直径1cm)の充填材を2日間含浸させた後、充填材を濾別分離し、乾燥して、充填材の表面に酸化チタンを付着させた。引き続き、酸化チタンを付着させた充填材を大気中600℃の温度で2時間焼成した。次いで、焼成した充填材を水洗し、乾燥し、光触媒体Bを得た。この光触媒体Bの酸化チタンの担持量は充填材100重量部に対して3.6重量部であった。この光触媒体B300gを、照射する光の進入方向に50mmの充填層の厚さになるように容器の床に配置させ、固定床光触媒反応器とした。この固定床光触媒反応器の上方にブラックライトを設置し、さらにこの固定床光触媒反応器に水を送液するポンプを備えて、浄化装置とした。本浄化装置では、紫外光の強度は充填材の表面で1.55mW/cm2 とし、また、ポンプの水流量は10リットル/分とした。生活用水に利用される琵琶湖の水50リットルを入れた水槽の横に前記の浄化装置を置き、水槽内の水を浄化装置に送液し、水をフィードバックし、カビ臭さの成分である2−メチルイソボルネオールの濃度の変化を調べた。水の流れはカスケード制御された。この結果を表2に示す。2−メチルイソボルネオールの濃度が10ppt以下になるとほとんどの人間がカビ臭さを感じない。なお、前記の浄化装置を用いて、生活排水を同様に処理したところ、生活排水に含まれていた有機物を分解して、COD値が低下した。
【0018】
【表2】
Figure 0003620660
【0019】
比較例4
比較例3の光触媒体B1kgを、第2図に示すように、ドーナツ型円筒容器に充填させ、固定床光触媒反応器5とした。光触媒体の充填層の厚みは照射する光の進入方向に50mmとした。この固定床光触媒反応器には、その内側にブラックライト6を備え、内壁面にはミラーを張り、また、この固定床光触媒反応器に水を送液するポンプ7を備えて、浄化装置とした。本浄化装置では、紫外光の強度は固定床光触媒反応器内側表面で1.55mW/cm2 とし、また、ポンプの水流量は10リットル/分とし、排出した水の一部をフィードバックした。水の流れはカスケード制御された。この浄化装置の上方から比較例3で用いたのと同じ琵琶湖の水を送液し、浄化装置通過後の2−メチルイソボルネオールの濃度を調べた。この結果、2−メチルイソボルネオールの濃度は10ppt以下であった。
【0020】
比較例5
比較例1の光触媒体Aを、第3図に示すように、多段階に区切った容器に50mmの充填層の厚さになるように配置し、固定床光触媒反応器8とした。この固定床光触媒反応器の上方15cmの距離に10Wのブラックライト9を設置し、さらにこの固定床光触媒反応器に水を送液するポンプ10を備え、浄化装置とした。金魚20匹を飼育した水槽11(水50リットル)の上にこの装置を置き、水槽内の水を浄化装置に送液し、水をフィードバックし、CODの変化を調べた。なお、ポンプの水流量は10リットル/分とした。この水槽には0.5gの餌を1日2回投与した。水の流れはカスケード制御された。この結果、表3に示すように、下記比較例に比しCODは低く抑えられ、有機物が効率的に分解されることが確認された。
【0021】
実施例
硫酸チタニルを加水分解して得られた酸性チタニアゾル(石原産業製、CS−C)をTiO2 基準で40g/lに水で希釈した。次にこの希釈液に、球状であり、且つ光透過率が60%である、透光性を有するガラス玉(直径0.5cm)の充填材を2時間含浸させた後、アンモニア水を添加してpH7に中和して、充填材の表面に酸化チタンを担持した。引き続き、酸化チタンを担持させた充填材を濾別分離し、乾燥した後、大気中600℃の温度で2時間焼成した。次いで焼成した充填材を水洗し、乾燥し、光触媒体Eを得た。この光触媒体Eの酸化チタン担持量は充填材100重量部に対して2.5重量部であった。この光触媒体Eと比較例1の光触媒体Aとを同体積量混合し、比較例5で用いた容器に50mmの充填層の厚さになるように配置し、固定床光触媒反応器とした。この固定床光触媒反応器の上方15cmの距離に10Wのブラックライトを設置し、さらにこの固定床光触媒反応器に水を送液するポンプを備え、本発明の浄化装置とした。金魚20匹を飼育した水槽(水50リットル)の上にこの装置を置き、水槽内の水を浄化装置に送液し、水をフィードバックし、CODの変化を調べた。なお、ポンプの水流量は10リットル/分とした。この水槽には0.5gの餌を1日2回投与した。水の流れはカスケード制御された。この結果、表3に示すように、下記比較例に比しCODは低く抑えられ、有機物が効率的に分解されることが確認された。
【0022】
比較例
比較例1で用いた容器の床に市販のプラスチック濾過綿を50mmの厚さに充填した。この容器の上方15cmの距離に10Wのブラックライトを設置し、さらにこの容器に水を送液するポンプを備え、比較のための浄化装置とした。金魚20匹を飼育した水槽(水50リットル)の上にこの装置を置き、水槽内の水を浄化装置に送液し、水をフィードバックし、CODの変化を調べた。なお、ポンプの水流量は10リットル/分とした。この水槽には0.5gの餌を1日2回投与した。この結果、表3に示すように、CODは短期間に高くなり、有機物が蓄積していくことが確認された。
【0023】
【表3】
Figure 0003620660
【0024】
比較例7
比較例4に記載した浄化装置に、フィードバック制御する手段を備えた。すなわち、本浄化装置から排出する水に含まれる2−メチルイソボルネオールの濃度を測定し、その結果に基づき、ポンプの送液量を5〜20リットル/分の範囲で、且つ光源の出力量を紫外光の強度が1〜4mW/cm2 になるように制御した。この結果、2−メチルイソボルネオールの濃度は5ppt以下に制御できた。
【0025】
【発明の効果】
