JPH0843663A - Dispersion shift optical fiber and its production - Google Patents

Dispersion shift optical fiber and its production

Info

Publication number
JPH0843663A
JPH0843663A JP6176634A JP17663494A JPH0843663A JP H0843663 A JPH0843663 A JP H0843663A JP 6176634 A JP6176634 A JP 6176634A JP 17663494 A JP17663494 A JP 17663494A JP H0843663 A JPH0843663 A JP H0843663A
Authority
JP
Japan
Prior art keywords
core
optical fiber
burner
refractive index
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6176634A
Other languages
Japanese (ja)
Other versions
JP3100291B2 (en
Inventor
Takeshi Ogino
剛 荻野
Hiroshi Oyamada
浩 小山田
Hiroyuki Koide
弘行 小出
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP06176634A priority Critical patent/JP3100291B2/en
Publication of JPH0843663A publication Critical patent/JPH0843663A/en
Application granted granted Critical
Publication of JP3100291B2 publication Critical patent/JP3100291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm

Abstract

PURPOSE:To provide a dispersion shift optical fiber with which easy reduction of a cut-off wavelength (lambdac) is possible and an increase in the bending loss characteristic by an increase in a mode field(MFD) is prevented even if this lambdac is reduced and a process for producing a porous glass base material for this dispersion shift optical fiber. CONSTITUTION:This porous glass base material for the dispersion shift optical fiber has a max. part of referactive index in a first core part and the radius a1 on its outer side and the radius a0 of the bore are 0<a1-a0<a1/100. The base material has a referactive index distribution in which the max. refractive index difference n0 of the max. value is n0>n1. This process for producing such porous glass base material comprises supplying dopants to a burner for the first core part and a burner for the second core part, heating the outer peripheral part of the first core part of the porous glass base material to be formed and providing this part with the max. part of the referactive index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1.55μm帯分散シフト光
ファイバ、特には1.55μm帯分散シフト光ファイバを既
存の使用波長である 1.3μm帯において使用する場合
に、カットオフ波長(λc)を 1.3μm帯用に設定する
ためにλcを低下させてもモードフィールド径(MF
D)増加による曲げ損失特性の増大を防止することがで
き、これを簡便に行なうことができる分散シフト光ファ
イバおよびこの分散シフト光ファイバ用多孔質ガラス母
材の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention provides a cutoff wavelength (λc) when using a 1.55 μm band dispersion-shifted optical fiber, particularly a 1.55 μm band dispersion-shifted optical fiber in the 1.3 μm band which is the existing wavelength used. Even if λc is lowered to set for the 1.3 μm band, the mode field diameter (MF
D) The present invention relates to a dispersion-shifted optical fiber that can prevent an increase in bending loss characteristics due to an increase and can easily perform this, and a method for manufacturing a porous glass preform for the dispersion-shifted optical fiber.

【0002】[0002]

【従来の技術】石英系光ファイバの最低損失波長域であ
る1.55μm帯での波長分散を零とする構造を有する1.55
μm帯分散シフト光ファイバにおいて、使用波長である
1.55μm帯において単一モードを伝送するためにはカッ
トオフ波長(λc)を使用波長以下とすることが必要と
される。しかし、近年このような1.55μm帯分散シフト
光ファイバは既存の使用波長である 1.3μm帯において
も使用する必要性が高まってきているが、 1.3μmと1.
55μm帯と異なる波長帯を1種類の光ファイバで伝送し
ようとするためにはλcは当然1.30μm以下としなけれ
ばならない。
2. Description of the Related Art A 1.55 structure having zero chromatic dispersion in the 1.55 μm band, which is the minimum loss wavelength range of a silica optical fiber.
Used wavelength in μm band dispersion-shifted optical fiber
In order to transmit a single mode in the 1.55 μm band, it is necessary to set the cutoff wavelength (λc) to the used wavelength or less. However, in recent years, the need for using such 1.55 μm band dispersion-shifted optical fiber in the 1.3 μm band, which is the existing wavelength used, has increased to 1.3 μm and 1.
In order to transmit a wavelength band different from the 55 μm band with one type of optical fiber, λc must naturally be 1.30 μm or less.

【0003】しかし、この分散シフト光ファイバをλc
を低下させた特性を満たす構造とするためにはガラス微
粒子を堆積させるバーナーおよびガラス原料ガス、H2
ガス、O2 ガス、不活性ガスの供給量を変更するなどし
て大幅な屈折率分布の調節を行なう必要があるが、この
ような構造条件の変更は非常に困難であり、それを完了
するには多大な時間と原料が浪費される。そのため、こ
のような大幅な屈折率分布の変更を行なわない簡便な方
法として、単に1.55μm帯分散シフト光ファイバ用ガラ
ス母材において、コア用バーナー、クラッド用バーナー
それぞれのガラス原料ガスの供給量を変更してコア/ク
ラッド比を低下させてλcを低下させる方法がある。す
なわち、このコア/クラッド比とλcとの関係は図5に
例示されているが、図示されているように例えばλcが
1.50の分散シフト光ファイバとなる母材におけるコア/
クラッド比は 0.168であり、λcが1.20μmの分散シフ
ト光ファイバとなる母材を得るためのコア/クラッド比
は約 0.135である。したがってコア/クラッド比を 0.1
68から 0.135とするために、コア用バーナーへのガラス
原料ガスの供給量を減らす手段と、クラッドバーナーへ
のガラス原料ガスの供給量を増やす手段のいずれか一
方、または両方を用いて行えばよいことが知られてい
る。
However, this dispersion shift optical fiber is
In order to obtain a structure satisfying the characteristics of reduced glass, a burner for depositing glass particles, a glass source gas, and H 2
It is necessary to drastically control the refractive index distribution by changing the supply amounts of gas, O 2 gas and inert gas, but it is very difficult to change such structural conditions, and it is completed. It wastes a lot of time and raw materials. Therefore, as a simple method without making such a large change in the refractive index distribution, simply supply the glass raw material gas for each of the core burner and the clad burner in the glass base material for 1.55 μm band dispersion-shifted optical fiber. There is a method of changing it to lower the core / clad ratio and lower λc. That is, the relationship between the core / clad ratio and λc is illustrated in FIG. 5, but as shown in the figure, for example, λc is
1.50 core / base material of dispersion-shifted optical fiber
The clad ratio is 0.168, and the core / clad ratio is about 0.135 for obtaining the preform for the dispersion-shifted optical fiber having λc of 1.20 μm. Therefore, the core / clad ratio is 0.1
In order to adjust the ratio from 68 to 0.135, either one or both of the means for reducing the supply amount of the glass raw material gas to the core burner and the means for increasing the supply amount of the glass raw material gas to the cladding burner may be used. It is known.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記した分散
シフト光ファイバにおけるλc低下方法は簡便であるけ
れども、λcが低下すると同時にモードフィールド径
(MFD)が増加して曲げ損失が増加するという問題が
ある。例えば図2にはλcとMFDとの関係と曲げ損失
の変化が示されているが、コア/クラッド比を低下させ
てλcを1.50μmから1.20μmとするとMFDは7.80μ
mから8.57μmとなり、このときの曲げ損失を測定する
とλc1.55μmの曲げ損失より増大することが確認され
ている。
However, although the method of reducing λc in the dispersion-shifted optical fiber described above is simple, there is a problem that λc is reduced and at the same time, the mode field diameter (MFD) is increased and bending loss is increased. is there. For example, FIG. 2 shows the relationship between λc and MFD and the change in bending loss, but if the core / cladding ratio is reduced and λc is changed from 1.50 μm to 1.20 μm, the MFD is 7.80 μm.
It becomes 8.57 μm from m, and it is confirmed that the bending loss at this time is larger than the bending loss of λc1.55 μm.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した分散シフト光ファイバおよびその
製造方法に関するもので、この分散シフト光ファイバは
中心部に最大屈折率差n1 、半径a1 の第1コア部を有
し、その外周に第1コア部より低屈折率で最大屈折率差
2 、半径a2 の第2コア部を有しており、さらにその
外周に第2コア部より低屈折率であるクラッドを有する
分散シフト光ファイバにおいて、第1コア部分に屈折率
の極大部を有しており、その外側半径がa1 で、内側半
径a0 が下記の式 0<a1 −a0 <a1 /100 を満たし、極大部の最大屈折率差n0 が下記の式 n0 >n1 である屈折率分布を有することを特徴とするものであ
り、この分散シフト光ファイバ用多孔質ガラス母材の製
造方法は第1コア用バーナー、第2コア用バーナーおよ
びクラッド用バーナーにガラス原料ガス、酸素ガス、水
素ガスおよび不活性ガスを供給し、形成される酸水素火
炎中でガラス原料ガスの火炎加水分解により発生したガ
ラス微粒子を、回転上昇するターゲット部材に堆積させ
てコア部とクラッド部を有する多孔質ガラス母材を製造
する光ファイバ用多孔質ガラス母材の製造方法におい
て、第1コア用バーナーと第2コア用バーナーにドーパ
ントを供給し、形成される多孔質母材の第1コア部の外
周面を加熱することで請求項1に記載された屈折率分布
を形成することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a dispersion-shifted optical fiber and a method for manufacturing the dispersion-shifted optical fiber, which solves the above disadvantages and problems, and the dispersion-shifted optical fiber has a maximum refractive index difference n 1 at the center thereof. It has a first core portion having a radius a 1 and a second core portion having a lower refractive index than the first core portion and a maximum refractive index difference n 2 and a radius a 2 on the outer periphery, and further has a first core portion on the outer periphery. In a dispersion-shifted optical fiber having a cladding with a refractive index lower than that of the two-core portion, the first core portion has a maximum refractive index portion, the outer radius of which is a 1 , and the inner radius a 0 is 0 <a which is characterized by having a 1 -a 0 <a 1 /100 Omitashi,kyokudaibunosaidaikussetsuritsusa_n 0 Gakakinoshiki n 0> n 1 a is a refractive index distribution, this A method for manufacturing a porous glass preform for dispersion-shifted optical fiber is described in the first core burner, (2) Glass raw material gas, oxygen gas, hydrogen gas and inert gas are supplied to the burner for core and burner for cladding, and the glass fine particles generated by flame hydrolysis of the glass raw material gas in the formed oxyhydrogen flame are rotated up. In a method for producing a porous glass preform for optical fibers, which is deposited on a target member to produce a porous glass preform having a core part and a clad part, a dopant is supplied to a burner for a first core and a burner for a second core. Then, the outer peripheral surface of the first core portion of the formed porous base material is heated to form the refractive index distribution described in claim 1.

【0006】すなわち、本発明者らは分散シフト光ファ
イバの屈折率分布を簡単に変更する方法について種々検
討した結果、中心に高屈折率の第1コア部(最大屈折率
差n1 、半径a1 )、その外周に第1コア部よりも低屈
折率の第2コア部(最大屈折率差n2 、半径a2 )、さ
らにその外周に第2コア部よりも低屈折率のクラッド部
を有する分散シフト光ファイバにおいて、図1に示した
ように第1コア部に屈折率の極大部を有する屈折率分布
で、極大部の屈折率差をn0 、外側半径をa1、内側半
径をa0 としたとき、このa1 とa0 とが式0<a1
0 <a1 /100 を満たし、極大点の最大屈折率差n0
が式n0 >n1 であるようにすればこの屈折率分布を簡
単な方法で変更ができることを見出し、これによればλ
cが低下すると同時にMFDが増加するのを防止し、あ
るいは低下させると、曲げ損失の増大および分散特性の
悪化が生じなくなり、λcを低下させてもMFDを増加
しない分散シフト光ファイバを得ることができることを
確認して本発明を完成させた。なお、n0 ≦n1 の場合
にはMFD増となる場合があり、曲げ損失特性および分
散特性が悪化する。以下にこれをさらに詳述する。
That is, the inventors of the present invention have made various studies as to how to easily change the refractive index distribution of the dispersion-shifted optical fiber. As a result, the first core portion having a high refractive index (maximum refractive index difference n 1 , radius a 1 ), a second core portion having a lower refractive index than the first core portion (maximum refractive index difference n 2 , radius a 2 ) on the outer periphery thereof, and a clad portion having a lower refractive index than the second core portion on the outer periphery thereof. In the dispersion-shifted optical fiber having the refractive index distribution having the maximum part of the refractive index in the first core part as shown in FIG. 1, the difference in the refractive index of the maximum part is n 0 , the outer radius is a 1 , and the inner radius is When a 0 is set, this a 1 and a 0 are expressed by the formula 0 <a 1
a 0 <meets a 1/100, maximum refractive index difference n 0 of the maximum point
It has been found that the refractive index profile can be modified in a simple manner if the equation n 0 > n 1 is satisfied.
It is possible to obtain a dispersion-shifted optical fiber that does not increase MFD even if λc is reduced, by preventing an increase in bending loss and deterioration of dispersion characteristics by preventing or reducing MFD from increasing at the same time as decreasing c. The present invention was completed after confirming that it was possible. When n 0 ≦ n 1 , the MFD may increase, and the bending loss characteristic and the dispersion characteristic deteriorate. This will be described in more detail below.

【0007】[0007]

【作用】本発明は分散シフト光ファイバおよびその製造
方法に関するものであり、この分散シフト光ファイバは
屈折率分布の第1コア部に極大部を設けることにより、
光ファイバを伝搬する光エネルギーの電解分布を図2の
ように中心部に集中させる効果をもつものであり、n0
>n1 とすると、充分に集中させることができ、このも
のをλcとMFDの関係で示すと図3に示したように、
曲線Aがそのまま曲線Bに変化し、したがってλcを1.
50μmが1.20μmに低下させた場合にも、極大値を設け
るまでに比べてMFDが殆ど増加せず、曲線のシフトの
程度により減少する可能性もある。ところが、n0 ≦n
1 の場合には、光エネルギーの電解分布への中心部への
集中度が低いためMFDが増加してしまう。
The present invention relates to a dispersion-shifted optical fiber and a method for manufacturing the dispersion-shifted optical fiber. The dispersion-shifted optical fiber is provided with a maximum portion in the first core portion of the refractive index distribution.
Are those having the effect of concentrating the electrolyte distribution of light energy propagating through the optical fiber in the center portion as shown in FIG. 2, n 0
If n> 1 , it is possible to concentrate sufficiently, and as shown by the relationship between λc and MFD, as shown in FIG.
Curve A changes to curve B as it is, so λc is 1.
Even when 50 μm is reduced to 1.20 μm, the MFD hardly increases as compared with the time when the maximum value is set, and may decrease depending on the degree of curve shift. However, n 0 ≦ n
In the case of 1 , the concentration of light energy in the central part of the electrolytic distribution is low and the MFD is increased.

【0008】また、分散シフト光ファイバを製造するた
めの分散シフト光ファイバ用多孔質ガラス母材の製造方
法は公知のガラス原料ガスの酸水素火炎中での火炎加水
分解で発生したガラス微粒子を回転上昇するターゲット
部材に堆積させてクラッド部を有する多孔質ガラス母材
を製造する方法において、第1コア部と第2コア部にド
ーパントを供給し、形成される多孔質ガラスの第1コア
部の外周面を 500〜 1,000℃に加熱して第1コア部に極
大部を有する屈折率分布を形成させるものであるが、こ
れによれば上記した分散シフト光ファイバ用多孔質ガラ
ス母材を容易に得ることができるという有利性が与えら
れる。
Further, a method of manufacturing a porous glass preform for a dispersion-shifted optical fiber for manufacturing a dispersion-shifted optical fiber includes rotating glass fine particles generated by flame hydrolysis of a known glass raw material gas in an oxyhydrogen flame. In a method of manufacturing a porous glass preform having a clad part by depositing on a rising target member, a dopant is supplied to the first core part and the second core part to form a first core part of the porous glass. The outer peripheral surface is heated to 500 to 1,000 ° C. to form a refractive index distribution having a maximum in the first core portion. According to this, the above porous glass preform for dispersion-shifted optical fiber can be easily formed. The advantage is afforded.

【0009】なお、ドーパントとして四塩化ゲルマニウ
ムを使用し、第1コアの外周面を第2コア用バーナーあ
るいは加熱用のバーナーによって局部的に加熱して第1
コア部の最外周部分の固溶化GeO2濃度を極端に高濃度化
する屈折率分布の第1コア部分に極大部が形成される。
また、GeO2は揮発性が強いために酸水素火炎中で殆ど気
体分子のまま進行し、多孔質ガラス母材の堆積面に到達
し、冷却されてシリカ微粒子中に析出し、その一部が固
溶化するものと考えられるが、固溶化GeO2の濃度は堆積
面の温度が約 800℃のとき最大となり、 500℃より低温
の場合はシリカ微粒子粘度が低くなるためにシリカ微粒
子中に殆ど析出しなくなるし、 1,000℃より高温の場合
は母材が高密度化してシリカ微粒子中に殆ど析出しなく
なるので、この温度は 500〜 1,000℃、好ましくは 700
〜 900℃とすることがよい。
It should be noted that germanium tetrachloride is used as a dopant, and the outer peripheral surface of the first core is locally heated by a burner for the second core or a burner for heating.
The maximum portion is formed in the first core portion of the refractive index distribution that makes the concentration of dissolved GeO 2 in the outermost peripheral portion of the core portion extremely high.
Further, since GeO 2 has a strong volatility, it progresses almost as gas molecules in an oxyhydrogen flame, reaches the deposition surface of the porous glass base material, is cooled, and precipitates in silica fine particles, a part of which Although it is considered that it solidifies, the concentration of solid solution GeO 2 becomes maximum when the temperature of the deposition surface is about 800 ° C, and when it is lower than 500 ° C, the viscosity of silica fine particles becomes low, so that it is almost precipitated in the silica fine particles. If the temperature is higher than 1,000 ℃, the base material becomes dense and hardly precipitates in the silica fine particles. Therefore, this temperature is 500-1,000 ℃, preferably 700 ℃.
It is good to set it to ~ 900 ℃.

【0010】この場合、第1コア部外周面の加熱範囲を
増減させると、第1コア部の最大屈折率差n0 を増減さ
せることができるが、これによれば製造条件を大幅に変
更しなくても、従来の屈折率分布の変更に比べて、多大
な時間と原料の浪費なしで分散シフト光ファイバ用多孔
質ガラス母材を製造することができる。
In this case, if the heating range of the outer peripheral surface of the first core portion is increased or decreased, the maximum refractive index difference n 0 of the first core portion can be increased or decreased. However, this significantly changes the manufacturing conditions. Even if it is not necessary, it is possible to manufacture the porous glass preform for dispersion-shifted optical fibers without spending a lot of time and wasting raw materials as compared with the conventional change of the refractive index distribution.

【0011】[0011]

【実施例】つぎに本発明の実施例、比較例をあげるが、
この分散シフト光ファイバ用多孔質ガラス母材の製造に
使用される多孔質ガラス母材製造装置は図4に示したも
のとされる。図4による多孔質ガラス母材製造装置は反
応容器1に第1コア用バーナー2、第2コア用バーナー
3、クラッド用バーナー4、排煙装置5を設け、この各
バーナーにガラス原料としての SiCl4、火炎形成用ガス
としてのO2 とH2 および不活性ガスとしてのArガス
を供給し、回転上昇するターゲット6にシリカ微粒子を
堆積させて多孔質ガラス母材7とするものである。
EXAMPLES Examples of the present invention and comparative examples will now be described.
The porous glass base material manufacturing apparatus used for manufacturing the porous glass base material for dispersion-shifted optical fiber is shown in FIG. The porous glass preform manufacturing apparatus according to FIG. 4 is provided with a burner 2 for the first core, a burner 3 for the second core, a burner 4 for the clad, and a smoke exhaust device 5 in a reaction vessel 1, and each of these burners is made of SiCl as a glass raw material. 4 , O 2 and H 2 as flame forming gases and Ar gas as an inert gas are supplied, and silica fine particles are deposited on the target 6 that rotates and rises to form the porous glass base material 7.

【0012】実施例1 図4に示した装置を用いて多孔質ガラス母材を製造した
が、λcが1.30μm以下の1.55μm帯分散シフト光ファ
イバ用多孔質ガラス母材の製造を行なうために、第1コ
ア部の外周部分を局所的加熱するように第2コア部用バ
ーナーの位置を変更して第1コア部外周面の局部加熱温
度を 830℃となるようにすると共に、λc1.30μm以下
となるコア/クラッド比となるためにクラッド用バーナ
4に対するガラス原料ガス量を堆積させ、各バーナーの
火炎中で形成されたガラス微粒子を回転上昇するターゲ
ット部材6に堆積させて多孔質ガラス母材7を製造し
た。
Example 1 A porous glass preform was manufactured using the apparatus shown in FIG. 4, but in order to manufacture a porous glass preform for 1.55 μm band dispersion-shifted optical fibers with λc of 1.30 μm or less. , The position of the burner for the second core part is changed so as to locally heat the outer peripheral part of the first core part so that the local heating temperature of the outer peripheral surface of the first core part becomes 830 ° C, and λc1.30 μm. In order to achieve the following core / clad ratio, the glass raw material gas amount for the cladding burner 4 is deposited, and the glass fine particles formed in the flame of each burner are deposited on the target member 6 that rotates and rises, and the porous glass matrix is obtained. Material 7 was manufactured.

【0013】このようにして製造して多孔質ガラス母材
を焼結炉内で脱水し、ガラス透明化して分散シフト光フ
ァイバ用ガラス母材としたのち、このガラス母材を溶
融、線引して分散シフト光ファイバを作成し、この光フ
ァイバの屈折率分布を測定したところ、このものは図1
に示したようにコア部分に極大部が形成されており、こ
れについてのファイバ特性をしらべたところ、これはλ
cが1.48μmから1.17μmに低下したが、MFDは7.85
μmから7.90μmと殆ど変化しておらず、また曲げ損失
も殆ど変化していないことが確認された。
The porous glass base material produced in this manner is dehydrated in a sintering furnace to make the glass transparent and used as a glass base material for dispersion-shifted optical fibers, and then the glass base material is melted and drawn. A dispersion-shifted optical fiber was created by measuring the refractive index distribution of this optical fiber.
As shown in Fig. 5, the maximum part is formed in the core part.
c decreased from 1.48 μm to 1.17 μm, but MFD was 7.85
It was confirmed that there was almost no change from μm to 7.90 μm, and that the bending loss also hardly changed.

【0014】実施例2 実施例1と同様の装置を用いてλc1.30〜1.55μm帯分
散シフト光ファイバ用多孔質ガラス母材を製造したが、
第1コア部の外周部分を局部的加熱するために第2コア
部用バーナー3のH2 ガス流量を増加して火炎条件を変
更して第1コア部外周面の局部的加熱部分の温度を 780
℃とすると共に、λc1.30μm以下となるコア/クラッ
ド比とするためにクラッド用バーナに供給するガラス原
料ガスを増量して多孔質ガラス母材を製造した。
Example 2 A porous glass preform for a λc1.30 to 1.55 μm band dispersion shifted optical fiber was manufactured by using the same apparatus as in Example 1.
In order to locally heat the outer peripheral portion of the first core portion, the H 2 gas flow rate of the second core portion burner 3 is increased to change the flame condition to change the temperature of the locally heated portion of the outer peripheral surface of the first core portion. 780
The glass raw material gas supplied to the cladding burner was increased to obtain a core / cladding ratio of λc of 1.30 μm or less, and a porous glass preform was manufactured.

【0015】ついで、実施例1と同様にして分散シフト
光ファイバ用ガラス母材を作成し、これを溶融、線引し
て光ファイバを作り、この屈折率分布をしらべたとこ
ろ、これには図1に示した用にコア部分に極大部が形成
されていることが確認されたが、このファイバー特性を
しらべたところ、これはλc1.52μmから1.21μmに低
下していたが、MFDは7.75μmから7.78μmに殆ど変
化しておらず、曲げ損失特性も殆ど変化していることが
確認された。
Then, a glass base material for dispersion-shifted optical fiber was prepared in the same manner as in Example 1, and the glass base material was melted and drawn to prepare an optical fiber, and its refractive index distribution was examined. It was confirmed that the maximum part was formed in the core part as shown in Fig. 1, but when examining the fiber characteristics, it was found that it decreased from λc1.52μm to 1.21μm, but the MFD was 7.75μm. It was confirmed that there was almost no change to 7.78 μm, and the bending loss characteristics also changed.

【0016】比較例1 実施例1と同様の装置を用いてλc1.30〜1.55μmの1.
55帯分散シフト光ファイバ用多孔質ガラス母材を製造し
たが、λc1.30μm以下となるコア/クラッド比とする
ためにクラッド用バーナーへのガラス原料ガスの供給量
を増加したが、この場合には第1コア部の外周部分を局
部的加熱するということは行なわずに多孔質ガラス母材
を作成した。
Comparative Example 1 Using the same apparatus as in Example 1, λc 1.30 to 1.55 μm of 1.
We produced a porous glass preform for 55-band dispersion-shifted optical fiber, and increased the amount of glass raw material gas supplied to the cladding burner to obtain a core / cladding ratio of λc 1.30 μm or less. Produced a porous glass base material without locally heating the outer peripheral portion of the first core portion.

【0017】ついで、これから実施例1と同じ方法で分
散シフト光ファイバ用ガラス母材を作成し、これを溶
融、線引して光ファイバを作り、この屈折率分布をしら
べたところ、コア/クラッド比以外には殆ど変化は認め
られず、このファイバ特性をしらべたところ、このλc
は1.50μmから 1.2μmに低下していたが、MFDは7.
79μmから8.60μmに大きく増加しており、25φ1ター
ンにおける曲げ損失も0.002dB/kmから1.505dB/kmに非常
に悪化していることが確認された。
Then, a glass base material for dispersion-shifted optical fiber was prepared in the same manner as in Example 1, and the glass base material was melted and drawn to prepare an optical fiber. The refractive index distribution was examined. Almost no change was observed other than the ratio, and when the characteristics of this fiber were examined, it was found that
Was decreased from 1.50 μm to 1.2 μm, but the MFD was 7.
It was confirmed that the diameter significantly increased from 79 μm to 8.60 μm, and the bending loss in one turn of 25φ was significantly deteriorated from 0.002 dB / km to 1.505 dB / km.

【0018】比較例2 実施例1と同じ装置を用いてλc1.30〜1.55μmの1.55
μm帯分散シフト光ファイバ用多孔質ガラス母材を製造
したが、この場合屈折率分布を大幅に変更することとし
たところ、この場合には所望とする屈折率分布の変更を
完了することができず、多大な時間、原料および消費し
てしまった。
Comparative Example 2 Using the same apparatus as in Example 1, 1.55 of λc 1.30 to 1.55 μm
A porous glass preform for a μm band dispersion-shifted optical fiber was manufactured. In this case, it was decided to significantly change the refractive index distribution. In this case, the desired change in the refractive index distribution could be completed. Instead, it consumes a great deal of time, raw materials, and so on.

【0019】[0019]

【発明の効果】本発明によれば、分散シフト光ファイバ
用多孔質ガラス母材を製造するときに、単に第2コア部
用バーナーの位置を移動するか、ガス条件を変えるだけ
で、屈折率分布の第1コア部分に極大部を形成すること
ができ、これによって多孔質ガラス母材のコア/クラッ
ド比を減少させて分散シフト光ファイバのλcを低下さ
せた場合でもMFDの増加を防止し、曲げ損失特性の悪
化を防止することができる。したがって、使用波長が1.
55μm帯の分散シフト光ファイバを 1.3μm帯でも使用
するために、λcを低下させても曲げ損失特性が良好で
あり、これによれば簡便な方法で曲げ損失特性を悪化さ
せずにλcを低下させることができ、多大な時間、原料
および労力を消費せずに、コア部材の歩留りを大幅に向
上させたことができ、製造コストの低減化を図ることが
できる。
According to the present invention, when the porous glass preform for dispersion-shifted optical fiber is manufactured, the refractive index can be changed by simply moving the position of the second core burner or changing the gas condition. It is possible to form a maximum in the first core portion of the distribution, thereby preventing an increase in MFD even when the core / cladding ratio of the porous glass preform is decreased and the λc of the dispersion shifted optical fiber is decreased. It is possible to prevent the deterioration of bending loss characteristics. Therefore, the wavelength used is 1.
Since the 55 μm band dispersion-shifted optical fiber is used even in the 1.3 μm band, the bending loss characteristics are good even if the λc is lowered. This makes it possible to reduce the λc without degrading the bending loss characteristics by a simple method. The yield of the core member can be significantly improved without consuming a large amount of time, raw materials and labor, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分散シフト光ファイバの半径rと屈折
率差(%)との関係図を示したものである。
FIG. 1 is a diagram showing a relationship between a radius r and a refractive index difference (%) of a dispersion shifted optical fiber of the present invention.

【図2】本発明の分散シフト光ファイバの半径rと電解
分布との関係図を示したものである。
FIG. 2 is a diagram showing the relationship between the radius r and the electrolytic distribution of the dispersion-shifted optical fiber of the present invention.

【図3】本発明の分散シフト光ファイバのカットオフ波
長(λc)とモードフィールド径(MFD)との関係図
を示したものである。
FIG. 3 is a diagram showing the relationship between the cutoff wavelength (λc) and the mode field diameter (MFD) of the dispersion shifted optical fiber of the present invention.

【図4】本発明の方法による分散シフト光ファイバ用多
孔質ガラス母材製造装置の縦断面図を示したものであ
る。
FIG. 4 is a vertical cross-sectional view of an apparatus for producing a porous glass preform for dispersion shifted optical fibers according to the method of the present invention.

【図5】従来公知の分散シフト光ファイバにおけるコア
/クラッド比とカットオフ波長(λc)との関係図を示
したものである。
FIG. 5 is a diagram showing a relationship between a core / clad ratio and a cutoff wavelength (λc) in a conventionally known dispersion shifted optical fiber.

【図6】従来公知の分散シフト光ファイバにおけるカッ
トオフ波長(λc)とモードフィールド径(MFD)と
の関係図を示したものである。
FIG. 6 is a diagram showing a relationship between a cutoff wavelength (λc) and a mode field diameter (MFD) in a conventionally known dispersion shifted optical fiber.

【符号の説明】[Explanation of symbols]

1…反応容器 2…第1コア用バーナー 3…第2コア用バーナー 4…クラッド用バーナー 5…排煙装置 6…ターゲット 7…多孔質ガラス母材 DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... 1st core burner 3 ... 2nd core burner 4 ... Clad burner 5 ... Smoke exhausting device 6 ... Target 7 ... Porous glass base material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Hirasawa 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中心部に最大屈折率差n1 、半径a1
の第1コア部を有し、その外周に第1コア部より低屈折
率で最大屈折率差n2 、半径a2 の第2コア部を有して
おり、さらにその外周に第2コア部より低屈折率である
クラッドを有する分散シフト光ファイバにおいて、第1
コア部分に屈折率の極大部を有しており、その外側半径
がa1 で、内側半径a0 が下記の式 0<a1 −a0 <a1 /100 を満たし、極大部の最大屈折率差n0 が下記の式 n0 >n1 である屈折率分布を有することを特徴とする分散シフト
光ファイバ。
1. A maximum refractive index difference n 1 and a radius a 1 at the center
Of the first core portion, and a second core portion having a lower refractive index than the first core portion and a maximum refractive index difference n 2 and a radius a 2 on the outer periphery thereof, and further on the outer periphery thereof. In a dispersion-shifted optical fiber having a cladding with a lower refractive index, the first
Has a maximum portion of the refractive index in the core part, at its outer radius a 1, the inner radius a 0 satisfies the equation 0 <a 1 -a 0 <a 1/100 below, the maximum refraction of maximum portion A dispersion-shifted optical fiber having a refractive index profile in which the index difference n 0 is the following formula n 0 > n 1 .
【請求項2】 第1コア用バーナー、第2コア用バーナ
ーおよびクラッド用バーナーにガラス原料ガス、酸素ガ
ス、水素ガスおよび不活性ガスを供給し、形成される酸
水素火炎中でガラス原料ガスの火炎加水分解により発生
したガラス微粒子を、回転上昇するターゲット部材に堆
積させてコア部とクラッド部を有する多孔質ガラス母材
を製造する光ファイバ用多孔質ガラス母材の製造方法に
おいて、第1コア用バーナーと第2コア用バーナーにド
ーパントを供給し、形成される多孔質母材の第1コア部
の外周面を加熱することで請求項1に記載された屈折率
分布を形成することを特徴とする分散シフト光ファイバ
用多孔質ガラス母材の製造方法。
2. A glass raw material gas, an oxygen gas, a hydrogen gas and an inert gas are supplied to the burner for the first core, the burner for the second core and the burner for the clad, and the glass raw material gas is supplied in the oxyhydrogen flame formed. A method for producing a porous glass preform for an optical fiber, wherein glass particles generated by flame hydrolysis are deposited on a target member that rotates and rises to produce a porous glass preform having a core portion and a clad portion. The refractive index profile according to claim 1 is formed by supplying a dopant to the burner for the second core and the burner for the second core and heating the outer peripheral surface of the first core portion of the porous base material to be formed. And a method for producing a porous glass preform for dispersion-shifted optical fiber.
【請求項3】 第1コア用バーナー、第2コア用バーナ
ーおよびクラッド用バーナーにガラス原料ガス、酸素ガ
ス、水素ガスおよび不活性ガスを供給し、形成される酸
水素火炎中でガラス原料ガスの火炎加水分解により発生
したガラス微粒子を、回転上昇するターゲット部材に堆
積させてコア部とクラッド部を有する多孔質ガラス母材
を製造する光ファイバ用多孔質ガラス母材の製造方法に
おいて、第1コア用バーナーと第2コア用バーナーにド
ーパントを供給し、形成される多孔質ガラス母材の第1
コア部の外周面を 500〜 1,000℃の範囲となるように加
熱して請求項1に記載された屈折率分布を形成させるこ
とを特徴とする分散シフト光ファイバ用多孔質ガラス母
材の製造方法。
3. A glass raw material gas, an oxygen gas, a hydrogen gas and an inert gas are supplied to the burner for the first core, the burner for the second core and the burner for the clad, and the glass raw material gas is supplied in the oxyhydrogen flame formed. A method for producing a porous glass preform for an optical fiber, wherein glass particles generated by flame hydrolysis are deposited on a target member that rotates and rises to produce a porous glass preform having a core portion and a clad portion. Of the porous glass preform formed by supplying the dopant to the burner for the second core and the burner for the second core
A method for producing a porous glass preform for dispersion-shifted optical fibers, characterized in that the outer peripheral surface of the core part is heated to a temperature in the range of 500 to 1,000 ° C. to form the refractive index profile described in claim 1. .
JP06176634A 1994-07-28 1994-07-28 Dispersion shifted optical fiber and method of manufacturing the same Expired - Fee Related JP3100291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06176634A JP3100291B2 (en) 1994-07-28 1994-07-28 Dispersion shifted optical fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06176634A JP3100291B2 (en) 1994-07-28 1994-07-28 Dispersion shifted optical fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0843663A true JPH0843663A (en) 1996-02-16
JP3100291B2 JP3100291B2 (en) 2000-10-16

Family

ID=16017016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06176634A Expired - Fee Related JP3100291B2 (en) 1994-07-28 1994-07-28 Dispersion shifted optical fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3100291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
JP2001021735A (en) * 1999-07-06 2001-01-26 Shin Etsu Chem Co Ltd Selecting method for single mode optical fiber base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
JP2001021735A (en) * 1999-07-06 2001-01-26 Shin Etsu Chem Co Ltd Selecting method for single mode optical fiber base material

Also Published As

Publication number Publication date
JP3100291B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US4618354A (en) Method, apparatus and burner for fabricating an optical fiber preform
EP0151438B1 (en) Method for producing glass preform for optical fiber
US4334903A (en) Optical fiber fabrication
WO2019142878A1 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
KR910005550B1 (en) Method for production of glass preform for single mode optical fiber
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JP4540923B2 (en) Optical fiber manufacturing method and optical fiber preform manufacturing method
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPH1053429A (en) Base material for optical fiber and its production
JPH10206669A (en) Optical fiber and its manufacture
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
JPS638707A (en) Dispersion shift type optical fiber
JPS624332B2 (en)
WO2023219116A1 (en) Optical fiber preform and method for producing optical fiber preform
JPH09221335A (en) Production of precursor of optical fiber glass preform
JP3798190B2 (en) Method for manufacturing glass preform for dual-core dispersion-shifted optical fiber
JPH1010350A (en) Dispersion shift optical fiber
JP4076300B2 (en) Dual-core dispersion-shifted optical fiber, dual-core dispersion-shifted optical fiber preform, and method for manufacturing the optical fiber preform
JP3569910B2 (en) Optical fiber manufacturing method
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JP3020920B2 (en) Method for producing glass preform for optical fiber
JPH0672967B2 (en) Zero-dispersion single-mode optical fiber
JPH0733467A (en) Production of porous glass preform for optical fiber
JP3897215B2 (en) Manufacturing method of single mode optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees