JPH0843256A - Machine for testing variation of rotation - Google Patents

Machine for testing variation of rotation

Info

Publication number
JPH0843256A
JPH0843256A JP6194832A JP19483294A JPH0843256A JP H0843256 A JPH0843256 A JP H0843256A JP 6194832 A JP6194832 A JP 6194832A JP 19483294 A JP19483294 A JP 19483294A JP H0843256 A JPH0843256 A JP H0843256A
Authority
JP
Japan
Prior art keywords
shaft
rotation
power transmission
transmission mechanism
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6194832A
Other languages
Japanese (ja)
Other versions
JP2854808B2 (en
Inventor
Susumu Yamakawa
進 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP6194832A priority Critical patent/JP2854808B2/en
Publication of JPH0843256A publication Critical patent/JPH0843256A/en
Application granted granted Critical
Publication of JP2854808B2 publication Critical patent/JP2854808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To enable a simulator which simulates the durability tests of such a power transmission mechanism as the belt, chain, gear, etc., which is driven by means of the crank shaft of a reciprocating engine, to accurately simulate the variation of the rotational angular velocity and variation of load torque of a shaft in the time domain of on rotation of the shaft. CONSTITUTION:A power transmission mechanism 5 which is an object to be measured is mounted between an input shaft 2 and output shaft 3 and a universal joint 7 positioned at an arbitrary angle and mechanical power changing mechanism 4 which converts the number of revolutions of a driving motor 8 at an arbitrary integer ratio, are connected to the shaft of the motor 8 on the input side A. And, a mechanical power changing mechanism 6 which converts the number of revolutions of the output shaft 3 at an arbitrary ratio of ratios, universal joint 7 provided to the shaft 11 of the mechanism 6 at an arbitrary angle, and load device 9, are connected in series on the output side B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジン等の往復機関の
動力伝達機構を模擬的に出現させる回転変動試験機であ
り、特にOHC、DOHCエンジン等のカム軸駆動用歯
付ベルトやチェーン、歯車のように入力軸角速度と出力
軸トルクが周期的に変わる伝動部品に対し、模擬的に回
転変動あるいはトルク変動を与え、上記伝動部品の耐久
性能を試験する回転変動試験機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation fluctuation tester for simulating a power transmission mechanism of a reciprocating engine such as an engine, and more particularly to a camshaft driving toothed belt, chain or gear for an OHC or DOHC engine or the like. As described above, the present invention relates to a rotation fluctuation tester for testing the durability performance of the above-mentioned transmission component by imitating the rotation variation or the torque variation to the transmission component in which the input shaft angular velocity and the output shaft torque change periodically.

【0002】[0002]

【従来の技術】エンジン等の往復機関のクランク軸によ
り駆動されるベルト、チェーン、歯車等の動力伝達機構
の耐久試験は一般的に実物エンジンを使用せず、電動機
を動力源とする模擬的装置が使用されている。しかし、
電動機が一般に回転角速度変動のない滑らかな回転を発
生させるのに対し、内燃機関エンジンは燃料爆発、往復
運動機関等に起因して該出力軸に不等速運動を発生させ
ている。
2. Description of the Related Art A durability test of a power transmission mechanism such as a belt, a chain, and a gear driven by a crankshaft of a reciprocating engine such as an engine is generally a simulated device using an electric motor as a power source without using a real engine. Is used. But,
In general, an electric motor produces smooth rotation without fluctuations in rotational angular velocity, whereas an internal combustion engine produces non-constant motion on its output shaft due to fuel explosion, reciprocating engine, or the like.