本発明の浄化装置では、酸化チタンの光触媒機能により、水に含まれる藻類、菌類、細菌類などの有害生物の死滅、有害な物質の分解、さらには脱臭、脱色を迅速、且つ効率良く行えるので、産業用途ばかりでなく一般家庭用の水浄化装置として極めて有用なものである。特に、魚類などの飼養域で発生するオグサレ病、ハクハン病などの病原菌を殺菌でき、魚類などの死滅を防ぐことができる。本発明の浄化装置は、酸化チタンを用いているため、安全性が高く、適応できる有害な物質の範囲が広く、廃棄しても環境を汚さないため、産業上極めて有用なものである。さらに、本発明の浄化装置は、水流を制御するために、光触媒である酸化チタンを担持した充填材を固定床反応器内に装填したり、或いは固定床反応器内部を多段階に区分したり、個々の固定床反応器を多段に連結し、さらにより好ましくは、処理した水を前段階にフィードバックすることにより、光触媒に対して水と光との接触が良好になり、酸化チタンの光触媒機能をより一層高めることができるほか、酸化チタンの流出がなく、光触媒体の入れ換えが容易となる。また、本発明の浄化装置によって処理対象物の濃度を正確に制御することができる。また、本発明の浄化装置において、酸化チタンを光触媒として用いた固定床光触媒反応器に水を送液させ、該酸化チタンに紫外線を含有した光を照射して、該固定床光触媒反応器内で水を浄化させることができ、湾、湖沼、ダム、河川の海水や水または生活用水、工業用水、農業用水などの用水、あるいはこれらの用水に利用される原水、水棲生物の飼養域の水、さらには、生活排水や製造業、農業、水産業などの産業排水、下水処理場排水、ゴルフ場からの農業汚染排水などの排水など種々の水を簡便、且つ容易に浄化することができる。
【図面の簡単な説明】
【図1】比較例1における浄化装置の概念図である。
【図2】比較例4における浄化装置の概念図である。
【図3】実施例における本発明の浄化装置の概念図である。[0001]
[Industrial application fields]
The present invention relates to a water purification device, and more particularly to a water purification device that uses the photocatalytic function of titanium oxide.
[0002]
[Prior art]
Some domestic wastewater, irrigation wastewater, and industrial wastewater contain a large amount of substances such as nitrogen and phosphorus, which cause eutrophication in lakes, rivers, and sea bays. When algae such as plankton, picoplankton, aoko, and red cocoon grow due to eutrophication, water becomes musty due to odorous substances such as 2-methylisoborneol produced by holmidium or oshiratria, which is a type of plankton. The so-called red tide which adversely affects water, forms the so-called water blossom, fresh water blue tide and fresh water red tide which colors the water of lakes and rivers in green and brown, and colors sea water in reddish brown, pink and brown It causes a lot of damage to fisheries, such as damaging the landscape, digesting oxygen in the water and causing oxygen deficiency, and plankton that attaches to the gills of the fish, causing dyspnea. Furthermore, the grown algae may interfere with water purification treatment, such as picking up filter ponds and filtration screens such as water purification plants and dams.
In addition, domestic wastewater, irrigation wastewater, or industrial wastewater includes fungi such as fungi, fungi such as actinomycetes, and bacteria such as Escherichia coli, which may grow in lakes, rivers, sea bays, and the like. Fungi include harmful ones such as infectious diseases such as typhoid and Shigella, sulfur bacteria that promote corrosion, iron bacteria, sulfate reducing bacteria, bacteria and fungi that make slime, and actinomycetes that smell water There are not a lot of damages. In particular, in ponds and aquariums where fish, shellfish, crabs, shrimps, frogs, etc. are cultivated, and ornamental ponds and aquariums where fish are cultivated, water is also contaminated by excrement and food septics. There are frequent occurrences of odors, bacteria and fungi from excrement and food spoilage.
In addition, domestic wastewater, irrigation wastewater, or industrial wastewater may contain oxygen demand substances such as detergents and oils, and harmful substances such as organic halogen compounds and agricultural chemicals contained in wastewater from semiconductor manufacturing plants. May contaminate lakes, rivers, sea bays and cause damage to organisms.
[0003]
In order to kill or sterilize the grown algae, fungi, and bacteria, for example, a method of injecting chlorine, ozone, copper sulfate, or the like, or treating with ultraviolet rays or the like is employed. Further, in order to remove odorous substances and colored substances generated by algae, fungi and bacteria, for example, a method of adsorbing on activated carbon or the like is employed. In particular, in water purification plants that take water from polluted lakes and rivers, a large amount of activated carbon is administered to improve water quality. On the other hand, when titanium oxide is irradiated with light having a wavelength greater than its band gap, electrons are generated in the conduction band by photoexcitation and holes are generated in the valence band. Methods have been proposed to sterilize, decompose organic substances or deodorize using the strong oxidizing power of holes.
[0004]
[Problems to be solved by the invention]
Although the method of treating with chlorine or ozone can reduce algae, fungi, and bacteria, the effect is not sufficient, and it takes a long time for treatment, or it is caused by the used medicine or the medicine. There is a problem that the compound remains in water. The activated carbon adsorption method can reduce odor and coloring, but does not kill algae, fungi and bacteria. Although the method using titanium oxide photocatalyst is expected to have a wide range of water purification actions, such as the killing of algae and fungi, the decomposition of dead algae, fungi and dissolved organic matter, oxidation of ammonia, and deodorization, In order to improve the utilization efficiency and obtain a high photocatalytic function, the treatment is usually performed in a state where ultrafine titanium oxide is dispersed individually. For this reason, it is necessary to separate and recover the titanium oxide from the treatment system, but this separation and recovery operation is extremely difficult, and it is difficult to put it to practical use.
[0005]
[Means for Solving the Problems]
The present inventors pay attention to the photocatalytic function possessed by titanium oxide, and easily and efficiently kill pests such as algae, fungi, and bacteria contained in water, decompose harmful substances, and purify water. As a result of various examinations of the method, (1) water was sent to a fixed bed photocatalytic reactor equipped with titanium oxide, and the water flow was cascade controlled in the presence of light containing ultraviolet rays in the fixed bed photocatalytic reactor. However, when water is treated, it is surprising that algaecide, sterilization, deodorization, decolorization, or decomposition of harmful substances can be performed efficiently, water purification can be performed, and operation for separating and recovering titanium oxide is unnecessary. (2) The concentration of the treatment object contained in the water discharged from the fixed bed photocatalytic reactor is measured, and the result is controlled by a controller such as a liquid feeding means or a light source. Feedback and control (3) When titanium oxide is supported on the surface of the filler, the contact between titanium oxide, which is a photocatalyst, and treated water is improved, and algae and bacteria in the treated water are killed. (4) In order to control the water flow in cascade, a fixed-bed reactor is loaded with a filler carrying titanium oxide in order to control the water flow. Good contact with the treated water, further improving the purification action by killing algae and bacteria in the treated water and decomposing harmful organic substances, and (5) Filling the equipment to cascade the water flow The layer is divided into multiple stages, and more preferably, a certain residence time is maintained and controlled by feeding back a part of the treated water in each stage or the whole to the previous stage. And it is possible to efficiently process the object to be processed to the target processing concentration, (6) in particular, a light-transmitting material having a light transmittance of 50% or more irradiated by the filler, and Combining two or more kinds of fillers, supporting titanium oxide on their surfaces and using them as a photocatalyst to increase the packing density, and in the light entry direction to irradiate the thickness of the packed layer of the photocatalyst By making it 50 mm or less, it is possible to further improve the contact of light and water with the photocatalyst, (7) In particular, algae, fungi and bacteria are easy to propagate. Water, water in hot and cold water supply facilities using solar energy, air in heating and cooling facilities, bath water, pool water, drinking water, domestic water, industrial water, agricultural water, or raw water used for these water , (B) water (C) Wastewater such as domestic wastewater, manufacturing industry, agriculture, fishery industry, sewage treatment plant wastewater, agricultural chemical-contaminated wastewater from golf courses, It was found to be optimal for purification of contaminated water such as sea areas, bays, lakes, swamps, dams, scenic ponds, and appreciation ponds. Based on these findings, the present invention was completed by further research.
