JPH0843431A - Acceleration sensor and its manufacture - Google Patents

Acceleration sensor and its manufacture

Info

Publication number
JPH0843431A
JPH0843431A JP19367794A JP19367794A JPH0843431A JP H0843431 A JPH0843431 A JP H0843431A JP 19367794 A JP19367794 A JP 19367794A JP 19367794 A JP19367794 A JP 19367794A JP H0843431 A JPH0843431 A JP H0843431A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
acceleration sensor
plate
electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19367794A
Other languages
Japanese (ja)
Inventor
Hidehiro Inaba
秀弘 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Ceramics Corp
Original Assignee
Fuji Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Ceramics Corp filed Critical Fuji Ceramics Corp
Priority to JP19367794A priority Critical patent/JPH0843431A/en
Publication of JPH0843431A publication Critical patent/JPH0843431A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To provide a small acceleration sensor wherein direct soldering is possible on a printed board, and improve its manufacturing method. CONSTITUTION:Relating to an acceleration sensor consisting of a piezoelectric caramics 1 cut out of a plate-like piezoelectric ceramics, the plate-like piezoelectric ceramics, polarized in advance in surface direction at an electorde surface provide on an end surface, terminals 8 and 9 wherein an electorde surface is electrically connected to a hole porocessed into a through hole, and additive mass bonded to the piezoelectric ceramics are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速度センサに関し、特
に、プリント基板に直接ハンダ付けできる小型の加速度
センサ及びその製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to an improvement of a small acceleration sensor which can be directly soldered to a printed circuit board and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ハードディスクと一般的に呼ばれる固定
ディスク装置が知られている。フロッピーディスクに比
べ記録密度が高く、記憶容量が大きい特徴を持つ反面、
衝撃に弱い欠点がある。このため、これに読み書きする
ためには衝撃のあった際には読み出し、書き込みの中止
動作が必須となる。この衝撃を検出し特に書き込みの中
止指令を出させる衝撃センサとして装置自体に装着させ
た加速度センサが利用されている。
2. Description of the Related Art A fixed disk device generally called a hard disk is known. It has a higher recording density and a larger storage capacity than floppy disks, but
It has the drawback of being vulnerable to shock. For this reason, in order to read / write the data, it is essential to stop the read / write operation when there is a shock. An acceleration sensor mounted on the apparatus itself is used as an impact sensor that detects this impact and particularly issues a write stop command.

【0003】これに対し、最近では前記装置にセンサを
内蔵し、そのセンサ出力を利用し制御を行うことが試み
られており、小型、安価なセンサが要求されるようにな
ってきた。例えば特開昭64−41865がある。それ
によれば図16の一実施例にあるように、ハウジング4
0にはその内側に圧電素子1及び付加質量(重錘)2が
装着されている。ハウジング40はプリント基板41に
載せられ圧電素子1からの出力は一方の電極からリード
線45を経て同基板回路41を通して、他方電極はハウ
ジングにアースされそれぞれ取り出される。
On the other hand, recently, it has been attempted to incorporate a sensor in the above-mentioned device and control the output of the sensor, and a small and inexpensive sensor has been required. For example, there is JP-A-64-41865. According to this, as shown in one embodiment of FIG.
A piezoelectric element 1 and an additional mass (weight) 2 are attached to the inside of 0. The housing 40 is mounted on a printed circuit board 41, and the output from the piezoelectric element 1 is taken out from one electrode through a lead wire 45 and the same substrate circuit 41, and the other electrode is grounded to the housing.

【0004】また、別の試みとしては、例えば図17が
その一実施例である。ハウジング40で覆われた中に圧
電素子1とそれに接着された付加質量2は電極43、4
4が付けられたアルミナ等の基板42にも接着剤等で固
着されている。電極43は図で基板のやや右半分にあ
り、圧電素子1の下面から外れた部分に形成される。他
の電極44は電極43とは接触しない位置で基板のやや
左半分に圧電素子1の下面部分に形成される。リード線
45は電極43に接続され、ハウジング40は基板42
の上に載置し、電極43、44はハンダ46、47でプ
リント基板41にハンダ付けされる。図の上下(厚み)
方向に分極された圧電素子1からの出力は上下方向の振
動により電極43、44を介して取り出し、プリント基
板41に搭載した制御回路に送られる。
As another attempt, for example, FIG. 17 is one example thereof. The piezoelectric element 1 and the additional mass 2 bonded to the piezoelectric element 1 are covered with the housing 40, and the electrodes 43, 4
The substrate 42 made of alumina or the like to which No. 4 is attached is also fixed by an adhesive or the like. The electrode 43 is located on the slightly right half of the substrate in the figure, and is formed on a portion deviated from the lower surface of the piezoelectric element 1. The other electrode 44 is formed on the lower surface portion of the piezoelectric element 1 in the slightly left half of the substrate at a position where it does not contact the electrode 43. The lead wire 45 is connected to the electrode 43, and the housing 40 is connected to the substrate 42.
The electrodes 43 and 44 are soldered to the printed circuit board 41 with solders 46 and 47. Top and bottom of the figure (thickness)
The output from the piezoelectric element 1 polarized in the direction is taken out through the electrodes 43 and 44 by the vibration in the vertical direction and sent to the control circuit mounted on the printed board 41.

【0005】[0005]

【発明が解決しようとする課題】上記従来の加速度セン
サにあっては、本来被装着物としてのハードディスク等
の振動体に使用されるには大き過ぎる欠点があった。こ
の結果、振動体自体の衝撃の検出とはならず、加速度セ
ンサ込みの衝撃センサとして利用される現状にあった。
このため、小型化等の目的には合致した、部品点数の少
ない、配線作業を解消するような省力化、さらには製造
コスト等の大幅な低下等解決すべき課題が多々あった。
本発明は、上記従来の課題に鑑みなされたもので、従来
の手作り的な製法観点とは異なる、大量生産可能な小型
化された直接プリント基板にマウントされる加速度セン
サからなり、衝撃、振動等を検出しハードディスク等の
耐衝撃性の弱い製品の信頼性を確保させるに好適な新規
な加速度センサの提供に関する。
The above-mentioned conventional acceleration sensor has a drawback that it is too large to be used for a vibrating body such as a hard disk as an object to be mounted. As a result, the shock of the vibrating body itself is not detected, and the vibration sensor is used as a shock sensor including an acceleration sensor.
For this reason, there are many problems to be solved, such as meeting the purpose of downsizing, having a small number of parts, labor saving to eliminate wiring work, and drastically reducing manufacturing cost.
The present invention has been made in view of the above conventional problems, and is different from the conventional handmade manufacturing method, and includes an acceleration sensor mounted on a miniaturized direct printed circuit board that can be mass-produced. The present invention relates to the provision of a new acceleration sensor suitable for detecting the temperature of a hard disk and ensuring the reliability of products with low impact resistance such as hard disks.

【0006】[0006]

【課題を解決するための手段】本発明は、加速度センサ
及びその製造方法に関し、特に、板状圧電セラミックか
ら切り出された圧電セラミックからなる加速度センサに
おいて、端面に設けた電極面で予め面方向に分極された
前記板状圧電セラミックと、スルーホール処理された孔
に電極面を電気的に接続させた端子と、前記圧電セラミ
ックに接着された付加質量とからなる加速度センサによ
って提供される。また、表裏に電極面をもつ前記圧電セ
ラミックと、該圧電セラミックの端面に処理された前記
電極面に電気的に接続させた端子とからなる場合、さら
に、厚み方向に分極させた厚みすべり及び厚み方向衝撃
を検出する前記の加速度センサによって提供される。
The present invention relates to an acceleration sensor and a method for manufacturing the same, and more particularly, in an acceleration sensor made of a piezoelectric ceramic cut out from a plate-shaped piezoelectric ceramic, an electrode surface provided on an end surface of the acceleration sensor in advance in the surface direction. It is provided by an acceleration sensor comprising the polarized plate-shaped piezoelectric ceramic, a terminal having an electrode surface electrically connected to a through-hole processed hole, and an additional mass bonded to the piezoelectric ceramic. Further, in the case of the piezoelectric ceramic having electrode surfaces on the front and back and terminals electrically connected to the treated electrode surfaces on the end surfaces of the piezoelectric ceramic, the thickness slip and thickness polarized in the thickness direction are further included. The acceleration sensor for detecting a directional impact is provided.

【0007】さらに、加速度センサの製造方法として
は、板状圧電セラミックに端面電極を設けて該端面間で
分極し、前記板状圧電セラミックの厚み方向に電極面を
設け、孔を設けるとともに、該孔にスルーホール処理し
電極面と電気的に接続させた端子とした後、個々に圧電
セラミックを切り出し、付加質量を接着させることによ
り提供される。また、板状圧電セラミックに厚み方向の
分極処理を付加した場合に、さらに、個々に圧電セラミ
ックを切り出す前に、付加質量を接着させる場合にも効
果的に提供される。
Further, as a method of manufacturing the acceleration sensor, an end face electrode is provided on the plate-shaped piezoelectric ceramic to polarize between the end faces, an electrode face is provided in the thickness direction of the plate-shaped piezoelectric ceramic, a hole is provided, and It is provided by making through holes in the holes to form terminals that are electrically connected to the electrode surface, and then individually cutting out the piezoelectric ceramics and adhering the additional mass. Further, the present invention is also effectively provided when the polarization treatment in the thickness direction is added to the plate-shaped piezoelectric ceramic and further when the additional mass is bonded before the piezoelectric ceramic is cut out individually.

【0008】[0008]

【作用】圧電素子及び付加質量の振動から素子の分極方
向に依存した圧電出力が検出され、これをプリント基板
上にある制御回路等で加速度出力に変え必要な制御操作
を行う。素子が小型化されることにより被装着装置とし
てのハードディスク等は装置固有に近い加速度を検出で
き、センサ自体の重量依存性の極めて小さい加速度セン
サとして動作する。
The piezoelectric output depending on the polarization direction of the piezoelectric element and the additional mass is detected from the vibration of the piezoelectric element and the additional mass, and this is changed to the acceleration output by the control circuit or the like on the printed circuit board to perform the necessary control operation. By reducing the size of the element, a hard disk or the like as a mounted device can detect an acceleration close to that peculiar to the device, and operates as an acceleration sensor whose sensor itself has very little weight dependency.

【0009】[0009]

【実施例】実施例について図面を参照して説明すると、
図1は本発明により得られた加速度センサの一実施例を
示す斜視図である。図1で圧電セラミック1の上面には
付加質量2、下面には図示されないプリント基板がそれ
ぞれ接着され使用される加速度センサで、図の上下方向
に分極処理されている。圧電セラミック1の上下には一
定のパターンで銀電極がスクリーン印刷され焼き付けら
れている。各々の電極には圧電セラミック1の両サイド
に施された電極3、4が同様に銀電極塗料を刷毛塗りさ
れ焼き付けられている。電極3、4は圧電セラミック1
の上下両面間で電気的に接続され、プリント基板にそれ
ぞれハンダ付けされる。付加質量2は金属板やアルミナ
等の絶縁物が使用できる。金属の場合には圧電セラミッ
ク1と付加質量2の間に絶縁フィルムを介することによ
り電極3、4間の絶縁性確保が可能である。
EXAMPLES Examples will be described with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of an acceleration sensor obtained by the present invention. In FIG. 1, an additional mass 2 is bonded to the upper surface of the piezoelectric ceramic 1 and a printed circuit board (not shown) is bonded to the lower surface of the piezoelectric ceramic 1, which is used. The acceleration sensor is polarized in the vertical direction of the drawing. Silver electrodes are screen-printed and printed on the top and bottom of the piezoelectric ceramic 1 in a fixed pattern. Electrodes 3 and 4 provided on both sides of the piezoelectric ceramic 1 are similarly brushed with a silver electrode paint and baked on each electrode. Electrodes 3 and 4 are piezoelectric ceramics 1
Are electrically connected between the upper and lower surfaces of the board and soldered to the printed circuit board. For the additional mass 2, a metal plate or an insulator such as alumina can be used. In the case of metal, it is possible to secure insulation between the electrodes 3 and 4 by interposing an insulating film between the piezoelectric ceramic 1 and the additional mass 2.

【0010】図2は圧電セラミック1上面に銀電極3、
4を、下面に電極6、7を形成した加速度センサの他の
実施例である斜視図である。上面には付加質量が接着さ
れて加速度センサとして使用される。具体的には、加速
度センサはハードディスク等の振動体の回路基板の一
部、もしくは、振動体に装着しインターフェース等を介
してセンサとして動作し、被振動体への動作指令等を出
力する。図3は圧電セラミック1を多数切り出す前の板
状の圧電セラミック12の一部切欠上面図、図4は図3
の背面図である。
FIG. 2 shows a silver electrode 3 on the upper surface of the piezoelectric ceramic 1,
4 is a perspective view showing another example of the acceleration sensor in which the electrode 4 is formed with electrodes 6 and 7 on the lower surface. An additional mass is adhered to the upper surface and used as an acceleration sensor. Specifically, the acceleration sensor is mounted on a part of a circuit board of a vibrating body such as a hard disk or on the vibrating body and operates as a sensor via an interface or the like to output an operation command or the like to the vibrated body. 3 is a partially cutaway top view of the plate-shaped piezoelectric ceramic 12 before cutting out a large number of piezoelectric ceramics 1, and FIG.
FIG.

【0011】多数の孔を予め用意した板状圧電セラミッ
ク12には、スルーホール処理部分8、9、10、銀電
極3、4、5、6、7が施されている。これから1つの
圧電セラミック1が図の点線部分から切り出される。板
状圧電セラミック材料としてはチタン酸ジルコン酸鉛が
好適であり、厚さは約0.6mmの圧電セラミックを使用
した。計測用途、衝撃度による加速度の違いで異なる
が、近時回路技術の進歩により極めて薄型の圧電セラミ
ック1に切り出すことが要望され、それらにも対応可能
な0.2〜0.5mmといった厚みも可能であった。ま
た、圧電セラミック1の大きさも同様に小型に切り出す
ことが可能で、例えば、3.4〜5.0mm角の大きさに
も対応可能であった。
The plate-shaped piezoelectric ceramic 12 having a large number of holes prepared in advance is provided with through-hole processed portions 8, 9, 10 and silver electrodes 3, 4, 5, 6, 7. From this, one piezoelectric ceramic 1 is cut out from the dotted line portion in the drawing. Lead zirconate titanate is suitable as the plate-shaped piezoelectric ceramic material, and a piezoelectric ceramic having a thickness of about 0.6 mm was used. Although it depends on the measurement application and the difference in acceleration due to the degree of impact, due to the recent advances in circuit technology, it has been requested to cut out to an extremely thin piezoelectric ceramic 1, and a thickness of 0.2 to 0.5 mm is also possible, which is also applicable. Met. Further, the piezoelectric ceramic 1 can be similarly cut out into a small size, for example, a size of 3.4 to 5.0 mm square can be supported.

【0012】次に、具体的に製造例を説明する。圧電セ
ラミック1を得るためには、まず、板状圧電セラミック
12に図3の位置に直径約1.2mmの孔8、9、10こ
れと平行して同様に圧電セラミック1の切り出す枚数に
対応した開孔を用意する。これらは板状圧電セラミック
の成型時または後加工によって準備が可能である。圧電
セラミック12の上面では、銀電極4の周囲を囲む11
の部分を除いて、一定のパターンで銀電極3、4が、背
面では銀電極5、6及び7がスクリーン印刷され焼き付
けられる。さらに図2に示した各々の電極には圧電セラ
ミック1の両サイドに施された孔8、9を介してスルー
ホール処理により孔8は電極3、7及び孔9は電極4、
6のように順次電気的に接続される。各々のこれらの接
続部のスルーホール処理は、孔の部分を無電解ニッケル
メッキで実施される。次に、図2の圧電セラミック1の
厚み方向に電極4をプラスで電極3との間に1kv/mm の
直流電圧で分極処理21を行った。
Next, a manufacturing example will be specifically described. In order to obtain the piezoelectric ceramics 1, first, the plate-shaped piezoelectric ceramics 12 are provided at the positions shown in FIG. 3 corresponding to the number of the piezoelectric ceramics 1 to be cut out in parallel with the holes 8, 9 and 10 having a diameter of about 1.2 mm. Prepare an opening. These can be prepared at the time of molding the plate piezoelectric ceramic or by post-processing. The upper surface of the piezoelectric ceramic 12 surrounds the periphery of the silver electrode 11
The silver electrodes 3 and 4 and the silver electrodes 5, 6 and 7 on the back surface are screen-printed and printed in a certain pattern except for the portions. Further, through the holes 8 and 9 provided on both sides of the piezoelectric ceramic 1 in each electrode shown in FIG.
As shown in FIG. 6, they are sequentially electrically connected. The through-hole treatment of each of these connections is performed by electroless nickel plating on the holes. Next, polarization treatment 21 was performed between the electrode 4 and the electrode 3 in the thickness direction of the piezoelectric ceramic 1 in FIG. 2 with a DC voltage of 1 kv / mm.

【0013】その後、図3、図4の点線で囲まれた部分
で圧電セラミック1を切り出した。これに付加質量2
(図示せず)を接着し加速度センサを得た。付加質量は
アルミナを使用し厚みは1mmとした。出来上がった加速
度センサをプリント基板にスルーホール8、9の丁度半
円部分でハンダ付けした。付加質量2は比重の大きな金
属の場合ではより薄板に形成でき好適であるが、図2の
加速度センサにあっては付加質量2を圧電セラミック1
に予め接着させた状態で圧電セラミック1を切り出し加
速度センサに仕上げることも可能である。このような場
合にはアルミナ等の絶縁物が使用でき、また、金属の使
用にあたっては金属表面で、少なくとも裏面に絶縁被膜
形成処理が適当である。なお、付加質量2は予め圧電セ
ラミック12の表面に接着した場合には、スクリーン印
刷後に電極焼き付け処理を施した後、スルーホール8、
9、10、分極用電極部分等を除いた位置に付加質量を
接着する。その後のスルーホール処理工程以下は前と同
じでよい。できあがった加速度センサにはその後付加質
量を接着する必要がなく一定したセンサが得られた。
After that, the piezoelectric ceramic 1 was cut out at a portion surrounded by a dotted line in FIGS. Added mass 2 to this
An acceleration sensor was obtained by bonding (not shown). Alumina was used as the additional mass and the thickness was 1 mm. The completed acceleration sensor was soldered to the printed circuit board at the semi-circle portions of the through holes 8 and 9. In the case of a metal having a large specific gravity, the additional mass 2 can be formed into a thinner plate, which is preferable, but in the acceleration sensor of FIG.
It is also possible to cut out the piezoelectric ceramic 1 in a state in which the piezoelectric ceramic 1 is previously adhered to and finish it as an acceleration sensor. In such a case, an insulator such as alumina can be used, and when a metal is used, an insulating film forming treatment is appropriate on the metal surface, at least on the back surface. When the additional mass 2 is adhered to the surface of the piezoelectric ceramic 12 in advance, after the screen printing, the electrode baking process is performed, and then the through hole 8,
9, 10 and the additional mass is adhered to positions other than the electrode portion for polarization. Subsequent through-hole processing steps may be the same as before. A constant sensor was obtained without the need to subsequently bond additional mass to the resulting acceleration sensor.

【0014】図14は実施例で得られた加速度センサの
出力周波数特性である。横軸は周波数で50Hz〜50k
Hz、縦軸はセンサ出力で10db/目盛であり、感度は加
速度1G当たり0.77mVである。図15は同様に加速
度センサの衝撃力に対するリンギング特性である。横軸
は時間で、縦軸はセンサの出力でリンギングは全く見ら
れなかった。
FIG. 14 shows the output frequency characteristic of the acceleration sensor obtained in the embodiment. The horizontal axis is frequency 50Hz-50k
The sensor output is 10 db / scale on the vertical axis of Hz, and the sensitivity is 0.77 mV per 1 G of acceleration. Similarly, FIG. 15 shows ringing characteristics with respect to the impact force of the acceleration sensor. The horizontal axis represents time and the vertical axis represents the output of the sensor, and no ringing was observed.

【0015】これらから約10kHzまで平坦であり、し
かも小型、軽量のセンサが得られることからプリント基
板への搭載が可能となる。この結果振動系を乱すことが
少なく広い使用分野での利用が期待できよう。
From these, it is possible to obtain a sensor which is flat up to about 10 kHz and which is small and lightweight, so that it can be mounted on a printed circuit board. As a result, the vibration system is not disturbed and it can be expected to be used in a wide range of fields of use.

【0016】また、この加速度センサにあっては衝撃力
が相当小さな0.1G以上での使用が可能で、ハードデ
ィスク等での使用に好適であった。さらに、被装着装置
等振動体に対する加速度センサの重量比が極めて低く取
れることから、共振周波数も高くなり、センサ取り付け
を意識しない被装着装置の加速度の測定ができる加速度
センサが得られた。したがって、装置固有に近い加速度
を検出でき、センサ自体の重量依存性の極めて小さい加
速度センサとして動作することが明らかであった。
Also, this acceleration sensor can be used with a shock force of 0.1 G or more, which is considerably small, and is suitable for use with a hard disk or the like. Further, since the weight ratio of the acceleration sensor to the vibrating body such as the mounted device can be made extremely low, the resonance frequency also becomes high, and the acceleration sensor capable of measuring the acceleration of the mounted device without being conscious of sensor mounting was obtained. Therefore, it was clear that an acceleration close to the peculiar to the device can be detected, and that the sensor operates as an acceleration sensor having very small weight dependence of the sensor itself.

【0017】図5は圧電セラミック1上面に電極15、
16、側面に電極13、14、下面に電極17を形成し
た加速度センサの別の実施例である斜視図である。上面
には付加質量が接着され、下面はプリント基板5(図示
せず)に電極13、14及び17に接続したスルーホー
ル18、19それぞれからハンダ付けされ加速度センサ
として使用される。ここで電極13、14間では図の右
向き矢印方向に、電極16、17間では図の上下方向に
分極処理されている。
FIG. 5 shows electrodes 15 on the upper surface of the piezoelectric ceramic 1.
16 is a perspective view showing another embodiment of an acceleration sensor in which electrodes 16, 14 are formed on the side surfaces and electrodes 17 are formed on the lower surface. An additional mass is adhered to the upper surface, and the lower surface is soldered to printed circuit board 5 (not shown) from through holes 18 and 19 connected to electrodes 13, 14 and 17, respectively, and is used as an acceleration sensor. Here, the electrodes 13 and 14 are polarized in the rightward arrow direction in the drawing, and the electrodes 16 and 17 are polarized in the vertical direction in the drawing.

【0018】さらに、電極17は圧電セラミック1の両
サイドに施された孔18、19にスルーホール処理によ
り接続されている。なお、電極13は電極16に、電極
14は電極15に電気的にそれぞれ接続されている。次
に、この加速度センサの製造工程を説明する。図6は図
5の圧電セラミック1に切り出す前の板状の圧電セラミ
ック12の一部分を示す斜視図である。圧電セラミック
12の両側面に銀塗料を刷毛塗りし焼き付け電極13、
14を形成する。次いで、電極13、14間では図の矢
印方向に分極処理22される。
Further, the electrode 17 is connected to holes 18 and 19 formed on both sides of the piezoelectric ceramic 1 by through hole processing. The electrode 13 is electrically connected to the electrode 16, and the electrode 14 is electrically connected to the electrode 15. Next, a manufacturing process of this acceleration sensor will be described. FIG. 6 is a perspective view showing a part of the plate-shaped piezoelectric ceramic 12 before being cut into the piezoelectric ceramic 1 of FIG. Brushing silver paint on both sides of the piezoelectric ceramic 12 and baking electrodes 13,
14 is formed. Next, a polarization process 22 is performed between the electrodes 13 and 14 in the direction of the arrow in the figure.

【0019】図7は図6の正面図、図8は図6の背面図
である。まず、スルーホール18、19、20の位置に
孔加工を行う。なお、この孔は板状の圧電セラミック1
2の成型、焼成加工段階に予めスルーホール18、1
9、20の位置に孔を用意しておいてもよい。板状の圧
電セラミック12の前面には図7のような一定のパター
ンで銀電極15、16、裏面には図8のように電極17
がスクリーン印刷され焼き付けられる。孔内には無電解
ニッケルメッキでスルーホール処理をしスルーホール1
8、19、20を形成する。次いで分極は電極15、1
7間で図の右半分を上下の厚み方向に分極処理23す
る。
FIG. 7 is a front view of FIG. 6, and FIG. 8 is a rear view of FIG. First, holes are formed at the positions of the through holes 18, 19, 20. This hole is a plate-shaped piezoelectric ceramic 1.
2 through-holes 18 and 1 in advance in the molding and firing process stages
Holes may be prepared at positions 9 and 20. On the front surface of the plate-shaped piezoelectric ceramic 12, silver electrodes 15 and 16 are formed in a fixed pattern as shown in FIG. 7, and on the back surface, electrodes 17 are formed as shown in FIG.
Are screen printed and baked. Through hole 1 is processed by electroless nickel plating in the hole.
8, 19, 20 are formed. The polarization is then electrodes 15,1
Between 7 and 7, the right half of the figure is polarized 23 in the vertical thickness direction.

【0020】圧電セラミック1は図7のa−a及びb−
b線で囲まれた部分で切り出され、各々のスルーホール
の部分は半分に分割され切断される。この後、付加質量
2を圧電セラミック1に接着させて、以下各電極13、
14、17に接続したスルーホール18、19それぞれ
からプリント基板にハンダ付けされる。この加速度セン
サは分極方向が図5のようにX軸方向、Z軸方向にある
ため、1つの加速度センサで同時に両軸方向の振動が検
出でき、しかも小型に形成できるものである。なお、X
軸方向の振動の検出は電極17、14間、Z軸方向の振
動の検出は電極17、13間から出力される。
The piezoelectric ceramic 1 is aa and b- in FIG.
The portion surrounded by the line b is cut out, and each through hole portion is divided into half and cut. After that, the additional mass 2 is adhered to the piezoelectric ceramic 1, and each electrode 13,
The through holes 18 and 19 connected to 14 and 17 are soldered to the printed circuit board. Since this acceleration sensor has polarization directions in the X-axis direction and the Z-axis direction as shown in FIG. 5, one acceleration sensor can detect vibrations in both axial directions at the same time, and can be formed in a small size. Note that X
Detection of vibration in the axial direction is output between the electrodes 17 and 14, and detection of vibration in the Z-axis direction is output between the electrodes 17 and 13.

【0021】また、付加質量2を個々の圧電セラミック
1に接着させる方法を説明したが、板状の圧電セラミッ
ク12の段階で前面に接着して製造してもよい。この場
合には電極15、16のスクリーン印刷後に付加質量2
の接着工程を実施し、また、スルーホール18、19、
20それぞれの部分から付加質量2を避けて接着すれば
よい。
Although the method of adhering the additional mass 2 to the individual piezoelectric ceramics 1 has been described, it may be manufactured by adhering it to the front surface at the stage of the plate-shaped piezoelectric ceramics 12. In this case, after the screen printing of the electrodes 15 and 16, the additional mass 2
And the through holes 18, 19,
It suffices to avoid the additional mass 2 from each of the 20 parts and bond them.

【0022】次に、量産可能な他の加速度センサについ
て図面を参照して説明する。図9は加速度センサの上面
図、図10はその正面図、図11は圧電セラミック1の
上面図、図12はその下面図、図13は圧電セラミック
を切り出す前の状態を示す概略平面図である。板状圧電
セラミック12は圧電セラミック1を多数切り出し、加
速度センサとするもので、例えば、厚さ約0.6mmの縦
横5枚×5枚程度の圧電セラミック1を切り出すことが
できる。セラミック12は左右両サイドの端面に塗布さ
れた銀電極間で予め端面分極を行っておく。次に、スク
リーン印刷により表裏双方に銀電極をパターン印刷し焼
き付ける。パターンは表面に実線で区画した範囲に電極
35、裏面に点線で示した位置に電極31、32、3
3、34を焼き付ける。
Next, another mass-production type acceleration sensor will be described with reference to the drawings. 9 is a top view of the acceleration sensor, FIG. 10 is a front view thereof, FIG. 11 is a top view of the piezoelectric ceramic 1, FIG. 12 is a bottom view thereof, and FIG. 13 is a schematic plan view showing a state before the piezoelectric ceramic is cut out. . The plate-shaped piezoelectric ceramic 12 is used as an acceleration sensor by cutting out a large number of piezoelectric ceramics 1. For example, it is possible to cut out about 5 × 5 piezoelectric ceramics 1 with a thickness of about 0.6 mm. In the ceramic 12, end face polarization is performed in advance between the silver electrodes applied to the end faces on the left and right sides. Next, a silver electrode is pattern-printed on both the front and back by screen printing and baked. The pattern is the electrode 35 in the area defined by the solid line on the front surface, and the electrodes 31, 32, 3 at the positions shown by the dotted lines on the back surface.
Bake 3, 34.

【0023】この後、端子25〜30をスルーホール処
理し、電極35と31との間に厚み方向に分極する。切
断はa−a、b−b、c−c、d−dで囲まれた部分で
圧電セラミック1を切り出す。付加質量2は圧電セラミ
ック1よりやや小さいアルミナを用い、大きさ5.8mm
×6.7mmで厚み約1.0mmとした。付加質量2は図
9、図10の位置に接着した。全体としては約7×7mm
角の超小型加速度センサが製造でき、感度、信頼性の高
いセンサであった。加速度センサとしては図9の矢印に
示すように左右方向で、X軸方向の振動から厚みすべり
の検出を行う。また、図10の上下方向となるZ軸方向
の振動から厚み振動の検出が可能となる。したがって、
ハードディスク装置の磁気ヘッドにおけるアームの横方
向及び垂直方向の衝撃力検出に使用できる。出力は電極
31と35の間でZ軸、電極32と35の間でX軸の加
速度検出を行う。
After that, the terminals 25 to 30 are subjected to through-hole treatment, and polarized between the electrodes 35 and 31 in the thickness direction. For the cutting, the piezoelectric ceramic 1 is cut out at a portion surrounded by aa, bb, cc, and d-d. The additional mass 2 uses alumina, which is slightly smaller than the piezoelectric ceramic 1, and the size is 5.8 mm.
The thickness was about 6.7 mm and the thickness was about 1.0 mm. The additional mass 2 was adhered to the positions shown in FIGS. About 7 x 7 mm as a whole
It was a sensor with high sensitivity and high reliability that could manufacture a micro angular acceleration sensor. As the acceleration sensor, the thickness slip is detected from the vibration in the X-axis direction in the left-right direction as shown by the arrow in FIG. Further, the thickness vibration can be detected from the vibration in the Z-axis direction which is the vertical direction in FIG. Therefore,
It can be used to detect lateral and vertical impact forces of an arm in a magnetic head of a hard disk device. The output performs acceleration detection on the Z axis between the electrodes 31 and 35 and on the X axis between the electrodes 32 and 35.

【0024】加速度センサとしての使用は、プリント基
板に各端子25〜30によりハンダ付けされる。端子2
5、28は圧電セラミック1の裏面電極32と、端子2
7、30は圧電セラミック1の裏面電極31とそれぞれ
電気的に接続される。また、端子26は電極33と端子
29は電極34と接続し、同時に圧電セラミック1の表
面電極35と電気的に接続される。本発明の加速度セン
サは小型、軽量でプリント基板に表面実装が可能とな
り、また、検出周波数範囲が広い等の利点がある他、部
品点数が少なくしかも小型化が達成でき低コストに提供
できる
For use as an acceleration sensor, it is soldered to the printed circuit board by the terminals 25 to 30. Terminal 2
Reference numerals 5 and 28 denote the back surface electrode 32 of the piezoelectric ceramic 1 and the terminal 2
Reference numerals 7 and 30 are electrically connected to the back surface electrode 31 of the piezoelectric ceramic 1, respectively. Further, the terminal 26 is connected to the electrode 33 and the terminal 29 is connected to the electrode 34, and at the same time, is electrically connected to the surface electrode 35 of the piezoelectric ceramic 1. The acceleration sensor of the present invention is small and lightweight, can be surface-mounted on a printed circuit board, has a wide detection frequency range, and has other advantages .

【0025】[0025]

【発明の効果】以上述べたように本発明によれば、従来
にない小型化、部品点数の低下から製造コストの大幅な
ダウンで、ハードディスク等での使用に好適な加速度セ
ンサを提供できる。さらに、被装着装置等振動体に対す
る加速度センサの重量比が極めて低くなるので、共振周
波数を高くでき、振動体自体により近い加速度測定が可
能となるほか、センサ取り付けが簡単、耐衝撃性、信頼
性の高い加速度センサとして効果が認められた。さら
に、分極を簡易に複数方向に行うことができ、X、Z軸
方向に生じた振動からより広い使用分野での利用が期待
できる。
As described above, according to the present invention, it is possible to provide an acceleration sensor suitable for use in a hard disk or the like, which is unprecedented in size reduction and the number of parts is reduced, resulting in a large reduction in manufacturing cost. Furthermore, since the weight ratio of the acceleration sensor to the vibration body such as the mounted device is extremely low, the resonance frequency can be increased and the acceleration measurement closer to that of the vibration body itself can be achieved. In addition, sensor mounting is simple, shock resistance and reliability are high. The effect was recognized as a high acceleration sensor. Furthermore, the polarization can be easily performed in a plurality of directions, and the vibration generated in the X and Z axis directions can be expected to be used in a wider field of use.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加速度センサの斜視図FIG. 1 is a perspective view of an acceleration sensor according to the present invention.

【図2】本発明の加速度センサの斜視図FIG. 2 is a perspective view of an acceleration sensor according to the present invention.

【図3】圧電セラミックを切り出す前の板状の圧電セラ
ミックの一部切欠上面図
FIG. 3 is a partially cutaway top view of a plate-shaped piezoelectric ceramic before cutting out the piezoelectric ceramic.

【図4】図3の背面図4 is a rear view of FIG.

【図5】本発明の加速度センサの別の実施例である斜視
FIG. 5 is a perspective view showing another embodiment of the acceleration sensor of the present invention.

【図6】圧電セラミックを切り出す前の板状の圧電セラ
ミックの斜視図
FIG. 6 is a perspective view of a plate-shaped piezoelectric ceramic before the piezoelectric ceramic is cut out.

【図7】図6の正面図FIG. 7 is a front view of FIG.

【図8】図6の背面図FIG. 8 is a rear view of FIG.

【図9】本発明の加速度センサの別の実施例である上面
FIG. 9 is a top view showing another embodiment of the acceleration sensor of the present invention.

【図10】図9の正面図FIG. 10 is a front view of FIG.

【図11】付加質量を外した状態の圧電セラミックの上
面図
FIG. 11 is a top view of the piezoelectric ceramic with the added mass removed.

【図12】図11の下面図FIG. 12 is a bottom view of FIG.

【図13】圧電セラミックを切り出す前の板状の圧電セ
ラミックの概略平面図
FIG. 13 is a schematic plan view of a plate-shaped piezoelectric ceramic before the piezoelectric ceramic is cut out.

【図14】加速度センサの出力周波数特性FIG. 14: Output frequency characteristic of the acceleration sensor

【図15】加速度センサの衝撃力に対するリンギング特
FIG. 15 is a ringing characteristic of the acceleration sensor with respect to impact force.

【図16】従来の加速度センサの断面図FIG. 16 is a sectional view of a conventional acceleration sensor.

【図17】他の従来の加速度センサの断面図FIG. 17 is a sectional view of another conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

1 圧電セラミック 2 付加質量 3 電極 8 孔 12 圧電セラミック板 1 Piezoelectric Ceramic 2 Additional Mass 3 Electrode 8 Hole 12 Piezoelectric Ceramic Plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】板状圧電セラミックから切り出された圧電
セラミックからなる加速度センサにおいて、端面に設け
た電極面で予め面方向に分極された前記板状圧電セラミ
ックと、スルーホール処理された孔に電極面を電気的に
接続させた端子と、前記圧電セラミックに接着された付
加質量とからなる加速度センサ。
1. An acceleration sensor made of a piezoelectric ceramic cut out from a plate-shaped piezoelectric ceramic, wherein the plate-shaped piezoelectric ceramic is polarized in advance in a plane direction on an electrode surface provided on an end face, and an electrode is formed in a through-hole-processed hole. An acceleration sensor comprising terminals whose surfaces are electrically connected and an additional mass adhered to the piezoelectric ceramic.
【請求項2】板状圧電セラミックから切り出された圧電
セラミックからなる加速度センサにおいて、表裏に電極
面をもつ前記圧電セラミックと、該圧電セラミックの端
面に処理された前記電極面に電気的に接続させた端子
と、前記圧電セラミックに接着された付加質量とからな
る加速度センサ。
2. An acceleration sensor made of a piezoelectric ceramic cut out from a plate-shaped piezoelectric ceramic, the piezoelectric ceramic having electrode surfaces on the front and back sides, and electrically connected to the processed electrode surface on the end surface of the piezoelectric ceramic. And an additional mass bonded to the piezoelectric ceramic.
【請求項3】前記圧電セラミックの厚み方向に分極させ
た厚みすべり及び厚み方向衝撃を検出する請求項1又は
2記載の加速度センサ。
3. The acceleration sensor according to claim 1, which detects a thickness slip and a thickness impact that are polarized in the thickness direction of the piezoelectric ceramic.
【請求項4】板状圧電セラミックから切り出された圧電
セラミックからなる加速度センサにおいて、前記板状圧
電セラミックに端面電極を設けて該端面間で分極し、前
記板状圧電セラミックの厚み方向に電極面を設け、前記
板状圧電セラミックに孔を設けるとともに、該孔にスル
ーホール処理し電極面と電気的に接続させた端子とし、
前記板状圧電セラミックから個々に圧電セラミックを切
り出し、前記圧電セラミックに付加質量を接着させるこ
とを特徴とする加速度センサの製造方法。
4. An acceleration sensor made of a piezoelectric ceramic cut out from a plate-shaped piezoelectric ceramic, wherein the plate-shaped piezoelectric ceramic is provided with end face electrodes and polarized between the end faces, and an electrode surface is formed in the thickness direction of the plate-shaped piezoelectric ceramic. And a hole is formed in the plate-shaped piezoelectric ceramic, and a through hole is processed in the hole to form a terminal electrically connected to the electrode surface,
A method for manufacturing an acceleration sensor, wherein piezoelectric ceramics are individually cut out from the plate-shaped piezoelectric ceramics, and an additional mass is adhered to the piezoelectric ceramics.
【請求項5】前記板状圧電セラミックに厚み方向の分極
処理を付加した請求項4記載の加速度センサの製造方
法。
5. The method of manufacturing an acceleration sensor according to claim 4, wherein polarization treatment in the thickness direction is added to the plate-shaped piezoelectric ceramic.
【請求項6】前記板状圧電セラミックから個々に圧電セ
ラミックを切り出す前に、付加質量を接着させた請求項
4又は5記載の加速度センサの製造方法。
6. The method for manufacturing an acceleration sensor according to claim 4, wherein an additional mass is adhered to the piezoelectric ceramics before they are individually cut out from the plate-shaped piezoelectric ceramics.
JP19367794A 1994-07-26 1994-07-26 Acceleration sensor and its manufacture Withdrawn JPH0843431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19367794A JPH0843431A (en) 1994-07-26 1994-07-26 Acceleration sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19367794A JPH0843431A (en) 1994-07-26 1994-07-26 Acceleration sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0843431A true JPH0843431A (en) 1996-02-16

Family

ID=16311956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19367794A Withdrawn JPH0843431A (en) 1994-07-26 1994-07-26 Acceleration sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0843431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153603A (en) * 2007-12-25 2009-07-16 Ueda Japan Radio Co Ltd Ultrasonic probe and method of manufacturing the same
EP2072150A3 (en) * 2007-12-19 2017-08-02 Ueda Japan Radio Co., Ltd. Ultrasonic transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072150A3 (en) * 2007-12-19 2017-08-02 Ueda Japan Radio Co., Ltd. Ultrasonic transducer
JP2009153603A (en) * 2007-12-25 2009-07-16 Ueda Japan Radio Co Ltd Ultrasonic probe and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4836023A (en) Vibrational angular rate sensor
JP4909607B2 (en) 2-axis acceleration sensor
US20100037693A1 (en) Acceleration Sensor
JPH10154920A (en) Ladder filter
JPH0843431A (en) Acceleration sensor and its manufacture
KR0165714B1 (en) Acceleration sensor and method for producing the same
JP3342748B2 (en) Acceleration sensor
JP2007225527A (en) Triaxial acceleration sensor
JP2001074767A (en) Accelerometer and its manufacture
JP2732413B2 (en) Acceleration sensor
JPH0843432A (en) Acceleration sensor and its manufacture
JP3702632B2 (en) Piezoelectric device
JPH07318578A (en) Acceleration sensor and its manufacture
JPH088677A (en) Piezoelectric parts
JPH11230837A (en) Piezoelectric parts
JPH0235388A (en) Electrode take-out structure of ultrasonic vibrator and manufacture of ultrasonic vibrator having the same electrode take-out structure
JP3431274B2 (en) Ultrasonic transducer and manufacturing method thereof
JP2000165993A (en) Piezoelectric sounding element
JPH0926431A (en) Smd type piezoelectric acceleration sensor
JP3642796B2 (en) Manufacturing method of magnetic storage device
JP2001230464A (en) Substrate-integrated piezoelectric element and thin-film magnetic head using the same
JP2536627B2 (en) Chip-shaped piezoelectric component
JPH08201161A (en) Piezoelectric vibration sensor
JPH114137A (en) Piezoelectric parts
JPH0894467A (en) Piezoelectric pickup, piezoelectric sensor and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002