JPH0843432A - Acceleration sensor and its manufacture - Google Patents

Acceleration sensor and its manufacture

Info

Publication number
JPH0843432A
JPH0843432A JP6193678A JP19367894A JPH0843432A JP H0843432 A JPH0843432 A JP H0843432A JP 6193678 A JP6193678 A JP 6193678A JP 19367894 A JP19367894 A JP 19367894A JP H0843432 A JPH0843432 A JP H0843432A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
acceleration sensor
cut
polarization direction
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6193678A
Other languages
Japanese (ja)
Inventor
Hidehiro Inaba
秀弘 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Ceramics Corp
Original Assignee
Fuji Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Ceramics Corp filed Critical Fuji Ceramics Corp
Priority to JP6193678A priority Critical patent/JPH0843432A/en
Publication of JPH0843432A publication Critical patent/JPH0843432A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To detect vibration and impact in both X and Y axes with a single element by using a piezoelectric ceramics body formed by cutting in polarization direction a intersectingly. CONSTITUTION:On the tap surface of piezoelectric ceramics 1, placed on a printed board, an additive mass 2 is added, and electrodes 3 and 4 are soldered on side surfaces, thus, an acceleration sensor is constituted. The piezoelectric ceramics 1 is polarization-processed in 45 degree direction. That is, the plate-like piezoelectric ceramics 1 is provided with end face electrodes 3 and 4, and polarization is done between end faces, while across in polarization direction, the piezoelectric ceramics 1 thus cut-formed. Thus, polarization is made in diagonal direction shown with arrow 7. So, with a single element, vibration in both X and Y axes is detected. With this, a acceleration sensor is miniaturized, and in a to-be-mounted device such as a hard disk, the acceleration near the one inherent to the device is detected, so that, a acceleration sensor which slightly depends on the weight of sensor itself is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加速度センサに関し、特
に、プリント基板に直接ハンダ付けできる小型の加速度
センサ及びその製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor, and more particularly to an improvement of a small acceleration sensor which can be directly soldered to a printed circuit board and a manufacturing method thereof.

【0002】[0002]

【従来の技術】パーソナルコンピュータをはじめ多くの
コンピュータで光磁気ディスク装置、ハードディスク装
置と呼ばれるディスク装置等が使用され、フロッピーデ
ィスクに比べ記録密度が高く、記憶容量が大きい特徴を
持つ反面、衝撃に弱いといった欠点がある。このため、
読み書きするためには衝撃のあった際には読み出し、書
き込みの中止動作が必須となる。この衝撃を検出し特に
書き込みの中止指令を出させる衝撃センサとして装置自
体に装着させた加速度センサが利用されている。
2. Description of the Related Art Many computers such as personal computers use magneto-optical disk devices, disk devices called hard disk devices, etc., which have a higher recording density and a larger storage capacity than floppy disks, but are vulnerable to shocks. There are drawbacks such as. For this reason,
In order to read and write, when there is a shock, it is essential to stop reading and writing. An acceleration sensor mounted on the apparatus itself is used as an impact sensor that detects this impact and particularly issues a write stop command.

【0003】例えば特開昭64−41865がある。そ
れによれば図7にあるように、ハウジング40の内側に
圧電素子1及び重錘2(付加質量)が装着されている。
ハウジング40はプリント基板41に載せられ圧電素子
1からの出力は一方の電極からリード線45を経て同基
板回路41を通して、他方電極はハウジングにアースさ
れそれぞれ取り出される。
For example, there is JP-A-64-41865. According to this, as shown in FIG. 7, the piezoelectric element 1 and the weight 2 (additional mass) are mounted inside the housing 40.
The housing 40 is mounted on a printed circuit board 41, and the output from the piezoelectric element 1 is taken out from one electrode through a lead wire 45 and the same substrate circuit 41, and the other electrode is grounded to the housing.

【0004】また、別の試みとしては、例えば実開63
−228がある。それによれば、同公報の第1図にある
ように、板状バイモルフ圧電素子の先端に錘(付加質
量)を装着し、他方の素子の基部には弾性材を介して被
振動体に固定する方式をとった振動ピックアップがあ
る。この圧電素子は被振動体の取付面に対して30〜6
0度の範囲で傾斜させて取り付けられているものであ
る。
As another attempt, for example, the actual opening 63
-228. According to this, as shown in FIG. 1 of the publication, a weight (additional mass) is attached to the tip of the plate-shaped bimorph piezoelectric element, and the base of the other element is fixed to the vibrating body via an elastic material. There is a vibration pickup that takes the method. This piezoelectric element is 30 to 6 with respect to the mounting surface of the vibrating body.
It is attached with being tilted in the range of 0 degree.

【0005】[0005]

【発明が解決しようとする課題】上記従来の加速度セン
サにあっては、本来被装着物としてのハードディスク等
の振動体に使用されるには大き過ぎる欠点があった。こ
の結果、振動体自体の衝撃の検出とはならず、加速度セ
ンサ込みの衝撃センサとして利用される現状にあった。
このため、小型化等の目的に合致し、部品点数が少な
い、配線作業の省力化、さらには製造コスト等の大幅な
低減等といった解決すべき課題が多々あった。
The above-mentioned conventional acceleration sensor has a drawback that it is too large to be used for a vibrating body such as a hard disk as an object to be mounted. As a result, the shock of the vibrating body itself is not detected, and the vibration sensor is used as a shock sensor including an acceleration sensor.
Therefore, there are many problems to be solved such as meeting the purpose of downsizing, the number of parts is small, the labor of wiring work is reduced, and the manufacturing cost is greatly reduced.

【0006】前者の公知例にあっては、ハウジング、圧
電素子及び付加質量が一体となって組み立てられている
ため全体として大型となり、被振動体自体に対する重量
比が高くなる等加速度検出には不向きであった。また、
後者の公知例でも同様な理由で実際の使用はできないと
いった事情があった。さらに、前者ではZ軸方向のみで
単一の加速度センサとしてはX軸まで含めた検出ができ
なかった。後者では板状バイモルフとその端部に付加質
量を載せる形式のため共振周波数を高くとれず限られた
用途しか使用できないものであった。
In the former known example, since the housing, the piezoelectric element, and the additional mass are integrally assembled, the overall size becomes large, and the weight ratio to the vibrated body itself is high, which is unsuitable for uniform acceleration detection. Met. Also,
Even in the latter known example, there was a circumstance that it could not be actually used for the same reason. Further, in the former case, the single acceleration sensor in the Z-axis direction alone cannot detect the X-axis. In the latter, since the plate-shaped bimorph and the type in which the additional mass is placed on the end portion of the plate-shaped bimorph, the resonance frequency cannot be made high and only limited applications can be used.

【0007】本発明は、上記従来の課題に鑑みなされた
もので、従来の手作り的な製法観点とは異なる、大量生
産可能な小型化された直接プリント基板にマウントされ
る加速度センサからなり、X軸、Z軸双方の振動、衝撃
を単一の素子により検出可能としたものでハードディス
ク等の製品の耐衝撃性に対する信頼性を担保させる新規
な加速度センサの提供に関する。
The present invention has been made in view of the conventional problems described above, and is different from the conventional handmade manufacturing method, and comprises an acceleration sensor mounted on a miniaturized direct printed circuit board that can be mass-produced. The present invention relates to the provision of a novel acceleration sensor that can detect vibrations and shocks in both the Z-axis and the Z-axis with a single element and that ensures the reliability of the shock resistance of products such as hard disks.

【0008】[0008]

【課題を解決するための手段】本発明の加速度センサ
は、板状圧電セラミックの端面に電極を設けて該端面間
で分極した前記板状圧電セラミックから切り出された圧
電セラミックにおいて、前記分極方向に交叉して切断形
成された圧電セラミック体の表裏に設けた電極と該電極
と電気的に接続された端面電極端子をもつ圧電セラミッ
クと、該圧電セラミックに接着された付加質量とからな
る。
According to the acceleration sensor of the present invention, an electrode is provided on an end surface of a plate-shaped piezoelectric ceramic, and the piezoelectric ceramic cut out from the plate-shaped piezoelectric ceramic polarized between the end surfaces has a direction of polarization. The piezoelectric ceramic body includes electrodes provided on the front and back sides of the piezoelectric ceramic body formed by crossing and cutting, end face electrode terminals electrically connected to the electrodes, and an additional mass bonded to the piezoelectric ceramic.

【0009】さらに、前記の分極方向に交叉させ切断形
成たときの角度が、少なくとも15〜75度の範囲で該
分極方向に交叉させ切断形成させた圧電セラミックから
なる場合に効果的に、さらに、30〜60度の範囲でよ
り効果的に提供される。また、その製造方法として、板
状圧電セラミックに端面電極を設けて該端面間で分極
し、該分極方向に交叉して圧電セラミックを切断形成さ
せるとともにその表裏に電極を設け、該電極と電気的に
接続させた端面電極端子を形成させ、前記圧電セラミッ
クに付加質量を接着させることにより提供される。
Further, it is effective when the piezoelectric ceramic is formed by intersecting and cutting in the polarization direction within an angle of at least 15 to 75 degrees when the piezoelectric ceramic is intersected and cut in the polarization direction. It is more effectively provided in the range of 30 to 60 degrees. As a method of manufacturing the same, an end face electrode is provided on a plate-shaped piezoelectric ceramic to polarize between the end faces, the piezoelectric ceramic is cut and formed by intersecting in the polarization direction, and electrodes are provided on the front and back sides to electrically connect with the electrode. Is provided by forming an end surface electrode terminal connected to the piezoelectric ceramic and adhering an additional mass to the piezoelectric ceramic.

【0010】さらに、前記の分極方向に交叉させ切断形
成たときの角度を、少なくとも15〜75度の範囲で該
分極方向に交叉させ切断形成させることにより効果的
に、さらに、30〜60度の範囲でより効果的に提供さ
れる。
Further, the angle at which the above-mentioned polarization direction is crossed and cut and formed is effectively in the range of at least 15 to 75 degrees by crossing and cutting in the polarization direction. Offered more effectively in the range.

【0011】[0011]

【作用】圧電素子及び付加質量の振動から素子の分極方
向に依存した圧電出力が検出され、これをプリント基板
上にある制御回路等で加速度出力に変え必要な制御操作
を行う。素子の分極方向については、板状圧電セラミッ
クに端面電極を設けて該端面間で分極し、さらに、その
分極方向に交叉して圧電セラミックを切断形成させたた
め、図1の矢印7のようにいわば斜め方向に分極され
る。したがって、単一の素子でX、Z軸双方の振動の検
出ができる。加速度センサが小型化されることにより被
装着装置としてのハードディスク等は装置固有に近い加
速度を検出でき、センサ自体の重量依存性の極めて小さ
い加速度センサとして動作する。
The piezoelectric output depending on the polarization direction of the piezoelectric element and the additional mass is detected from the vibration of the piezoelectric element and the additional mass, and this is changed to the acceleration output by the control circuit or the like on the printed circuit board to perform the necessary control operation. Regarding the polarization direction of the element, since an end face electrode is provided on the plate-shaped piezoelectric ceramic to polarize between the end faces, and the piezoelectric ceramic is cut and formed by intersecting with the polarization direction, so to speak, as indicated by arrow 7 in FIG. It is polarized diagonally. Therefore, the vibration of both the X and Z axes can be detected with a single element. By reducing the size of the acceleration sensor, a hard disk or the like as a mounted device can detect an acceleration close to that peculiar to the device, and operates as an acceleration sensor having very small weight dependence of the sensor itself.

【0012】[0012]

【実施例】実施例について図面を参照して説明すると、
図1は本発明により得られた加速度センサの一実施例を
示す斜視図である。図1で圧電セラミック1の上面に付
加質量2が接着され、下面はプリント基板(図示せず)
に載置し、側面の電極3、4によりハンダ付けし加速度
センサとして使用される。圧電セラミック1は図の右下
45度方向に分極処理されている。上下の電極5、6は
一定のパターンで銀電極塗料を刷毛塗りし焼き付けられ
ている。圧電セラミック1の両サイドに施された電極
3、4も同様に銀電極が焼き付けられている。
EXAMPLES Examples will be described with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of an acceleration sensor obtained by the present invention. In FIG. 1, the additional mass 2 is bonded to the upper surface of the piezoelectric ceramic 1 and the lower surface is a printed circuit board (not shown).
It is used as an acceleration sensor after being mounted on the substrate and soldered by the electrodes 3 and 4 on the side surface. The piezoelectric ceramic 1 is polarized in the lower right direction of 45 degrees in the figure. The upper and lower electrodes 5, 6 are brushed with a silver electrode paint and baked in a fixed pattern. Similarly, the electrodes 3 and 4 provided on both sides of the piezoelectric ceramic 1 are also baked with silver electrodes.

【0013】電極4、6は圧電セラミック1の下、側面
間で電気的に接続され、同様に、電極3、5は圧電セラ
ミック1の下、側、上面間で電気的に接続されている。
8はスペースでマスキング処理により電極4、6間の絶
縁性を確保している。付加質量2は金属板やアルミナ等
の絶縁物が使用できる。金属の場合には圧電セラミック
1と付加質量2の間に絶縁フィルムを介することにより
電極4、5間の絶縁性確保が可能である。この加速度セ
ンサはハードディスク等の振動体の回路基板の一部、も
しくは、振動体に装着しインターフェース等を介してセ
ンサとして動作し、被振動体への動作指令等を出力す
る。
The electrodes 4 and 6 are electrically connected between the lower side and the side surface of the piezoelectric ceramic 1, and similarly, the electrodes 3 and 5 are electrically connected between the lower side, the side and the upper surface of the piezoelectric ceramic 1.
Reference numeral 8 is a space for ensuring insulation between the electrodes 4 and 6 by masking. For the additional mass 2, a metal plate or an insulator such as alumina can be used. In the case of metal, it is possible to secure insulation between the electrodes 4 and 5 by interposing an insulating film between the piezoelectric ceramic 1 and the additional mass 2. This acceleration sensor is attached to a part of a circuit board of a vibrating body such as a hard disk or to the vibrating body to operate as a sensor through an interface or the like, and outputs an operation command or the like to the vibrated body.

【0014】図2は圧電セラミック1を多数切り出す前
の板状の圧電セラミック14の斜視図である。板状圧電
セラミック14には両端面に銀電極15、16が焼き付
けられ、直流電圧1kv/mm で分極処理を行った。これか
ら多数の圧電セラミック1が図の中央部分に示すような
直方体に切り出される。なお、直方体で説明するが他に
台形断面、菱形断面、板状等での使用も可能であり、用
途により切り出す形状を任意に設定できよう。
FIG. 2 is a perspective view of a plate-shaped piezoelectric ceramic 14 before cutting out a large number of piezoelectric ceramics 1. Silver electrodes 15 and 16 were burned on both end faces of the plate-shaped piezoelectric ceramic 14, and were polarized with a DC voltage of 1 kv / mm. From this, a large number of piezoelectric ceramics 1 are cut into a rectangular parallelepiped as shown in the central portion of the figure. In addition, although it is described as a rectangular parallelepiped, it is also possible to use a trapezoidal section, a rhombic section, a plate shape, etc., and the shape to be cut out can be arbitrarily set depending on the application.

【0015】切り出された圧電セラミック1の水平面に
対する分極の角度は、板状圧電セラミック14からの切
り出し角度9、10に依存し任意に設定でき、例えば1
5〜75度の範囲で実際の使用で効果が認められた。さ
らに、30〜60度の範囲ではX、Z軸双方の出力バラ
ンス面や計算し易さといったメリットがみられた。
The angle of polarization of the cut-out piezoelectric ceramic 1 with respect to the horizontal plane can be arbitrarily set depending on the cut-out angles 9 and 10 from the plate-shaped piezoelectric ceramic 14, for example, 1
The effect was recognized in actual use in the range of 5 to 75 degrees. Further, in the range of 30 to 60 degrees, advantages such as output balance surface of both X and Z axes and ease of calculation were observed.

【0016】図2の場合は説明の便宜から45度に設定
したがこれに限定されるものではない。使用した板状圧
電セラミック材料としてはチタン酸ジルコン酸鉛が好適
で、切り出した圧電セラミック1は縦横約6.8mm×
7.5mm角で厚さ約0.6mmとした。計測用途、衝撃程
度により異なるが、近時回路技術の進歩により極めて薄
型の圧電セラミック1に切り出すことが要望され、それ
らにも対応可能な0.2〜0.5mmといった厚みも可能
であった。また、切り出す圧電セラミック1の大きさも
同様に小型化された圧電セラミック1に切り出すことが
可能で、例えば3〜5mm角の大きさにも対応可能であっ
た。
In the case of FIG. 2, it is set to 45 degrees for convenience of explanation, but it is not limited to this. Lead zirconate titanate is suitable as the plate-shaped piezoelectric ceramic material used, and the cut out piezoelectric ceramic 1 is approximately 6.8 mm in length and width.
The size was 7.5 mm square and the thickness was about 0.6 mm. Although it depends on the measurement application and the degree of impact, it has recently been demanded to cut out to an extremely thin piezoelectric ceramic 1 due to the progress of circuit technology, and a thickness of 0.2 to 0.5 mm, which is compatible with them, was also possible. Further, the size of the piezoelectric ceramic 1 to be cut out can also be cut out to the size-reduced piezoelectric ceramic 1 and, for example, the size of 3 to 5 mm square can be dealt with.

【0017】切り出された圧電セラミック1はその外表
面12には図1の銀電極6、外表面13は銀電極3、外
表面11は同様に11が対応し、分極方向を示す矢印1
7が図1の7に対応している。切断面を示す18〜21
は圧電セラミックの分極方向を決定し、各々板状圧電セ
ラミック14の水平面からの角度9、10は45度に選
定した。
The cut-out piezoelectric ceramic 1 corresponds to the silver electrode 6 of FIG. 1 on the outer surface 12, the silver electrode 3 to the outer surface 13 and the same 11 to the outer surface 11, and the arrow 1 indicates the polarization direction.
7 corresponds to 7 in FIG. 18 to 21 showing a cut surface
Determines the polarization direction of the piezoelectric ceramic, and the angles 9 and 10 from the horizontal plane of the plate-shaped piezoelectric ceramic 14 are selected to be 45 degrees.

【0018】図3は得られた圧電セラミック1について
の振動出力と分極方向との関係を説明した図である。こ
こで圧電セラミックの水平面と分極方向Pとのなす角を
Θとして、X、Z軸方向の合成出力Qは加わった任意の
方向の力F、水平方向とのなす角をαとした場合には、
FIG. 3 is a diagram for explaining the relationship between the vibration output and the polarization direction of the obtained piezoelectric ceramic 1. Here, when the angle between the horizontal plane of the piezoelectric ceramic and the polarization direction P is Θ, and the combined output Q in the X and Z axis directions is the force F in any given direction, and the angle between the horizontal direction is α, ,

【数1】 として示され、加速度センサとして動作することが認め
られる。
[Equation 1] Is shown to operate as an acceleration sensor.

【0019】図4は実施例で得られた加速度センサの全
周感度グラフを示すもので、X、Z軸方向の出力特性が
確認できる。加速度センサのZ軸方向で上下が0°及び
180°となり、X軸方向が90°及び270°とな
る。これから最大感度となるのは約20°と約270°
付近の2軸方向となっていることがみられる。これらか
らそれぞれZ軸方向成分のいわゆる主軸感度が、また、
X軸方向成分の横軸感度が求められる。したがって従来
の加速度センサにあってはZ軸方向成分のいわゆる主軸
感度のみが得られたが、本発明にあっては分極方向の制
御によりX、Z軸方向双方の振動を単一の加速度センサ
によって検出することができる。
FIG. 4 is a graph showing the sensitivity of the entire circumference of the acceleration sensor obtained in the embodiment. The output characteristics in the X and Z axis directions can be confirmed. The vertical direction of the acceleration sensor is 0 ° and 180 ° in the Z-axis direction, and the vertical direction is 90 ° and 270 ° in the X-axis direction. The maximum sensitivity from now on is about 20 ° and about 270 °.
It can be seen that there are biaxial directions in the vicinity. From these, the so-called main axis sensitivity of the Z-axis direction component,
The horizontal axis sensitivity of the X-axis direction component is required. Therefore, in the conventional acceleration sensor, only the so-called main axis sensitivity of the Z-axis direction component was obtained, but in the present invention, vibration in both the X and Z axis directions is controlled by a single acceleration sensor by controlling the polarization direction. Can be detected.

【0020】図5は実施例で得られた加速度センサのX
軸方向の出力周波数特性である。横軸は周波数で50Hz
〜50kHz、縦軸はセンサ出力で10db/目盛であり、
感度は加速度1G当たり0.77mVである。図6は同様
に加速度センサの衝撃力に対するリンギング特性であ
る。横軸は時間で、縦軸はセンサの出力で波形から認め
られるようにリンギングは全く見られなかった。これら
から約10kHzまで平坦であり、しかも小型、軽量のセ
ンサが得られることからプリント基板への搭載が可能と
なる。この結果振動系を乱すことが少なく広い使用分野
での利用が期待できよう。例えば、ノート型パソコン等
に使用されるハードディスクのようなX軸方向のみなら
ず同時にZ軸方向の振動も検出することができるので、
衝撃センサとして好適なことが確認された。
FIG. 5 shows X of the acceleration sensor obtained in the embodiment.
It is an output frequency characteristic in the axial direction. Horizontal axis is frequency 50Hz
~ 50kHz, vertical axis is sensor output 10db / scale,
The sensitivity is 0.77 mV / G acceleration. Similarly, FIG. 6 shows ringing characteristics with respect to the impact force of the acceleration sensor. The horizontal axis is the time, and the vertical axis is the output of the sensor. As seen from the waveform, no ringing was observed. From these, it is possible to obtain a sensor that is flat up to about 10 kHz and is small and lightweight, so that it can be mounted on a printed circuit board. As a result, the vibration system is not disturbed and it can be expected to be used in a wide range of fields of use. For example, it is possible to detect not only the X-axis direction vibration of a hard disk used in a notebook computer, but also the Z-axis direction simultaneously.
It was confirmed to be suitable as an impact sensor.

【0021】図6からは加速度出力の相対感度は共振周
波数が高まったことからリンギングの影響を大幅に改善
したことが認められ、特にフィルター使用等のリンギン
グ対策を必要としない効果があった。なお、一般に加速
度センサに衝撃が加わると共振周波で励振され、出力の
原波形にリンギングとして加算され誤差を生ずるるもの
で、リンギングの振幅の大きさは共振周波数を高くとる
ことでの軽減やフィルターを使用することで改善が図ら
れる。また、図5に示す周波数特性にも見られるように
共振周波数が高まったことでより広い使用分野での利用
が期待できよう。
It can be seen from FIG. 6 that the relative sensitivity of the acceleration output significantly improved the influence of ringing because the resonance frequency increased, and there was an effect that no ringing countermeasures such as the use of a filter were required. In general, when a shock is applied to the acceleration sensor, it is excited at the resonance frequency and is added to the original waveform of the output as ringing, which causes an error.The magnitude of the ringing amplitude is reduced by increasing the resonance frequency or filtering. Is improved by using. Further, as can be seen from the frequency characteristic shown in FIG. 5, the resonance frequency is increased, so that it can be expected to be used in a wider field of use.

【0022】また、この加速度センサにあっては衝撃力
が相当小さな0.1G以上での使用が可能で、ハードデ
ィスク等での使用に好適であった。さらに、被装着装置
等振動体に対する加速度センサの重量比が極めて低く取
れることから、共振周波数も高くなり、センサ取り付け
を意識しない被装着装置の加速度の測定ができる加速度
センサが得られた。したがって、装置固有に近い加速度
を検出でき、センサ自体の重量依存性の極めて小さい加
速度センサとして動作することが明らかであった。
Further, this acceleration sensor can be used with an impact force of 0.1 G or more, which is considerably small, and is suitable for use with a hard disk or the like. Further, since the weight ratio of the acceleration sensor to the vibrating body such as the mounted device can be made extremely low, the resonance frequency also becomes high, and the acceleration sensor capable of measuring the acceleration of the mounted device without being conscious of sensor mounting was obtained. Therefore, it was clear that an acceleration close to the peculiar to the device can be detected, and that the sensor operates as an acceleration sensor having very small weight dependence of the sensor itself.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、板状
圧電セラミックの状態で端面電極からの分極と、さら
に、その分極方向に交叉して圧電セラミックを切断形成
させたため、加速度センサとしては水平面からいわば斜
め方向に分極されている。したがって、単一の素子で
X、Z軸双方の振動が検出でき、より広い使用分野での
利用が期待できる。
As described above, according to the present invention, the polarization from the end face electrode in the state of the plate-shaped piezoelectric ceramic and the piezoelectric ceramic is cut and formed so as to intersect with the polarization direction. Is polarized obliquely from the horizontal plane. Therefore, vibration of both X and Z axes can be detected by a single element, and it can be expected to be used in a wider field of use.

【0024】また、従来にない小型化、部品点数を低下
でき製造コストの大幅なダウンで、ハードディスク等で
の使用に好適な加速度センサを提供できる。さらに、被
装着装置等振動体に対する加速度センサの重量比が極め
て低くなるので、共振周波数を高くでき、振動体自体に
より近い加速度測定が可能となるほか、センサ取り付け
が簡単、耐衝撃性、信頼性の高い加速度センサとして効
果が認められた。
Further, it is possible to provide an acceleration sensor suitable for use in a hard disk or the like, which is unprecedented in size reduction, the number of parts can be reduced, and the manufacturing cost can be drastically reduced. Furthermore, since the weight ratio of the acceleration sensor to the vibration body such as the mounted device is extremely low, the resonance frequency can be increased and the acceleration measurement closer to that of the vibration body itself can be achieved. In addition, sensor mounting is simple, shock resistance and reliability are high. The effect was recognized as a high acceleration sensor.

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により得られた加速度センサの一実施例
を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of an acceleration sensor obtained according to the present invention.

【図2】圧電セラミックを切り出す前の板状の圧電セラ
ミックの斜視図
FIG. 2 is a perspective view of a plate-shaped piezoelectric ceramic before the piezoelectric ceramic is cut out.

【図3】振動出力と分極方向との関係を説明した図FIG. 3 is a diagram illustrating a relationship between a vibration output and a polarization direction.

【図4】加速度センサのX、Z軸方向の出力特性を示す
全周感度グラフ
FIG. 4 is an all-around sensitivity graph showing the output characteristics of the acceleration sensor in the X and Z axis directions.

【図5】加速度センサ出力の周波数特性FIG. 5: Frequency characteristic of acceleration sensor output

【図6】加速度センサの衝撃力に対するリンギング特性FIG. 6 is a ringing characteristic of the acceleration sensor with respect to impact force.

【図7】従来の加速度センサの断面図FIG. 7 is a sectional view of a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

1 圧電セラミック 2 付加質量 3 電極 7 分極方向 9 水平面との切断角度 10 水平面との切断角度 14 板状圧電セラミック DESCRIPTION OF SYMBOLS 1 Piezoelectric ceramic 2 Additional mass 3 Electrode 7 Polarization direction 9 Cutting angle with horizontal plane 10 Cutting angle with horizontal plane 14 Plate-shaped piezoelectric ceramic

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】板状圧電セラミックの端面に電極を設けて
該端面間で分極した前記板状圧電セラミックから切り出
された圧電セラミックにおいて、前記分極方向に交叉し
て切断形成された圧電セラミック体の表裏に設けた電極
と該電極と電気的に接続された端面電極端子をもつ圧電
セラミックと、該圧電セラミックに接着された付加質量
とからなる加速度センサ。
1. A piezoelectric ceramic body provided with electrodes on the end faces of a plate-shaped piezoelectric ceramic and cut out from the plate-shaped piezoelectric ceramic polarized between the end faces, the piezoelectric ceramic body being cut and formed so as to intersect in the polarization direction. An acceleration sensor comprising a piezoelectric ceramic having electrodes provided on the front and back, end face electrode terminals electrically connected to the electrode, and an additional mass bonded to the piezoelectric ceramic.
【請求項2】少なくとも15〜75度の範囲で該分極方
向に交叉させ切断形成させた圧電セラミックからなる請
求項1記載の加速度センサ。
2. The acceleration sensor according to claim 1, wherein the acceleration sensor is made of a piezoelectric ceramic which is cut and formed so as to intersect with the polarization direction within a range of at least 15 to 75 degrees.
【請求項3】少なくとも30〜60度の範囲で該分極方
向に交叉させ切断形成させた圧電セラミックからなる請
求項1記載の加速度センサ。
3. The acceleration sensor according to claim 1, which is made of a piezoelectric ceramic which is cut and formed so as to intersect with the polarization direction within a range of at least 30 to 60 degrees.
【請求項4】板状圧電セラミックから切り出された圧電
セラミックからなる加速度センサにおいて、前記板状圧
電セラミックに端面電極を設けて該端面間で分極し、該
分極方向に交叉して圧電セラミックを切断形成させると
ともにその表裏に電極を設け、該電極と電気的に接続さ
せた端面電極端子を形成させ、前記圧電セラミックに付
加質量を接着させることを特徴とする加速度センサの製
造方法。
4. An acceleration sensor made of a piezoelectric ceramic cut out from a plate-shaped piezoelectric ceramic, wherein the plate-shaped piezoelectric ceramic is provided with end face electrodes to polarize between the end faces, and the piezoelectric ceramic is cut by intersecting in the polarization direction. A method for manufacturing an acceleration sensor, comprising forming electrodes and forming electrodes on the front and back surfaces thereof, forming end face electrode terminals electrically connected to the electrodes, and adhering an additional mass to the piezoelectric ceramic.
【請求項5】少なくとも15〜75度の範囲で該分極方
向に交叉させ圧電セラミックを切断形成させた請求項4
記載の加速度センサの製造方法。
5. A piezoelectric ceramic is cut and formed by intersecting with the polarization direction within a range of at least 15 to 75 degrees.
A method for manufacturing the acceleration sensor according to claim 1.
【請求項6】少なくとも30〜60度の範囲で該分極方
向に交叉させ圧電セラミックを切断形成させた請求項4
記載の加速度センサの製造方法。
6. The piezoelectric ceramic is cut and formed by intersecting in the polarization direction within a range of at least 30 to 60 degrees.
A method for manufacturing the acceleration sensor according to claim 1.
JP6193678A 1994-07-26 1994-07-26 Acceleration sensor and its manufacture Withdrawn JPH0843432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193678A JPH0843432A (en) 1994-07-26 1994-07-26 Acceleration sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193678A JPH0843432A (en) 1994-07-26 1994-07-26 Acceleration sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0843432A true JPH0843432A (en) 1996-02-16

Family

ID=16311972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193678A Withdrawn JPH0843432A (en) 1994-07-26 1994-07-26 Acceleration sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0843432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207397A1 (en) * 2000-11-17 2002-05-22 Fujitsu Limited Acceleration sensor
JP2014510233A (en) * 2011-04-07 2014-04-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207397A1 (en) * 2000-11-17 2002-05-22 Fujitsu Limited Acceleration sensor
US6513382B2 (en) 2000-11-17 2003-02-04 Fujitsu Limited Acceleration sensor
JP2014510233A (en) * 2011-04-07 2014-04-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injector

Similar Documents

Publication Publication Date Title
US4443729A (en) Piezoceramic bender element having an electrode arrangement suppressing signal development in mount region
US7598656B2 (en) Piezoelectric ultrasound motor
JP3844784B2 (en) Piezoelectric / electrostrictive device
US20040129079A1 (en) Acceleration sensor
EP3188506B1 (en) Piezoelectric element and acoustic generator, acoustic generation device, and electronic apparatus provided with same
Yao et al. Design and fabrication of a high performance multilayer piezoelectric actuator with bending deformation
JP2016051894A (en) Piezoelectric element and piezoelectric vibration module
CA1125343A (en) Dielectric electro-mechanical transducer
JP3147793B2 (en) Ladder type filter
JP2017196211A (en) Vibration waveform sensor
US5389850A (en) Rotational shock sensor
JPH0843432A (en) Acceleration sensor and its manufacture
KR0165714B1 (en) Acceleration sensor and method for producing the same
JPH07284198A (en) Acoustic vibration control material and piezoelectric vibrator using the same
JP2007225527A (en) Triaxial acceleration sensor
JPH11230837A (en) Piezoelectric parts
JPH0843431A (en) Acceleration sensor and its manufacture
JP3342748B2 (en) Acceleration sensor
JP3426185B2 (en) Piezo speaker
JPS6412111B2 (en)
JPH0862242A (en) Acceleration sensor
JPS5927559B2 (en) electroacoustic transformer
JPH07318578A (en) Acceleration sensor and its manufacture
JP2001148522A (en) Anisotropic piezoelectric plate and piezoelectric application device using the same
US3578994A (en) Piezoelectric clamped-free beam type transducer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002