[0006]
That is, the present invention relates to a photocatalyst carrying titanium oxide on the surface of a filler, a fixed bed photocatalyst reactor having the photocatalyst arranged thereon, means for sending water to the reactor, and light containing ultraviolet rays to the photocatalyst. A water purifier having means for irradiating the body, wherein the filler carrying titanium oxide is a light transmissive material having a transmittance of 50% or more with respect to the light to be irradiated, and two types The filler of the above size is used, and the thickness of the packed layer of the photocatalyst is set to 50 mm or less in the light entering direction.In addition, the packed bed is divided into multiple stages, and water is flowed to each stage in turn.A water purification apparatus characterized by controlling the flow of water in multiple stages.
[0007]
An object of the present invention is to provide an apparatus and a method for purifying water simply and efficiently.
[0008]
In the present invention, the photocatalytic reactor is desirably a fixed bed, and a reactor such as a fluidized bed is not desirable because it requires a titanium oxide separation operation. As the fixed bed photocatalytic reactor, for example, a fixed bed reactor, a radial flow reactor, a parallel passage reactor, a monolith reactor, a thin layer reactor, a tube wall reactor, or the like is used. A photocatalyst made of titanium oxide is disposed in the fixed bed photocatalytic reactor. It is possible to purify water by connecting fixed bed reactors in series, dividing the inside of the fixed bed reactor into multiple stages, and feeding back part of the treated water in each stage or the entire system to the previous stage. Is more preferable. In this case, a molded product of titanium oxide, which is a photocatalyst, can be arranged inside the fixed bed reactor, or titanium oxide can be attached to a filler, a wall surface in the reactor, a wire mesh, or the like. In particular, it is preferable to attach titanium oxide to the surface of the filler. As the filler, various materials such as inorganic materials, metal materials, and organic materials can be used, and minerals such as stones can also be used. Desirable materials include light transmissive quartz and quartz glass, soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass, aluminosilicate glass, and various plastics, as well as various plastics. It is desirable to use a material that transmits 50% or more, preferably 70% or more of the light component. When such a light-transmitting filler is used, irradiation light can be used more efficiently and a photocatalytic function can be exhibited more. The filler is preferably suitable for cascade control of the water flow. Cascade control of water flow means that the surface of the photocatalyst in the fixed bed photocatalyst reactor is irradiated with light and the treated water is brought into contact with the surface as wide as possible to maintain a uniform residence time. Therefore, the flow of water is controlled in multiple stages, and more preferably, a part of the treated water is further fed back. Examples of suitable fillers for water cascade control include amorphous shapes, spherical shapes, plate shapes, and various shapes such as Raschig rings, Lessing rings, Berle saddles, Interlocks saddles, terralet, and pole rings. The size of the filler is suitably about 100 μm to 5 cm in diameter, preferably 0.1 to 3 cm, more preferably 0.2 to 2 cm. In the present invention, in order to irradiate the entire photocatalyst body with light, the thickness of the photocatalyst body is set to 50 mm or less, preferably 40 mm or less, more preferably 30 mm or less, in the direction of the incident light. In order to make the thickness of the photocatalyst within the above range, the number of light sources for irradiating light can be increased, or the light sources can be adjusted by inserting them into a fixed bed photocatalyst reactor.
[0009]
In the present invention, titanium oxide used as a photocatalyst includes, in addition to titanium oxide, what is generally called hydrous titanium oxide, hydrated titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and the like, and its crystal form Does not matter. The titanium oxide can be obtained by various known methods. For example, (1) a method of hydrolyzing a titanium compound such as titanyl sulfate, titanium chloride, or an organic titanium compound in the presence of a nucleation seed if necessary, or (2) a nucleation seed if necessary. A method of neutralizing by adding an alkali to a titanium compound such as titanyl sulfate, titanium chloride, and an organic titanium compound in the presence; (3) a method of vapor-phase oxidizing titanium chloride, an organic titanium compound, etc .; The method of baking the titanium oxide obtained by the method of (1) and (2) is mentioned. In particular, the titanium oxide obtained by the methods (1) and (2) is preferable because of its high photocatalytic function. In order to improve the photocatalytic function of titanium oxide, the surface of the titanium oxide may be coated with a metal such as platinum, gold, silver, copper, palladium, rhodium or ruthenium, or a metal oxide such as ruthenium oxide or nickel oxide. . The titanium oxide thus obtained is suspended in a solvent such as water, alcohol or toluene. Various dispersants and binders may be added as necessary. The obtained suspension is sprayed, for example, by an impregnation method, a dip coating method, a spinner coating method, a blade coating method, a roller coating method, a wire bar coating method, a reverse roll coating method, or a spray coating method. Etc. are used to apply or spray on the surface of the packing material, the wall surface in the reactor, the wire mesh, etc., and then dry to deposit titanium oxide. In particular, it is preferable that the titanium oxide obtained by the methods (1) and (2) is highly dispersed in a solvent to form a titanium oxide sol, and this titanium oxide sol is applied or sprayed. The attached titanium oxide may be fired as necessary, and by this firing, the titanium oxide can be firmly bonded to the surface of the filler, the wall surface in the reactor, the wire mesh or the like. The firing is suitably performed at a temperature of 100 ° C. or higher, preferably 200 to 800 ° C., particularly preferably 300 to 800 ° C. In addition, the above-mentioned titanyl sulfate, titanium chloride, organic titanium compound, etc. are hydrolyzed or neutralized in the presence of the filler to deposit and attach titanium oxide to the surface of the filler, and then dried and further required The titanium oxide can be supported on the filler also by firing according to the above.
[0010]
The present invention comprises means for feeding water to be treated to a fixed bed photocatalytic reactor under pressure, reduced pressure or atmospheric pressure. Usually, it is preferable to send liquid by a pump or gravity, and as a means for circulating in the apparatus, a method by a natural fall by a pump or gravity is preferable. Furthermore, the photocatalyst made of titanium oxide in the fixed bed photocatalytic reactor is provided with means for irradiating light containing ultraviolet rays, and the water is purified in the presence of the light containing ultraviolet rays in the fixed bed photocatalytic reactor. . Examples of the light containing ultraviolet rays include light from sunlight, fluorescent lamps, black lights, halogen lamps, xenon flash lamps, germicidal lamps, mercury lamps, incandescent lamps, and the like. In particular, light containing near ultraviolet rays of 300 to 400 nm is preferable. The irradiation amount and irradiation time of light containing ultraviolet light can be appropriately set depending on the degree of contamination of the water to be treated, the content of ultraviolet light, and the like. The fixed bed photocatalytic reactor used in the present invention may be modified as appropriate in addition to the shape of the reactor used in Examples 1 to 6 described later, or two or more of these reactors may be connected. good.
[0011]
The purification apparatus of the present invention can further include means for feedback control. In the present invention, feedback control refers to the measurement of the concentration of an object to be treated contained in water discharged from a fixed bed photocatalytic reactor, and the result is fed back to a controller such as a liquid feeding means and a light source. This is a method of determining the next operation by comparing the measured target and the measurement result. If the measurement result is a concentration higher than the target, an operation is performed to bring the concentration closer to the target by lowering the liquid feeding amount or increasing the light irradiation amount. These operations can be controlled using a computer.
[0012]
Using the purification apparatus of the present invention, water is sent to a fixed bed photocatalyst reactor using titanium oxide as a photocatalyst, and the titanium oxide is irradiated with light containing ultraviolet rays, and the inside of the fixed bed photocatalyst reactor is irradiated. Water can be purified.
[0013]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
ComparisonExample 1
Acid titania sol (CS-C, manufactured by Ishihara Sangyo Co., Ltd.) obtained by hydrolyzing titanyl sulfate with heating2 Dilute to 40 g / l with water. Next, this diluted solution was impregnated with a filler of glass beads (diameter 1 cm) having a spherical shape and a light transmittance of 85% for 2 hours, and then added with ammonia water. Neutralized to pH 7 to attach titanium oxide to the surface of the filler. Subsequently, the filler to which titanium oxide was adhered was separated by filtration, dried, and then fired in the atmosphere at a temperature of 600 ° C. for 2 hours. Next, the fired filler was washed with water and dried to obtain a photocatalyst A. The amount of titanium oxide supported on the photocatalyst A was 1.6 parts by weight with respect to 100 parts by weight of the filler. As shown in FIG. 1, the photocatalyst A300g was placed on the floor of the container so as to have a packed layer thickness of 30 mm in the direction of the incident light to be irradiated, and the fixed bed photocatalytic reactor 1 was obtained. A 20 W white fluorescent lamp 2 is installed at a distance of 15 cm above the fixed bed photocatalyst reactor, and further includes a pump 3 for sending water to the fixed bed photocatalyst reactor., PurificationIt was set as the control device. This purifier was placed on aquarium 4 (50 liters of water) where 20 goldfish were bred, the water in the aquarium was sent to the purifier, the water was fed back, and the occurrence of phytoplankton and water contamination were examined. . Water flow was cascade controlled. The water flow rate of the pump was 10 liters / minute. In this tank, 0.5 g of food was administered twice a day. As a result, no phytoplankton was observed in this water tank even after 2 weeks. In addition, when the number of viable bacteria and coliform group in water 4 weeks after the start of the test was examined by the following method, the number of viable bacteria was 6620 / ml and the number of coliforms was 3640 / ml. Example2In comparison with, the growth of fungi and bacteria could be suppressed. Furthermore, as shown in Table 1, the change in water permeability is a comparative example.2There was little dirt of water compared to.
[0014]
<Measuring method of viable fungi and coliform count>
Dilute the collected water 10-fold or 100-fold with sterile water, dispense 1 ml each into 5 sterilized petri dishes, add 10 ml of the medium, stir, and then incubate overnight at 37 ° C. I counted the number.