【0003】このため前記模擬装置と実際のエンジンで
はベルト、チェーンが受けるストレスが非常に異なって
いた。そこで当出願人は非常にシンプルな手段であるカ
ルダン誤差をもつユニバーサルジョイントを用いた回転
変動試験機を実用化した。この回転変動試験機は例えば
特公平4−47256号公報をはじめとして特公平4−
73737号公報、特公平4−74659号公報、特開
平3−92743号公報等に開示されている。しかし、
上記の回転変動試験機の場合、1回転周期のミクロの時
間領域では完全には模擬出来ないことが判ってきた。
Therefore, the stress applied to the belt and the chain was very different between the simulation device and the actual engine. Therefore, the applicant has put into practical use a rotation fluctuation testing machine using a universal joint having a Cardan error, which is a very simple means. This rotation fluctuation tester includes, for example, Japanese Patent Publication No. 4-47256 and Japanese Patent Publication No.
It is disclosed in Japanese Patent Publication No. 73737, Japanese Patent Publication No. 4-74659, Japanese Unexamined Patent Publication No. 3-92743, and the like. But,
It has been found that the above-described rotation fluctuation tester cannot be completely simulated in the micro time domain of one rotation cycle.

【0004】[0004]

【発明が解決しようとする課題】即ち、特開平3−92
743号公報に開示した装置では、4サイクル4気筒エ
ンジンを想定した場合、クランク軸の角速度変動は1回
転に2回発生することから、ユニバーサルジョイントの
カルダン誤差(入力軸1回転中に出力軸2回変動す
る。)を応用した。しかし、この考え方では6気筒の場
合、1回転に3回の角速度変動を発生させることにな
り、上記ユニバーサルジョイントでは回転変動回数を完
全に模擬することはできなかった。
SUMMARY OF THE INVENTION That is, Japanese Patent Laid-Open No. 3-92.
In the device disclosed in Japanese Patent Publication No. 743, when a 4-cycle 4-cylinder engine is assumed, the angular velocity fluctuation of the crankshaft occurs twice per rotation, so the Cardan error of the universal joint (output shaft 2 during one rotation of the input shaft) It fluctuates once.) Was applied. However, according to this idea, in the case of 6 cylinders, the angular velocity fluctuation is generated 3 times per rotation, and the universal joint cannot completely simulate the rotational fluctuation frequency.

【0005】また、カム軸を模擬した出力軸についても
下記の問題を有していた。即ち、図4(d)のカム軸ト
ルク変動波形に示した通り、4サイクル直列4気筒エン
ジンではカム軸1回転に略4回のバルブリフト負荷が変
動トルクとしてカム軸に加わる。従って、従来の回転変
動装置によって模擬する場合、出力軸に該ユニバーサル
ジョイントを直結し、ユニバーサルジョイントからテス
トプーリ間の慣性モーメントによる慣性負荷トルク変動
を発生させることは出来ても、1回転に2回のトルク変
動回数はカルダン誤差を利用する以上変えられない。こ
のため、軸1回転時間軸領域の動力伝達メカニズムを模
擬することは不可能であった。
The output shaft simulating the cam shaft also has the following problems. That is, as shown in the camshaft torque fluctuation waveform of FIG. 4D, in the four-cycle in-line four-cylinder engine, a valve lift load of approximately four times per camshaft rotation is applied to the camshaft as fluctuation torque. Therefore, when simulating with the conventional rotation fluctuation device, the universal joint is directly connected to the output shaft and the inertial load torque fluctuation due to the moment of inertia between the universal joint and the test pulley can be generated, but twice per rotation. The number of torque fluctuations can be changed only by using the Cardan error. For this reason, it was impossible to simulate the power transmission mechanism in the one rotation time axis region.

【0006】本発明は従来のかかる欠点に着目し、入出
力軸の1回転時間領域での角速度変動、トルク変動回数
を任意にしかも容易に設定できる安定性の高い回転変動
試験機を提供することを目的とするものである。
The present invention focuses on such a drawback and provides a highly stable rotation fluctuation tester capable of easily and arbitrarily setting angular speed fluctuation and torque fluctuation frequency in one rotation time region of an input / output shaft. The purpose is.

【0007】[0007]

【課題を解決するための手段】即ち、本発明の特徴は、
入力軸と出力軸の間に被測定物となる動力伝達機構を装
着した回転変動試験機において、入力側には駆動電動
機、該電動機軸に任意の角度に配置されたユニバーサル
ジョイント、そして上記駆動電動機の回転数を任意の整
数比に変換する機械的動力変速機構をそれぞれ連結し、
他方出力側には該出力軸の回転数を任意の整数比に変換
する機械的動力変速機構、該機械的動力変速機構軸に任
意の角度に配置されたユニバーサルジョイント、および
負荷装置を連結した回転変動試験機にある。また、本発
明の負荷装置は渦電流式制動機、水流式制動機および回
生制動式誘導電動機等を使用する。
That is, the features of the present invention are as follows:
In a rotation fluctuation tester equipped with a power transmission mechanism as an object to be measured between an input shaft and an output shaft, a drive motor on an input side, a universal joint arranged at an arbitrary angle on the motor shaft, and the drive motor. The mechanical power transmission that converts the rotation speed of
On the other hand, on the output side, a mechanical power transmission mechanism for converting the rotation speed of the output shaft into an arbitrary integer ratio, a universal joint arranged at an arbitrary angle on the mechanical power transmission mechanism shaft, and a rotation connecting a load device. It is on a fluctuation tester. Further, the load device of the present invention uses an eddy current type braking device, a water flow type braking device, a regenerative braking type induction motor, and the like.

【0008】[0008]

【作用】本発明の回転変動試験機において最大の特徴と
する機械的動力変換機構の変速比を1対1にすると原理
(カルダン誤差)的に1回転に2回の回転変動を発生す
る。即ち従来型の回転変動試験機の構成要件と同一とな
る。しかるに、いま上記ユニバーサル軸と入力軸の間に
プーリ比2対3のベルト式変速機構を追加設置したとす
ると、ユニバーサル軸3回転に付き入力軸は2回転す
る。このときユニバーサル軸には1回転当たり2回の角
速度変動を発生させる事から、入力軸は1回転当たり3
回の回転角速度変動を発生させることになる。この結果
得られる入力軸の挙動は丁度4サイクル6気筒に相当す
るクランク軸の挙動に一致する。出力軸についても同じ
議論が成立する。即ち、4サイクル直列4気筒の場合、
カム軸模擬軸に対し、軸1回転に付き4回の変動を加え
るために、該模擬軸とユニバーサルジョイント間に設け
た機械的変速機構を用いる。該変速比を2倍に増速する
事によってカム軸1回転に付き4回の変動を発生させ
る。但し、入力軸には角速度変動、出力軸には慣性負荷
トルク変動を取り出す点で相違が有る。
When the gear change ratio of the mechanical power conversion mechanism, which is the greatest feature of the rotation fluctuation tester of the present invention, is set to 1: 1, rotation fluctuation occurs twice per rotation in principle (cardan error). That is, it is the same as the constituent requirements of the conventional rotation fluctuation tester. However, if a belt type speed change mechanism with a pulley ratio of 2 to 3 is additionally installed between the universal shaft and the input shaft, the input shaft rotates twice for every three rotations of the universal shaft. At this time, since the angular velocity fluctuations are generated twice per revolution on the universal shaft, the input shaft rotates 3 times per revolution.
This will cause fluctuations in the rotational angular velocity for each rotation. The behavior of the input shaft obtained as a result coincides exactly with the behavior of the crankshaft corresponding to the 4-cycle 6-cylinder. The same argument holds for the output shaft. That is, in the case of a 4-cycle in-line 4-cylinder,
A mechanical speed change mechanism provided between the simulated shaft and the universal joint is used in order to change the cam shaft simulated shaft four times per rotation of the shaft. By doubling the speed change ratio, fluctuations are generated four times per one rotation of the camshaft. However, there is a difference in that the input shaft takes out angular velocity fluctuations and the output shaft takes out inertial load torque fluctuations.

【0009】[0009]

【実施例】以下、添付図面を参照し、本発明の実施例を
説明する。第1図は本発明の具体的実施例における回転
変動試験機の構成図、第2図はユニバーサルジョイント
の正面図、第3図は出力側Bの各部軸角速度波形、第4
図は実機エンジンの回転変動及び、トルク変動波形、第
5図は入力側Aの各部軸角速度波形を示している。本発
明の回転変動試験機1では、入力軸2と出力軸3に被測
定物となる動力伝達機構5が装着され、入力側Aには駆
動電動機8、該電動機軸に対して任意の角度に配置され
たユニバーサルジョイント7、そして上記駆動電動機8
の回転数を任意の整数比に変換する機械的動力変速機構
4がそれぞれ直列に連結されている。一方、出力側Bで
は、出力軸3の回転数を任意の整数比に変換する機械的
動力変速機構6、機械的動力変速機構軸11に任意の角
度に配置されたユニバーサルジョイント7、そして負荷
装置9がそれぞれ直列に連結されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram of a rotation fluctuation tester in a specific embodiment of the present invention, FIG. 2 is a front view of a universal joint, FIG. 3 is a shaft angular velocity waveform of each part on the output side B, and FIG.
The figure shows the rotational fluctuation and torque fluctuation waveforms of the actual engine, and FIG. 5 shows the angular velocity waveforms of the respective parts on the input side A. In the rotation fluctuation tester 1 of the present invention, a power transmission mechanism 5 as an object to be measured is attached to an input shaft 2 and an output shaft 3, a drive motor 8 is provided on an input side A, and an arbitrary angle with respect to the motor shaft. The arranged universal joint 7 and the drive motor 8
The mechanical power transmission mechanisms 4 for converting the rotation speed of the above into an arbitrary integer ratio are connected in series. On the other hand, on the output side B, a mechanical power transmission mechanism 6 for converting the rotation speed of the output shaft 3 into an arbitrary integer ratio, a universal joint 7 arranged at an arbitrary angle on the mechanical power transmission mechanism shaft 11, and a load device. 9 are connected in series.

【0010】上記動力伝達機構5は、入力軸2と出力軸
3に装着した試験プーリ51、52に試験ベルト53を
掛架した構成からなっている。本発明においては、歯付
プーリと歯付ベルトとの組合せに限定されるものではな
く、歯付プーリに変わってV溝付プーリ、チェーンスプ
ロケット、あるいは直結伝動用歯車でも何ら問題なく適
用できる。また、使用するベルトも歯付ベルトに限ら
ず、上記に対応して夫々V型伝動ベルト、チェーンにて
も一向差し支えない。
The power transmission mechanism 5 has a structure in which a test belt 53 is suspended on test pulleys 51 and 52 mounted on the input shaft 2 and the output shaft 3. The present invention is not limited to the combination of the toothed pulley and the toothed belt, and a V-grooved pulley, a chain sprocket, or a direct coupling transmission gear can be applied without any problem in place of the toothed pulley. Further, the belts to be used are not limited to toothed belts, but V-type transmission belts and chains may be used in correspondence with the above.

【0011】また、機械的動力変速機構4は入力軸1回
転の時間領域での角速度変動の周期を任意に設定する必
要がある。具体的方法としてプーリ41、42の直径比
を適宜組み合わせることによって、所定の変速比を確保
し、角速度変動の周期を任意に設定する。また、機械的
動力変速機構4は、該機械的動力変速機構4自身に起因
する外乱が起こりにくい構成とする。即ち、試験ベルト
53の伝達能力を大きく上回る伝動用ベルトを使用す
る。例えば、試験ベルト53に歯付ベルトを使用し、上
記機械的動力変速機構4のベルト43にも歯付ベルトを
使用する場合には、ベルト幅を試験ベルト53の2倍以
上とすることが好ましい。これにより試験条件が長期に
わたって安定する。
Further, in the mechanical power transmission mechanism 4, it is necessary to arbitrarily set the cycle of angular velocity fluctuation in the time domain of one rotation of the input shaft. As a concrete method, a predetermined gear ratio is secured by appropriately combining the diameter ratios of the pulleys 41 and 42, and the cycle of angular velocity fluctuations is arbitrarily set. Further, the mechanical power transmission mechanism 4 is configured so that disturbance caused by the mechanical power transmission mechanism 4 itself does not easily occur. That is, a transmission belt that greatly exceeds the transmission capacity of the test belt 53 is used. For example, when a toothed belt is used as the test belt 53 and a toothed belt is also used as the belt 43 of the mechanical power transmission mechanism 4, it is preferable that the belt width be at least twice the width of the test belt 53. . This stabilizes the test conditions for a long time.

【0012】駆動電動機8は、同期電動機や直流電動機
にても差し支えない。また、電動機軸にフライホィール
(慣性モーメント)を追加設置するにより、ユニバーサ
ルジョイント7より角速度変動を大きく取り出すことが
できる。具体的には、ユニバーサルジョイント7から入
力軸2、及び試験プーリ51迄の慣性モーメントの約1
0倍の慣性モーメントを、上記駆動電動機軸に付加す
る。
The drive motor 8 may be a synchronous motor or a DC motor. Further, by additionally installing a flywheel (moment of inertia) on the motor shaft, it is possible to take out a large angular velocity fluctuation from the universal joint 7. Specifically, the inertial moment from the universal joint 7 to the input shaft 2 and the test pulley 51 is about 1
A moment of inertia of 0 is added to the drive motor shaft.

【0013】ユニバーサルジョイント7は、該電動機8
の軸に対して任意の角度αで配置されている。この角度
を変えることによって出力軸S2の回転角速度変動の大
きさを変量し、実機条件を模擬する。一般に、ユニバー
サルジョイントは図1、図2に示す如く、入力軸S1と
出力軸S2が交差角度αで回転を伝える。入力軸S1が
一定角速度ω1 で1回転する場合、出力軸S2は下記式
に示す不等速角速度ω2 で回転する。
The universal joint 7 is a motor 8
Are arranged at an arbitrary angle α with respect to the axis of. By changing this angle, the magnitude of the change in the rotational angular velocity of the output shaft S2 is changed to simulate the actual machine condition. Generally, in a universal joint, as shown in FIGS. 1 and 2, the input shaft S1 and the output shaft S2 transmit rotation at an intersecting angle α. If the input shaft S1 is 1 rotates at a constant angular velocity omega 1, the output shaft S2 rotates at non-uniform angular velocity omega 2 of the following formula.

【0014】[0014]

【数1】 [Equation 1]

【0015】但し、γは入力軸の回転角度であり、角速
度の最大値、最小値は下記のとおり、ω2 max=1/
cosα、ω2 min=cosα となる。このことを
カルダン誤差といっている。上記交差角度αは通常±3
0°が干渉による限界であり、実用上は±15°以内が
好ましい。
However, γ is the rotation angle of the input shaft, and the maximum and minimum values of the angular velocity are as follows, ω 2 max = 1 /
cos α and ω 2 min = cos α. This is called the Cardan error. The intersection angle α is usually ± 3
0 ° is the limit due to interference, and is preferably within ± 15 ° for practical use.

【0016】また、出力側Bの機械的動力変速機構6で
も、同様に直径の相違するV溝プーリ61、62にVベ
ルト63が掛架されている。但し、出力側では角速度変
動(∂2 θ/∂t2 )と慣性モーメント(I)によりト
ルク変動(T)に変換し、本発明のもう一方の目的とす
る出力軸のトルク変動を模擬化している点において相違
がある。上記角速度変動とトルク変動の変換公式は次式
より求まる。 T=I×∂2 θ/∂t2 ここで、トルク:T(kgf×m)、慣性モーメント:
I(kgf×m2 ×s2)、角度:θ(rad/s)、
時間:t(sec)〕である。ところで、この場合でも
負荷装置9の軸に上記と同様に慣性モーメントをプラス
することによりトルク変動を大きく取り出せる効果があ
る。
Also in the mechanical power transmission mechanism 6 on the output side B, the V-belt 63 is suspended on the V-groove pulleys 61 and 62 having different diameters. However, on the output side, the torque fluctuation (T) is converted by the angular velocity fluctuation (∂ 2 θ / ∂t 2 ) and the moment of inertia (I) to simulate the torque fluctuation of the output shaft which is another object of the present invention. There are differences. The conversion formula for the angular velocity fluctuation and the torque fluctuation can be obtained from the following equation. T = I × ∂ 2 θ / ∂t 2 where torque: T (kgf × m), moment of inertia:
I (kgf × m 2 × s 2 ), angle: θ (rad / s),
Time: t (sec)]. By the way, even in this case, by adding the moment of inertia to the shaft of the load device 9 similarly to the above, there is an effect that a large torque fluctuation can be taken out.

【0017】次に、本発明の回転変動試験機において4
サイクル直列4気筒の実機エンジンを模擬した具体例を
表1に示す。尚、4サイクル直列4気筒の実機エンジン
クランク軸の角速度変動の様子は第4図(e)の通りで
あり、図示の時間軸2Tで2回転する様子を示してい
る。同じくカム軸のトルク変動の様子は同図(d)で示
している。実機エンジンではクランク軸とカム軸の回転
比は2:1である。
Next, in the rotation fluctuation testing machine of the present invention,
Table 1 shows a specific example simulating an actual engine of a cycle in-line 4-cylinder engine. The state of the angular velocity fluctuation of the actual engine crankshaft of the 4-cycle in-line 4-cylinder engine is as shown in FIG. 4 (e), and shows the state of two revolutions on the illustrated time axis 2T. Similarly, the state of the torque fluctuation of the cam shaft is shown in FIG. In the actual engine, the rotation ratio between the crankshaft and the camshaft is 2: 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1では、入力側Aの機械的動力変速機構
4の回転比を1:1とし、出力側Bの機械的動力変速機
構の回転比を2:1としている。クランク軸を模擬する
ための本発明実施例における入力側Aの入力軸2、中間
軸10、および、駆動電動機8の軸での角速度変動の様
子は第5図の(f),(g),(h)に示している。本
実施例では回転比は1:1であり、ユニバーサルジョイ
ント7の不等速回転をそのまま中間軸10を経由して入
力軸2に伝達している。また、カム軸を模擬するための
出力側Bの出力軸3、中間軸11、および、負荷装置9
の軸での角速度変動の様子は第3図(a),(b),
(c)に示している。出力軸3には軸1回転に4回の回
転変動を発生させるために出力側機械的動力変速機構の
回転比を1:2としている。
In Table 1, the rotation ratio of the mechanical power transmission mechanism 4 on the input side A is 1: 1 and the rotation ratio of the mechanical power transmission mechanism on the output side B is 2: 1. The states of the angular velocity fluctuations at the input shaft 2 on the input side A, the intermediate shaft 10, and the shaft of the drive motor 8 in the embodiment of the present invention for simulating the crankshaft are shown in (f), (g) of FIG. It is shown in (h). In this embodiment, the rotation ratio is 1: 1 and the non-constant speed rotation of the universal joint 7 is directly transmitted to the input shaft 2 via the intermediate shaft 10. Also, the output shaft 3 on the output side B for simulating the cam shaft, the intermediate shaft 11, and the load device 9
Fig. 3 (a), (b),
It is shown in (c). The output shaft 3 has a rotation ratio of the output mechanical power transmission mechanism of 1: 2 in order to generate four rotation fluctuations per one rotation of the shaft.

【0020】[0020]

【発明の効果】以上のように本発明の回転変動試験機で
は、ユニバーサルジョイントと入力軸及び出力軸の間に
軸回転数を整数比に変換する機械的動力変速機構を設け
ることによって、従来不可能であった実物エンジンのク
ランク軸及びカム軸の1回転中の角速度変動、トルク変
動の周期を任意に模擬化することが可能になった。これ
により角速度変動を原理的に有する内燃機関エンジンの
駆動軸、及び周期的トルク変動を発生する負荷軸を模擬
化することを可能にし、本発明の主目的となる動力伝達
部品であるベルト、チェーン、歯車等の性能、耐久評価
を可能にした。
As described above, in the rotation fluctuation testing machine of the present invention, the mechanical power transmission mechanism for converting the shaft rotation speed into an integer ratio is provided between the universal joint and the input shaft and the output shaft, so that the conventional non-conformity is realized. It has become possible to arbitrarily simulate the cycle of angular velocity fluctuation and torque fluctuation during one revolution of the actual engine crankshaft and camshaft. This makes it possible to simulate a drive shaft of an internal combustion engine that has angular velocity fluctuations in principle, and a load shaft that generates periodic torque fluctuations, and belts and chains that are the main object of the present invention are power transmission components. It is possible to evaluate the performance and durability of gears and gears.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る回転変動試験機の構成図である。FIG. 1 is a configuration diagram of a rotation fluctuation testing machine according to the present invention.

【図2】本発明の回転変動試験機に使用するユニバーサ
ルジョイントの正面図である。
FIG. 2 is a front view of a universal joint used in the rotation fluctuation tester of the present invention.

【図3】本発明の出力側Bにおける出力軸3、中間軸1
1、および、負荷装置9の軸での角速度波形を(a),
(b),(c)に示す。
FIG. 3 is an output shaft 3 and an intermediate shaft 1 on the output side B of the present invention.
1 and the angular velocity waveform on the axis of the load device 9 is (a),
Shown in (b) and (c).

【図4】実機エンジンにおけるクランク軸の角速度波形
および、カム軸のトルク波形を(d)、(e)に示す。
FIG. 4 shows a crankshaft angular velocity waveform and a camshaft torque waveform in an actual engine in (d) and (e).

【図5】本発明の入力側Aにおける入力軸2、中間軸1
0、および、駆動電動機8の軸での角速度波形を
(f),(g),(h)に示す。
FIG. 5 is an input shaft 2 and an intermediate shaft 1 on the input side A of the present invention.
The angular velocity waveforms at 0 and the axis of the drive motor 8 are shown in (f), (g) and (h).

【符号の説明】[Explanation of symbols]

A 入力側 B 出力側 1 回転変動試験機 2 入力軸 3 出力軸 4 機械的変速機構 5 動力伝達機構 6 機械的変速機構 7 ユニバーサルジョイント 8 駆動電動機 9 負荷装置 10、11 中間軸 41、42 V溝プーリ 43 Vベルト 51、52 試験プーリ 53 試験ベルト 61、62 V溝プーリ 63 Vベルト A input side B output side 1 rotation fluctuation tester 2 input shaft 3 output shaft 4 mechanical speed change mechanism 5 power transmission mechanism 6 mechanical speed change mechanism 7 universal joint 8 drive motor 9 load device 10, 11 intermediate shaft 41, 42 V groove Pulley 43 V-belt 51, 52 Test pulley 53 Test belt 61, 62 V-groove pulley 63 V-belt

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入力軸と出力軸の間に被測定物となる動
力伝達機構を装着した回転変動試験機であって、入力側
には入力軸に駆動電動機、該電動機の軸に任意の角度に
配置されたユニバーサルジョイント、そして上記駆動電
動機の回転数を任意の整数比に変換する機械的動力変速
機構をそれぞれ連結し、他方出力側には出力軸に該出力
軸の回転数を任意の整数比に変換する機械的動力変速機
構、該機械的動力変速機構の軸に任意の角度に配置され
たユニバーサルジョイント、そして負荷装置をそれぞれ
連結したことを特徴とする回転変動試験機。
1. A rotation fluctuation tester having a power transmission mechanism as an object to be measured mounted between an input shaft and an output shaft, wherein the input side has a drive motor on an input side and an arbitrary angle on the shaft of the motor. Connected to a universal joint and a mechanical power transmission mechanism for converting the rotational speed of the drive motor to an arbitrary integer ratio, and the output shaft on the other side has an output shaft having an arbitrary rotational speed. A rotation fluctuation testing machine characterized in that a mechanical power transmission mechanism for converting into a ratio, a universal joint arranged at an arbitrary angle on the shaft of the mechanical power transmission mechanism, and a load device are connected to each other.
【請求項2】 動力伝達機構が一対のプーリとこれらに
嵌着する伝動ベルトからなる請求項1記載の回転変動試
験機。
2. The rotation fluctuation testing machine according to claim 1, wherein the power transmission mechanism comprises a pair of pulleys and a transmission belt fitted to these pulleys.
【請求項3】 負荷装置が渦電流式制動機、水流式制動
機および周波数変換式誘導電動機からなる請求項1記載
の回転変動試験機。
3. The rotation fluctuation testing machine according to claim 1, wherein the load device comprises an eddy current type brake, a water flow type brake and a frequency conversion type induction motor.
JP6194832A 1994-07-26 1994-07-26 Rotation fluctuation tester Expired - Lifetime JP2854808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194832A JP2854808B2 (en) 1994-07-26 1994-07-26 Rotation fluctuation tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194832A JP2854808B2 (en) 1994-07-26 1994-07-26 Rotation fluctuation tester

Publications (2)

Publication Number Publication Date
JPH0843256A true JPH0843256A (en) 1996-02-16
JP2854808B2 JP2854808B2 (en) 1999-02-10

Family

ID=16331009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194832A Expired - Lifetime JP2854808B2 (en) 1994-07-26 1994-07-26 Rotation fluctuation tester

Country Status (1)

Country Link
JP (1) JP2854808B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064932A (en) * 2005-09-02 2007-03-15 Shinko Electric Co Ltd High-speed up-down durability tester
JP2008082911A (en) * 2006-09-28 2008-04-10 Mitsuboshi Belting Ltd Device, method, and program for evaluating rotation variation of crankshaft
JP2014089181A (en) * 2012-10-05 2014-05-15 Nok Corp Rotational fluctuation test machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064932A (en) * 2005-09-02 2007-03-15 Shinko Electric Co Ltd High-speed up-down durability tester
JP2008082911A (en) * 2006-09-28 2008-04-10 Mitsuboshi Belting Ltd Device, method, and program for evaluating rotation variation of crankshaft
JP2014089181A (en) * 2012-10-05 2014-05-15 Nok Corp Rotational fluctuation test machine

Also Published As

Publication number Publication date
JP2854808B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US8303444B2 (en) Synchronous drive apparatus and methods
KR101307017B1 (en) Apparatus for identifying a non-uniform share of cylinder power in an internal combustion piston engine system
US20090149287A1 (en) Non-circular rotary component
RU2059850C1 (en) Device for compensating moments of second order inertia forces in five-cylinder row internal combustion engines
JP2854808B2 (en) Rotation fluctuation tester
JP2870654B2 (en) Parallel 2-cylinder 4-cycle engine
US5564379A (en) Arrangement for balancing varying moments
JPH0625706B2 (en) Rotational fluctuation tester
ZA200403118B (en) Synchronous drive apparatus with non-circular drive elements.
JP3955161B2 (en) Engine with sub-chain
Remond et al. Experimental identification of the corrective effect of a non-circular pulley: application to timing belt drive dynamics
JP3409919B2 (en) Balance testing machine
JP3881722B2 (en) Belt design support method and design support apparatus
JP2000338002A (en) Rotation variation tester
JP2004184267A (en) Testing apparatus of power transmission mechanism
Uchida et al. Analysis of the load on each tooth of a 4-cycle gasoline engine cam pulley
JPH0370823A (en) Balancer device of internal combustion engine
JPS588844A (en) Balancer for marine internal-combustion engine
Uchida et al. Development of Simulation Model for Calculating Loads to Synchronous Drive Belt
Hatakeyama et al. Analysis of Rotational Vibration Mechanism of Camshaft at High Engine Speed in Engines with In-Line Four-Cylinder DOHC Configuration
Kimura et al. Diesel engine crankshaft rotational speed fluctuation analysis
JPH06117503A (en) Analyzing method for timing chain vibration of engine
JPS5737133A (en) Timing method of primary and secondary concentric balancers
SU1506323A1 (en) Method of dynamic testing of i.c. engine
JPS6469719A (en) Balancer device for v-type six-cylinder engine