<Medium used>
Viable count: Brain Heart Infusion Bouillon (Nissui)
Number of coliforms: Dezoxycholate medium (Nissui)
[0015]
Comparative example2
Put 50 liters of water in the aquarium and raise 20 goldfish to remove phytoplankton and dirtComparisonObservation was the same as in Example 1. As a result, this aquarium was so contaminated that many phytoplankton were generated after 2 weeks and the other side of the aquarium could not be seen. In addition, the number of viable bacteria and the number of coliforms in water 4 weeks after the start of the testComparisonWhen examined in the same manner as in Example 1, the number of viable bacteria was 8000 / ml and the number of coliforms was 4700 / ml. Furthermore, as shown in Table 1, the change in the water permeability was large, and the water contamination progressed.
[0016]
[Table 1]
Figure 0003620660
[0017]
Comparative Example 3
TiO obtained by heating hydrolysis of titanyl sulfate2 400 g / l of acidic titania sol (CS-C, manufactured by Ishihara Sangyo Co., Ltd.) as a standard is filled with a transparent glass ball (diameter 1 cm) filler that is spherical and has a light transmittance of 65%. After the impregnation for a day, the filler was separated by filtration and dried to attach titanium oxide to the surface of the filler. Subsequently, the filler to which titanium oxide was adhered was baked at a temperature of 600 ° C. in the atmosphere for 2 hours. Next, the fired filler was washed with water and dried to obtain a photocatalyst body B. The amount of titanium oxide supported on this photocatalyst body B was 3.6 parts by weight with respect to 100 parts by weight of the filler. This photocatalyst B300g was placed on the floor of the container so as to have a packed bed thickness of 50 mm in the direction of the incident light, and a fixed bed photocatalytic reactor was obtained. A black light is installed above the fixed bed photocatalytic reactor, and a pump for feeding water to the fixed bed photocatalytic reactor is provided., PurificationIt was set as the control device. In this purification apparatus, the intensity of ultraviolet light is 1.55 mW / cm on the surface of the filler.2 The water flow rate of the pump was 10 liters / minute. The purifier is placed next to a tank containing 50 liters of Lake Biwa water used for domestic water, the water in the tank is fed to the purifier, the water is fed back, and it is a component of musty odor 2 -Changes in the concentration of methyl isoborneol were investigated. Water flow was cascade controlled. The results are shown in Table 2. When the concentration of 2-methylisoborneol becomes 10 ppt or less, most humans do not feel the musty odor. In addition, when the domestic wastewater was treated in the same manner using the purification device, the organic matter contained in the domestic wastewater was decomposed and the COD value was lowered.
[0018]
[Table 2]
Figure 0003620660
[0019]
Comparative Example 4
Comparative Example 3As shown in FIG. 2, 1 kg of the photocatalyst body B was filled into a donut-shaped cylindrical container to obtain a fixed bed photocatalyst reactor 5. The thickness of the packed layer of the photocatalyst was set to 50 mm in the direction in which the irradiated light entered. This fixed bed photocatalyst reactor has a black light 6 inside thereof, a mirror on the inner wall surface, and a pump 7 for feeding water to the fixed bed photocatalyst reactor., PurificationIt was set as the control device. In this purification apparatus, the intensity of ultraviolet light is 1.55 mW / cm on the inner surface of the fixed bed photocatalytic reactor.2 In addition, the water flow rate of the pump was 10 liters / minute, and a part of the discharged water was fed back. Water flow was cascade controlled. From above the purification deviceComparative Example 3The water of the same Lake Biwa used in the above was sent, and the concentration of 2-methylisoborneol after passing through the purification device was examined. As a result, the concentration of 2-methylisoborneol was 10 ppt or less.
[0020]
Comparative Example 5
ComparisonAs shown in FIG. 3, the photocatalyst A of Example 1 was placed in a multi-stage container so as to have a packed layer thickness of 50 mm, and a fixed bed photocatalytic reactor 8 was obtained. A 10 W black light 9 is installed at a distance of 15 cm above the fixed bed photocatalyst reactor, and a pump 10 is provided for feeding water to the fixed bed photocatalyst reactor., PurificationIt was set as the control device. This device was placed on the aquarium 11 (50 liters of water) in which 20 goldfish were bred, the water in the aquarium was sent to the purifier, the water was fed back, and changes in COD were examined. The water flow rate of the pump was 10 liters / minute. In this tank, 0.5 g of food was administered twice a day. Water flow was cascade controlled. As a result, as shown in Table 3, the following comparative example6Compared to the above, COD was kept low, and it was confirmed that organic substances were efficiently decomposed.
[0021]
Example1
Acid titania sol (Ishihara Sangyo, CS-C) obtained by hydrolyzing titanyl sulfate was converted to TiO2 Dilute to 40 g / l with water. Next, the diluted solution is impregnated with a glass ball (diameter 0.5 cm) having a spherical shape and a light transmittance of 60% for 2 hours, and then added with aqueous ammonia. Then, it was neutralized to pH 7, and titanium oxide was supported on the surface of the filler. Subsequently, the filler carrying titanium oxide was separated by filtration, dried, and then fired in the atmosphere at a temperature of 600 ° C. for 2 hours. Next, the fired filler was washed with water and dried to obtain a photocatalyst body E. The amount of titanium oxide supported by this photocatalyst body E was 2.5 parts by weight with respect to 100 parts by weight of the filler. With this photocatalyst EComparisonThe same volume amount of the photocatalyst A of Example 1 is mixed,Comparative Example 5The fixed bed photocatalytic reactor was placed in the container used in the above so as to have a packed bed thickness of 50 mm. A 10 W black light was installed at a distance of 15 cm above the fixed bed photocatalytic reactor, and a pump for feeding water to the fixed bed photocatalytic reactor was further provided as the purification apparatus of the present invention. This apparatus was placed on a water tank (50 liters of water) in which 20 goldfish were bred, the water in the water tank was fed to the purification device, the water was fed back, and the change in COD was examined. The water flow rate of the pump was 10 liters / minute. In this tank, 0.5 g of food was administered twice a day. Water flow was cascade controlled. As a result, as shown in Table 3, the following comparative example6Compared to the above, COD was kept low, and it was confirmed that organic substances were efficiently decomposed.
[0022]
Comparative example6
ComparisonThe floor of the container used in Example 1 was filled with commercial plastic filter cotton to a thickness of 50 mm. A 10 W black light was installed at a distance of 15 cm above the container, and a pump for feeding water to the container was further provided as a purification device for comparison. This apparatus was placed on a water tank (50 liters of water) in which 20 goldfish were bred, the water in the water tank was fed to the purification device, the water was fed back, and the change in COD was examined. The water flow rate of the pump was 10 liters / minute. In this tank, 0.5 g of food was administered twice a day. As a result, as shown in Table 3, it was confirmed that COD increased in a short period of time and organic substances accumulated.
[0023]
[Table 3]
Figure 0003620660
[0024]
Comparative Example 7
Comparative Example 4The purification apparatus described in 1) was provided with means for feedback control. That is, the concentration of 2-methylisoborneol contained in the water discharged from the purification device is measured, and based on the result, the pumping amount is 5 to 20 liters / minute, and the output amount of the light source is The intensity of ultraviolet light is 1 to 4 mW / cm2 It was controlled to become. As a result, the concentration of 2-methylisoborneol could be controlled to 5 ppt or less.
[0025]
【The invention's effect】
The present inventionIn the purification deviceIn addition, the photocatalytic function of titanium oxide can quickly and efficiently eliminate the harmful organisms such as algae, fungi, and bacteria in water, decompose harmful substances, and deodorize and decolorize them. It is extremely useful as a water purification device for general households. In particular, it is possible to sterilize pathogenic bacteria such as Oxare disease and Hakuhan disease that occur in the breeding area of fish and the like, and to prevent the death of fish and the like. Since the purification apparatus of the present invention uses titanium oxide, it has high safety, has a wide range of harmful substances that can be applied, and does not pollute the environment even when discarded. Furthermore, the purification device of the present invention isControlIn order to control, the fixed-bed reactor is loaded with a packing material supporting titanium oxide, which is a photocatalyst, or the interior of the fixed-bed reactor is divided into multiple stages, or individual fixed-bed reactors are connected in multiple stages. More preferably, the treated water is fed back to the previous stage to improve the contact between water and light with respect to the photocatalyst, and the photocatalytic function of titanium oxide can be further enhanced. The photocatalyst body can be easily replaced. In addition, the present inventionBy purification equipmentThe concentration of the processing object can be accurately controlled. In addition, the present inventionIn the purification equipmentWater is sent to a fixed bed photocatalyst reactor using titanium oxide as a photocatalyst, and the titanium oxide is irradiated with light containing ultraviolet rays to purify the water in the fixed bed photocatalyst reactor.It is possible, Bays, lakes, dams, river seawater or water, domestic water, industrial water, agricultural water, etc., or raw water used in these waters, aquatic animal breeding water, and domestic wastewater and manufacturing It can easily and easily purify various types of water, such as industrial wastewater from industry, agriculture, fishery industry, wastewater from sewage treatment plants, and agricultural wastewater from golf courses.The
[Brief description of the drawings]
[Figure 1]ComparisonIn example 1RuFIG.
[Figure 2]Comparative Example 4InRuFIG.
FIG. 3 Example1It is a conceptual diagram of the purification apparatus of this invention in.

Claims (1)

酸化チタンを充填材の表面に担持した光触媒体、該光触媒体を配置した固定床光触媒反応器、該反応器に水を送液する手段及び紫外線を含有した光を該光触媒体に照射する手段とを備えた水の浄化装置であって、
酸化チタンを担持する充填材が、照射する光に対して透過率が50%以上の光透過性材質であり、且つ、2種類以上のサイズの充填材を用いると共に、該光触媒体の充填層の厚みを照射する光の進入方向に50mm以下とし、しかも、充填層を多段階に区分し各段階に順番に水を流して水の流れを多段に制御することを特徴とする水の浄化装置。
A photocatalyst carrying titanium oxide on the surface of the filler, a fixed bed photocatalyst reactor in which the photocatalyst is arranged, means for sending water to the reactor, and means for irradiating the photocatalyst with light containing ultraviolet light A water purification device comprising:
The filler supporting titanium oxide is a light-transmitting material having a transmittance of 50% or more with respect to the irradiated light, and two or more types of fillers are used, and the filling layer of the photocatalyst body A water purification apparatus characterized in that the thickness is set to 50 mm or less in the light entering direction , and the packed bed is divided into multiple stages and water is flowed in order in each stage to control the flow of water in multiple stages .
JP20440294A 1994-08-04 1994-08-04 Water purification equipment Expired - Fee Related JP3620660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20440294A JP3620660B2 (en) 1994-08-04 1994-08-04 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20440294A JP3620660B2 (en) 1994-08-04 1994-08-04 Water purification equipment

Publications (2)

Publication Number Publication Date
JPH0847687A JPH0847687A (en) 1996-02-20
JP3620660B2 true JP3620660B2 (en) 2005-02-16

Family

ID=16489957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20440294A Expired - Fee Related JP3620660B2 (en) 1994-08-04 1994-08-04 Water purification equipment

Country Status (1)

Country Link
JP (1) JP3620660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856983B1 (en) 2011-12-06 2018-05-15 코웨이 주식회사 Ultraviolet sterilization apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248468A (en) * 1996-03-18 1997-09-22 Toto Ltd Photocatalyst material, polyfunctional material using the same and its production
JP2920204B2 (en) * 1996-10-31 1999-07-19 工業技術院長 Bacterial growth prevention composite material
JP3458948B2 (en) 1999-07-01 2003-10-20 博 河合 Composition for spraying plant foliage and method of using the same
JP4831513B2 (en) * 2003-06-04 2011-12-07 ジョン−ソーブ シム Photocatalyst sterilizer
JP2005000858A (en) * 2003-06-13 2005-01-06 Reiken Inc Photocatalytic water treatment apparatus
JP2008161815A (en) * 2006-12-28 2008-07-17 Hitachi Plant Technologies Ltd Apparatus and method for cleaning ground water
CN106957081A (en) * 2017-05-11 2017-07-18 西南交通大学 Wawter bloom governing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856983B1 (en) 2011-12-06 2018-05-15 코웨이 주식회사 Ultraviolet sterilization apparatus

Also Published As

Publication number Publication date
JPH0847687A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
US5541096A (en) Photocatalyst and process for purifying water with same
CN204714652U (en) A kind of industrialized culture circular water treating system
CN102631936A (en) BiOI composite material and preparation method and application of BiOI composite material
CN108947136A (en) A kind of aquaculture wastewater circular treatment and reutilization system
CN107459209A (en) A kind of circular water treating system and a kind of cultivation water circulation purifying method
JP3620660B2 (en) Water purification equipment
JP2613179B2 (en) Photocatalyst and water purification method using the same
CN210869388U (en) Multifunctional fry incubator
JPS588811B2 (en) Method for suppressing and removing green algae growth
CN201609067U (en) Seawater electrode membrane disinfectant generator for breeding abalone
CN108633802B (en) Method for ecologically cultivating parent penaeus vannamei boone
GB2359301A (en) Photocatalytic treatment of water
JP3918133B2 (en) Water purification method and purification device
CN103936294A (en) Preparation method of coated glass sheet and photocatalytic water purifying device
JPH0724451A (en) Method for purifying water in aquatic organism breeding area
CN107509674A (en) A kind of intelligent plant metaplasia produces cultivation equipment
JPH0646719A (en) Culturing apparatus for fishery
CN210030336U (en) Rural sewage purification system
CN102976534A (en) Method and device of killing staphylococcus aureus in sewage
CN109095722A (en) A kind of application of ozone technology in Hospital Sewage Treatment
CN104353090B (en) Disinfection and purification system used for soilless culture nutrient solution and purification method thereof
CN110419486A (en) A kind of fishes and shrimps ecology rearing device
CN214546597U (en) Separation system for cryptocaryon irritans of marine teleost
CN208345818U (en) A kind of air pump clarifier
CN217459107U (en) Treatment device for aquaculture water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees