JPH0841686A - Formation of verdigris coating film - Google Patents

Formation of verdigris coating film

Info

Publication number
JPH0841686A
JPH0841686A JP17537894A JP17537894A JPH0841686A JP H0841686 A JPH0841686 A JP H0841686A JP 17537894 A JP17537894 A JP 17537894A JP 17537894 A JP17537894 A JP 17537894A JP H0841686 A JPH0841686 A JP H0841686A
Authority
JP
Japan
Prior art keywords
patina
electrolytic solution
film
electrolyte
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17537894A
Other languages
Japanese (ja)
Inventor
Toshio Tani
俊夫 谷
Minoru Igarashi
稔 五十嵐
Hideo Suda
英男 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17537894A priority Critical patent/JPH0841686A/en
Publication of JPH0841686A publication Critical patent/JPH0841686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for efficiently forming an artificial verdigris coating film on a copper material used for a roofing material. CONSTITUTION:In this verdigris coating film forming method by anodically oxidizing a base material, at least the surface layer of which is composed of copper or a copper alloy, in an electrolyte containing hydrogen-carbonate ion, carbonate ion or the like, the verdigris coating film is formed into 5-50mum thickness by passing and dissolving gaseous carbon dioxide in the electrolyte to control pH of the electrolyte to a specific value and replenishing hydrogencarbonate ion or carbonate ion. Since the degradation of the electrolyte is prevented by passing and dissolving gaseous carbon dioxide, the verdigris coating film is continuously formed without changing the electrolyte and excellent productivity is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、屋根等に用いられる銅
材に緑青皮膜をアノード酸化により効率良く形成する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently forming a patina film on a copper material used for a roof or the like by anodic oxidation.

【0002】[0002]

【従来の技術】寺院の銅屋根等に緑青(塩基性の銅塩)
が形成されているのをよく見かける。この緑青は天然に
形成されるが、完全に緑青で覆われるまでには20年近い
年月を要する。そこで、緑青を人工的に早期に形成する
方法が開発された。この緑青の人工形成法には、銅板等
を電解液中でアノード酸化して電気化学的に形成する方
法(特公昭55-12117号等)、化成処理液に接触させて化
学反応により形成する方法(特公昭56-9270 号等) 、銅
粉を含有する樹脂塗料を塗布研磨後化成処理する方法(
特公昭56-30396号等) 、緑青の一種である塩基性炭酸銅
粉末を混合した塗料を塗布する方法(特開昭55-139467
号等) 、樹脂を含有した化成処理液を塗布して形成する
方法( 特公昭62-19910号等) 等がある。これらのうち、
電気化学的に緑青を形成する方法は、短時間に均一な皮
膜を形成できる為、生産性に優れた緑青皮膜形成方法で
ある。
[Prior Art] Patina (basic copper salt) on copper roofs of temples, etc.
I often see the formation of. This patina is naturally formed, but it takes nearly 20 years to be completely covered with patina. Therefore, a method of artificially forming patina at an early stage was developed. This patina artificial formation method includes a method in which a copper plate or the like is anodically oxidized in an electrolytic solution to form it electrochemically (Japanese Patent Publication No. 55-12117, etc.), and a method in which it is formed by a chemical reaction in contact with a chemical conversion treatment solution. (Japanese Patent Publication No. 56-9270, etc.), a method of applying chemical conversion treatment after coating and polishing a resin coating containing copper powder (
Japanese Patent Publication No. 56-30396, etc.), and a method of applying a paint mixed with a powder of basic copper carbonate, which is a kind of patina (JP-A-55-139467).
No. etc.), and a method of forming by applying a chemical conversion treatment liquid containing a resin (Japanese Patent Publication No. Sho 62-19910 etc.). Of these,
The method of electrochemically forming patina is a patina film forming method excellent in productivity because a uniform film can be formed in a short time.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記の電気化
学的に緑青を形成する方法において、緑青皮膜形成用電
解液には主として炭酸水素イオン(HCO3 - ) や炭酸イオ
ン(CO3 2-) を含有するアルカリ金属塩、例えばNa塩やK
塩などが用いられる。これら緑青皮膜形成用電解液の中
で、例えば、銅板をアノード酸化することにより緑青被
膜を継続的に形成していくと、緑青被膜の下層に黒色の
酸化銅が形成されて緑青被膜が次第に薄くなり、遂には
全面黒色に覆われるか又はアノード溶解反応になって全
く緑青被膜が形成されなくなる。こうなると操業を停止
して電解液を交換することになり、生産性が著しく低下
する。
[0006] However, in the method of forming the electrochemically patina, primarily bicarbonate ions in patina film forming electrolyte (HCO 3 -) and carbonate ions (CO 3 2-) An alkali metal salt containing, for example, Na salt or K
Salt or the like is used. In these patina-forming electrolytes, for example, if a patina film is continuously formed by anodizing a copper plate, black copper oxide is formed in the lower layer of the patina film, and the patina film gradually becomes thinner. Eventually, the entire surface will be covered with black, or the anodic dissolution reaction will occur and no patina film will be formed at all. If this happens, the operation will be stopped and the electrolytic solution will be replaced, resulting in a marked drop in productivity.

【0004】本発明者等は鋭意検討を行い、前記現象は
緑青(塩基性炭酸銅)の形成に伴う電解液中のアニオン
(HCO3 - やCO3 2- 等)の減少、カチオン (Na+ ,K+ 等)
の蓄積、及びそれらによる電解液のpH値上昇が原因で
起きることを明らかにした。本発明の目的は、電解液を
継続的に再生させて、良質の緑青皮膜を効率よく形成す
る方法を提供することにある。
The present inventors have conducted extensive studies and found that the above phenomenon is caused by a decrease in anions (HCO 3 , CO 3 2−, etc.) in the electrolytic solution due to the formation of patina (basic copper carbonate), and cations (Na + , K + etc.)
It has been clarified that this is caused by the accumulation of the electrolyte and the increase in the pH value of the electrolyte caused by them. An object of the present invention is to provide a method for efficiently regenerating an electrolytic solution to efficiently form a high-quality patina film.

【0005】[0005]

【課題を解決のための手段】請求項1の発明は、少なく
とも表層が銅又は銅合金からなる基材を、炭酸水素イオ
ンを含む電解液、又は炭酸水素イオンと炭酸イオンを含
む電解液のいずれかの電解液中でアノード酸化する緑青
皮膜形成方法において、電解液中に炭酸ガスを通気溶存
させることにより、電解液のpHを7.5 〜9.5 に制御
し、又炭酸水素イオン又は炭酸イオンを補給して、緑青
皮膜を5〜50μmの厚さに形成することを特徴とする緑
青皮膜形成方法である。
According to a first aspect of the present invention, a substrate having at least a surface layer made of copper or a copper alloy is used as an electrolytic solution containing hydrogen carbonate ions or an electrolytic solution containing hydrogen carbonate ions and carbonate ions. In the method for forming a patina film in which anodic oxidation is performed in the electrolyte solution, the pH of the electrolyte solution is controlled to 7.5 to 9.5 by aerating and dissolving carbon dioxide gas in the electrolyte solution, and hydrogen carbonate ion or carbonate ion is replenished. Then, the patina film is formed to a thickness of 5 to 50 μm.

【0006】この発明は、アノード酸化して緑青を形成
する際の電解液の炭酸水素イオン等の減少、それに伴う
pH値の上昇を、電解液に炭酸(CO2)ガスを通気溶存さ
せることにより回復させるもので、電解液を交換するこ
となく、緑青皮膜を継続して効率よく形成する方法であ
る。
According to the present invention, a decrease in hydrogencarbonate ions and the like in the electrolytic solution at the time of anodic oxidation to form patina and an accompanying increase in the pH value are achieved by dissolving carbon dioxide (CO 2 ) gas in the electrolytic solution by aeration. This is a method of recovering and is a method of continuously and efficiently forming a patina film without exchanging the electrolytic solution.

【0007】緑青被膜を形成する基材には、通常、銅又
は銅合金板が用いられるが、銅以外の材料上にめっき、
蒸着、クラッド等によって銅又は銅合金層を形成させた
ものを用いることもできる。又対極のカソードにはアノ
ードと同じ基材を用いても良いし、不溶性のステンレス
鋼板や白金等を用いても良い。
A copper or copper alloy plate is usually used as the base material for forming the patina coating, but plating on a material other than copper,
It is also possible to use a material having a copper or copper alloy layer formed by vapor deposition, cladding or the like. Further, the same base material as the anode may be used for the cathode of the counter electrode, or insoluble stainless steel plate or platinum may be used.

【0008】この発明において、基材上に形成させた緑
青被膜は、厚さが 5μm未満では、基材との密着性が悪
くなり、屋根施工時に剥離したり、降雨で流失したりす
る。又厚さが50μmを超えると緑青皮膜の外層がポーラ
スとなり、一旦形成された緑青が電解液中に遊離する量
が多くなり、緑青の形成速度が低下する。又緑青皮膜は
厚すぎても剥離し易くなる。従って緑青皮膜の厚さは5
〜50μmに限定する。
In the present invention, if the patina coating formed on the base material has a thickness of less than 5 μm, the adhesion to the base material deteriorates, and it peels off during roof construction or is washed away by rainfall. On the other hand, when the thickness exceeds 50 μm, the outer layer of the patina film becomes porous, the patina once formed is released into the electrolytic solution in a large amount, and the patina formation rate decreases. Also, the patina film is likely to peel off if it is too thick. Therefore, the patina film thickness is 5
Limited to ~ 50 μm.

【0009】この発明において、電解液のpH値が 7.5
よりも低いと、電解液への炭酸ガスの固溶量が低下して
補給効率が悪化する。又pH値が 9.5を超えると緑青被
膜下の基材にCuO の黒色被膜が生成して外観が悪くな
る。従ってpH値は 7.5〜9.5に限定する。
In the present invention, the pH value of the electrolytic solution is 7.5.
When it is lower than the above range, the solid solution amount of carbon dioxide gas in the electrolytic solution decreases, and the replenishment efficiency deteriorates. On the other hand, if the pH value exceeds 9.5, a black coating of CuO 3 is formed on the base material under the patina coating, resulting in a poor appearance. Therefore, the pH value is limited to 7.5 to 9.5.

【0010】この発明において、電解液の温度が15℃未
満でも又35℃を超えても、外観が悪化し、密着性が低下
する。電解液の温度は、15〜35℃、特には20〜30℃に維
持することが望ましい。又電解液中のアルカリ金属イオ
ン濃度は0.4mol/dm3未満では、外観が悪化し、又密着性
が低下する。従って、電解液中のアルカリ金属イオン濃
度は0.4mol/dm3以上にするのが好ましい。又アノード電
流密度が7A/dm2 未満では、緑青皮膜の形成速度が低下
し、外観が悪化し、又密着性が低下する。従ってアノー
ド電流密度は7A/dm2 以上にするのが好ましい。アノー
ド電流密度は高くし過ぎても緑青被膜形成効率が飽和し
て不経済になる。従って20A/dm2 程度を上限とするのが
好ましい。
In the present invention, when the temperature of the electrolytic solution is lower than 15 ° C. or higher than 35 ° C., the appearance is deteriorated and the adhesion is lowered. It is desirable to maintain the temperature of the electrolytic solution at 15 to 35 ° C, especially at 20 to 30 ° C. If the concentration of alkali metal ions in the electrolytic solution is less than 0.4 mol / dm 3 , the appearance is deteriorated and the adhesion is deteriorated. Therefore, the alkali metal ion concentration in the electrolytic solution is preferably 0.4 mol / dm 3 or more. On the other hand, when the anode current density is less than 7 A / dm 2 , the formation rate of the patina film is lowered, the appearance is deteriorated, and the adhesion is lowered. Therefore, the anode current density is preferably 7 A / dm 2 or more. Even if the anode current density is too high, the patina coating formation efficiency saturates and becomes uneconomical. Therefore, it is preferable to set the upper limit to about 20 A / dm 2 .

【0011】請求項2の発明は、少なくとも表層が銅又
は銅合金からなる基材を、炭酸水素イオンとアンモニウ
ムイオンを含む電解液、又は炭酸水素イオンと炭酸イオ
ンとアンモニウムイオンを含む電解液中でアノード酸化
する緑青皮膜形成方法において、電解液中に炭酸ガスを
通気溶存させることにより、電解液のpHを7.2 〜9.0
に制御し、又炭酸水素イオン又は炭酸イオンを補給し
て、緑青皮膜を5〜50μmの厚さに形成することを特徴
とする緑青皮膜形成方法である。
According to a second aspect of the present invention, a substrate having at least a surface layer made of copper or a copper alloy is used in an electrolytic solution containing hydrogen carbonate ions and ammonium ions, or in an electrolytic solution containing hydrogen carbonate ions, carbonate ions and ammonium ions. In the method of forming a patina film by anodic oxidation, the pH of the electrolytic solution is adjusted to 7.2 to 9.0 by dissolving carbon dioxide gas in the electrolytic solution by aeration.
Is controlled and the hydrogen carbonate ion or carbonate ion is replenished to form a patina film having a thickness of 5 to 50 μm.

【0012】この発明では、炭酸水素イオンや炭酸イオ
ンを含有するアルカリ金属塩として、Na塩やK塩の他
に、アンモニウム塩が用いられる。このアンモニウム塩
を含む水溶液によって、形成される緑青皮膜は基材との
密着性が比較的高くなる。その代わり、電解液中にNH4
+ が蓄積し、このNH4 + はCuの錯化剤である為pH値が
低いうちからCuO の黒色皮膜が生成するようになる。
In the present invention, as the alkali metal salt containing hydrogen carbonate ion or carbonate ion, ammonium salt is used in addition to Na salt and K salt. The aqueous solution containing the ammonium salt causes the formed patina film to have relatively high adhesion to the substrate. Instead, NH 4 in the electrolyte
+ Accumulates, and since this NH 4 + is a complexing agent for Cu, a black film of CuO will start to be formed while the pH value is low.

【0013】この発明において、緑青皮膜の形成厚さは
5〜50μmに、又pHは7.2 〜9.0に限定する。又電解
液温度は15〜40℃に、電解液のアルカリ金属イオン濃度
は0.4 〜1.1mol/dm3(注.1) に、アノード電流密度を7
A/dm2 以上にそれぞれ制御するのが好ましい。その理由
は、請求項1の発明の場合と同じである。(注.1)1.1mo
l/dm3 以下が好ましい理由は、0.4mol/dm3以上が好まし
い理由と同じである。
In the present invention, the formation thickness of the patina film is limited to 5 to 50 μm and the pH is limited to 7.2 to 9.0. The temperature of the electrolyte is 15 to 40 ℃, the concentration of alkali metal ions in the electrolyte is 0.4 to 1.1 mol / dm 3 (Note 1), and the anode current density is 7
It is preferable to control each to A / dm 2 or more. The reason is the same as in the case of the invention of claim 1. (Note.1) 1.1mo
The reason why l / dm 3 or less is preferable is the same as the reason that 0.4 mol / dm 3 or more is preferable.

【0014】[0014]

【作用】本発明では、少なくとも表層が銅又は銅合金か
らなる基材を、炭酸水素イオン、又は炭酸水素イオ
ンと炭酸イオン、或いは前記又はとアンモニウムイ
オンを含む電解液中でアノード酸化する緑青皮膜形成方
法において、電解液のpH制御、及び炭酸水素イオン又
は炭酸イオンの補給を電解液中に炭酸ガスを通気溶存さ
せて行う。従って、緑青皮膜を、電解液を交換せずに、
長時間継続して形成することができ、生産性に優れる。
更に、コイルに巻いた長尺の基材を連続的に処理でき、
生産性及びコストの大幅低減が可能となる。
In the present invention, a green-blue film is formed by anodizing a base material having at least the surface layer made of copper or a copper alloy in hydrogen carbonate ion, or an electrolyte solution containing hydrogen carbonate ion and carbonate ion, or ammonium ion. In the method, pH control of the electrolytic solution and supplementation of hydrogen carbonate ions or carbonate ions are carried out by aerating and dissolving carbon dioxide gas in the electrolytic solution. Therefore, without changing the electrolyte solution,
It can be formed continuously for a long time and has excellent productivity.
Furthermore, a long base material wound on a coil can be continuously processed,
It is possible to significantly reduce productivity and cost.

【0015】アノード酸化による緑青皮膜の形成が進行
するに伴い、電解液は、HCO3 - 等が減少し、それに伴い
pH値が上昇する。この電解液に炭酸ガスを通気溶存さ
せると下記反応式に示すように、電解液中にH + 、HCO3
- 、H2CO3 、CO2(aq.)等の再生、又はOH- の減少が起こ
りpH値が低下する。 2OH- +CO2 → CO3 2- +H2O (pH>10) OH- +CO2 → HCO3 - (pH>10) H2O +CO2 → H + +HCO3 - (pH<10) CO3 2- +H + → HCO3 - (pH<10) H2O+CO2 (gas) → H2O +CO2(aq.)(pH<8) H2O+CO2 (aq.) = H2CO3 (pH<8)
As the formation of the patina film by anodic oxidation progresses, HCO 3 etc. in the electrolytic solution decreases, and the pH value increases accordingly. When carbon dioxide gas is dissolved in this electrolyte by aeration, as shown in the following reaction formula, H + and HCO 3 are contained in the electrolyte.
- , H 2 CO 3 , CO 2 (aq.), Etc. are regenerated, or OH - is decreased, and the pH value decreases. 2OH - + CO 2 → CO 3 2- + H 2 O (pH> 10) OH - + CO 2 → HCO 3 - (pH> 10) H 2 O + CO 2 → H + + HCO 3 - (pH <10) CO 3 2- + H + → HCO 3 - ( . aq) (. aq) (pH <10) H 2 O + CO 2 (gas) → H 2 O + CO 2 (pH <8) H 2 O + CO 2 = H 2 CO 3 (pH <8 )

【0016】電解液は、基本的には、緑青皮膜形成の為
の主成分であるHCO3 - やCO3 2- を補給することで再生で
きる筈である。しかし、「炭酸」という液体は存在せ
ず、従って液補給という簡単な方法を採用できない。そ
こで、本発明は「炭酸」という液体の代わりに炭酸ガス
を電解液に通気溶存させてHCO3 - やCO3 2- を再生させる
ものであるが、操業を止めずに、pH値制御と成分補給
を行える点で「炭酸」という液体と同じ効果が得られる
ものである。
Basically, the electrolytic solution should be regenerated by replenishing HCO 3 and CO 3 2− which are the main components for forming the patina film. However, there is no liquid called "carbonic acid", and therefore the simple method of liquid replenishment cannot be adopted. Therefore, in the present invention, instead of a liquid called "carbonic acid", carbon dioxide gas is dissolved by aeration in an electrolytic solution to regenerate HCO 3 - and CO 3 2- , but without stopping the operation, pH value control and component In terms of replenishment, it has the same effect as a liquid called "carbonic acid".

【0017】[0017]

【実施例】以下に本発明を実施例により具体的に説明す
る。 (実施例1)タフピッチ銅板(質別1/2H、厚さ0.4mm の
JIS-C1100)を10枚続けてアノード酸化する工程と電解液
中に炭酸ガスを2分間通気する工程とを4回繰り返し
て、銅板40枚に緑青皮膜を形成した。カソードには SUS
-304を用いた。電解液には炭酸水素アンモニウム0.3mol
とカルバミン酸アンモニウム0.3molの水溶液1dm3(アン
モニウムイオン濃度約0.6mol/dm3)を用いた。銅板の電
解面積を1dm2 とした。アノード電流密度は10A/dm2
電解開始時の液温は25℃にそれぞれ調節した。アノード
酸化時間は銅板1枚当たり3分間、銅板10枚当たりのア
ノード酸化処理量は5A・hrs/dm3 とした。炭酸ガスはガ
ラスボールフィルターを通して 0.5×10-3Nm3/min.の流
量で通気した。炭酸ガスを通気する前後でpH値を市販
のpHメーターを用いて測定した。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) Tough pitch copper plate (tempered 1 / 2H, thickness 0.4mm
The step of continuously anodizing 10 sheets of JIS-C1100) and the step of bubbling carbon dioxide into the electrolyte for 2 minutes were repeated 4 times to form a patina film on 40 sheets of copper plate. SUS for cathode
-304 was used. Ammonium hydrogen carbonate 0.3 mol as electrolyte
An aqueous solution of 0.3 mol of ammonium carbamate and 1 dm 3 (ammonium ion concentration of about 0.6 mol / dm 3 ) was used. The electrolytic area of the copper plate was set to 1 dm 2 . Anode current density is 10A / dm 2 ,
The liquid temperature at the start of electrolysis was adjusted to 25 ° C. The anodic oxidation time was 3 minutes per copper plate, and the anodic oxidation treatment amount per 10 copper plates was 5 A · hrs / dm 3 . Carbon dioxide gas was passed through a glass ball filter at a flow rate of 0.5 × 10 −3 Nm 3 / min. The pH value was measured using a commercially available pH meter before and after aerated with carbon dioxide gas.

【0018】(実施例2)電解液に0.9mol/dm3炭酸水素
ナトリウム水溶液1dm3 を用いた他は、実施例1と同じ
方法により緑青被膜を形成した。
Example 2 A patina film was formed in the same manner as in Example 1 except that 0.9 mol / dm 3 sodium hydrogencarbonate aqueous solution 1 dm 3 was used as the electrolytic solution.

【0019】(比較例1)炭酸ガスを通気しなかった他
は、実施例1と同じ方法により緑青被膜を形成した。
(Comparative Example 1) A patina film was formed in the same manner as in Example 1 except that carbon dioxide gas was not passed.

【0020】(比較例2)炭酸ガスを通気しなかった他
は、実施例2と同じ方法により緑青被膜を形成した。
Comparative Example 2 A patina film was formed by the same method as in Example 2 except that carbon dioxide gas was not passed.

【0021】得られた各々の緑青皮膜形成基板を、10枚
毎に目視観察し、その品質の良否を○、△、×の3段階
で評価した。又緑青被膜の厚さを、供試材を樹脂に埋め
込み走査型電子顕微鏡で観察し測定した。結果を表1に
示す。
Each of the obtained green-blue film-formed substrates was visually observed every 10 sheets, and the quality of the substrate was evaluated on a three-point scale of ◯, Δ, and ×. The thickness of the patina coating was measured by burying the test material in resin and observing it with a scanning electron microscope. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、本発明方法品(N
o.1,2)では、緑青皮膜形成に伴ってpH値が上昇した
が、炭酸ガスを通気溶存させることによって、炭酸水素
イオン等が補給され、pH値が低下した。No.2では20枚
目近くから緑青皮膜の外観が幾分悪化したが、炭酸ガス
を通気溶存させることにより水溶液が再生され、緑青皮
膜の外観は良好なものに回復した。他方、比較例品(No.
3,4)は炭酸ガスを通気しなかった為、20枚目近くから、
緑青皮膜が部分的に黒化し始め、30枚、及び40枚処理後
には黒化が進んで、緑青被膜の厚さは非常に薄くなり、
外観が不良となった。
As is clear from Table 1, the method product (N
In o.1, 2), the pH value increased with the formation of the patina film, but by dissolving carbon dioxide by aeration, hydrogen carbonate ions and the like were replenished and the pH value decreased. In No.2, the appearance of the patina coating deteriorated somewhat from the 20th sheet, but the aqueous solution was regenerated by aeration and dissolving carbon dioxide, and the patina coating recovered to a good appearance. On the other hand, the comparative example product (No.
(3, 4) did not vent carbon dioxide, so from the 20th sheet,
The patina film begins to blacken partially, and blackening progresses after processing 30 and 40 sheets, and the patina film becomes very thin.
The appearance was bad.

【0024】(実施例3)前記比較例品(No.3,4)で緑青
皮膜形成が不能となった使用後の電解液に、炭酸ガスを
ガラスボールフィルターを通して 0.5×10-3Nm3/min.の
流量で、2分間、10分間、20分間、又は30分間通気して
pH値を測定した。結果を表2に示す。
Example 3 Carbon dioxide gas was passed through a glass ball filter to the used electrolytic solution in which the patina film formation was impossible in the comparative example products (Nos. 3 and 4) and 0.5 × 10 −3 Nm 3 / The pH value was measured by aeration for 2 minutes, 10 minutes, 20 minutes, or 30 minutes at a flow rate of min. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように、緑青皮膜形成が
不能となった使用後の電解液も炭酸ガスを通気すること
により、炭酸水素イオン(HCO3 - ) や炭酸イオン(C
O3 2-) が補給され、pH値が回復して電解液が再生され
ることが分かる。
[0026] As apparent from Table 2, by bubbling the electrolyte also carbon dioxide after use of patina film formation becomes impossible, bicarbonate ions (HCO 3 -) and carbonate ions (C
It can be seen that O 3 2− ) is replenished, the pH value is recovered, and the electrolytic solution is regenerated.

【0027】(実施例4)基材にタフピッチ銅板(質別
1/2H、厚さ0.4mm のJIS-C1100)を用い、この上に緑青皮
膜をアノード酸化により形成した。カソード電極には S
US-304を用いた。電解液には0.9mol/dm3炭酸水素ナトリ
ウム水溶液1dm3 を用いた。前記基材の電解面積は1dm
2 とした。アノード電流密度を10A/dm2 、電解開始時の
液温を25℃に調節して、アノード酸化時間は3分間とし
た。前記銅板を2枚続けてアノード酸化して緑青皮膜を
形成した。アノード酸化は電解液に炭酸ガスを通気しな
がら行った。炭酸ガスはガラスボールフィルターを通し
て 0.5×10-3Nm3/min.の流量で通気した。電解液の組
成、pH、温度、アノード電流密度、電解時間は種々に
変化させた。電解液のpH値は、複数枚の銅板をアノー
ド酸化させて上昇させるか、炭酸ガスを溶存させて低下
させるかして事前に調整した。その他の条件は実施例1
と同じとした。
(Example 4) A tough pitch copper plate (tempered
A 1/2 H, 0.4 mm thick JIS-C1100) was used, on which a patina film was formed by anodic oxidation. S for the cathode electrode
US-304 was used. As the electrolytic solution, 0.9 mol / dm 3 sodium hydrogen carbonate aqueous solution 1 dm 3 was used. The electrolysis area of the base material is 1 dm
2 The anode current density was 10 A / dm 2 , the liquid temperature at the start of electrolysis was adjusted to 25 ° C., and the anodic oxidation time was 3 minutes. Two copper plates were continuously anodized to form a patina film. The anodic oxidation was performed while passing carbon dioxide through the electrolyte. Carbon dioxide gas was passed through a glass ball filter at a flow rate of 0.5 × 10 −3 Nm 3 / min. The composition, pH, temperature, anode current density, and electrolysis time of the electrolytic solution were variously changed. The pH value of the electrolytic solution was adjusted in advance by anodizing a plurality of copper plates to raise it or by dissolving carbon dioxide to lower it. Other conditions are Example 1
Same as

【0028】(比較例3)緑青皮膜を5μm未満の厚さ
又は50μmを超える厚さにするか、電解液のpH値を7.
5 未満、又は9.5 を超える値にした他は、実施例4と同
じ方法により基材上に緑青皮膜を形成した。
(Comparative Example 3) The patina film has a thickness of less than 5 μm or more than 50 μm, or the pH value of the electrolytic solution is 7.
A patina film was formed on the substrate by the same method as in Example 4 except that the value was less than 5 or more than 9.5.

【0029】前記の緑青皮膜を形成した各々の基材につ
いて、緑青皮膜の外観、厚さ、緑青皮膜の密着性を調査
した。緑青皮膜の外観は、目視により、極めて良好なも
のを◎、以下○、△、×の4段階に評価した。被膜厚さ
は実施例1の場合と同様にして求めた。密着性は、JIS-
G3312-1994に従って 180度曲げ試験を行い、試験後の被
膜の剥離状況を観察して、全く剥離しないものを◎、以
下○、△、×の4段階で評価した。結果を表3に示す。
△評価は、外観及び密着性とも実用上問題のない程度の
ものである。
The appearance, thickness, and adhesion of the patina were examined for each of the base materials having the patina film formed thereon. The appearance of the patina film was visually evaluated to be very good, and was evaluated in four grades of ⊚, ∘, Δ and ×. The coating thickness was determined in the same manner as in Example 1. Adhesion is JIS-
A 180-degree bending test was performed according to G3312-1994, and the peeling condition of the coating film after the test was observed, and those that did not peel at all were rated as ⊚, below as ○, Δ, and ×. The results are shown in Table 3.
The Δ evaluation is such that there is no practical problem in appearance and adhesion.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から明らかなように、本発明方法品
(No.7〜24) はいずれも、外観が良好で水色乃至青色に
発色した。密着性も良好であった。尚、電解液の温度が
10℃と低いもの(No.12) 、40℃と高いもの(No.15) 、電
解液濃度が0.3mol/dm3と低いもの(No.16) は、緑青皮膜
の形成速度がやや遅かった。アノード電流密度が7A/dm
2 を下回ったもの(No.19,20)は被膜形成に若干時間を要
した。緑青皮膜が薄めのもの(No.8,19) と厚めのもの(N
o.9)は密着性が幾分低下した。
As is apparent from Table 3, the method product of the present invention
(Nos. 7 to 24) all have a good appearance and are light blue or blue.
It developed color. Adhesion was also good. The temperature of the electrolyte is
Low as 10 ℃ (No.12), High as 40 ℃ (No.15),
Solution concentration is 0.3 mol / dm3And low (No. 16) are patina film
Formation rate was a little slow. Anode current density is 7 A / dm
2(Nos. 19 and 20) require less time for film formation.
did. Thin patina film (No.8, 19) and thick patina (N
In o.9), the adhesion was somewhat reduced.

【0032】これに対し、比較例品のNo.25 は、緑青皮
膜厚さが5μm未満の為下地の銅基材が部分的に露出し
て外観不良となった。この露出部分は、曲げ試験により
一層拡大した。No.26 は緑青皮膜厚さが50μmを超えた
為、外観は優れるものの、密着性が悪く曲げ試験で剥離
した。No.27 は電解液のpHが 7.0と低かった為、緑青
皮膜が粒子状になって電解液中に遊離し、緑青被膜は1
〜2μmの厚さにしか形成されなかった。No.28 はpH
値が10.0と高かった為、銅板表面は強い黒色を呈し、緑
青被膜は殆ど形成されていなかった。
On the other hand, in Comparative Example No. 25, since the patina film thickness was less than 5 μm, the underlying copper base material was partially exposed, resulting in poor appearance. The exposed portion was further expanded by the bending test. No. 26 had an excellent appearance because the patina film thickness exceeded 50 μm, but it had poor adhesion and peeled off in the bending test. In No. 27, since the pH of the electrolyte was as low as 7.0, the patina film became particulate and was liberated into the electrolysis solution.
It was only formed to a thickness of ˜2 μm. No. 28 is pH
Since the value was as high as 10.0, the surface of the copper plate had a strong black color, and the patina film was hardly formed.

【0033】(実施例5)電解液に、炭酸アンモニウ
ム、炭酸水素アンモニウム、カルバミン酸アンモニウ
ム、モリブデン酸アンモニウム中の1〜3種を含む水溶
液を用いた他は、実施例4と同じ方法により、銅板2枚
に続けて緑青皮膜を形成した。
Example 5 A copper plate was prepared in the same manner as in Example 4 except that an aqueous solution containing 1 to 3 of ammonium carbonate, ammonium hydrogencarbonate, ammonium carbamate and ammonium molybdate was used as the electrolytic solution. A patina film was formed in succession on two sheets.

【0034】(比較例4)電解液に、炭酸アンモニウム
とカルバミン酸アンモニウムを含む水溶液を用い、緑青
皮膜を5μm未満の厚さ、又は50μmを超える厚さにし
たか、又は電解液のpH値を7.2 未満、又は9.0 を超え
る値にした他は、実施例5と同じ方法により基材上に緑
青皮膜を形成した。
(Comparative Example 4) An aqueous solution containing ammonium carbonate and ammonium carbamate was used as the electrolytic solution, and the patina film was made to have a thickness of less than 5 μm or more than 50 μm, or the pH value of the electrolytic solution was adjusted. A patina film was formed on the substrate by the same method as in Example 5 except that the value was less than 7.2 or more than 9.0.

【0035】前記の緑青皮膜を形成した各々の銅板につ
いて、緑青皮膜の外観、厚さ、密着性を実施例4の場合
と同様の方法により調査した。結果を表4に示す。
With respect to each copper plate having the above-mentioned patina film formed thereon, the appearance, thickness and adhesion of the patina film were examined by the same method as in Example 4. The results are shown in Table 4.

【0036】[0036]

【表4】 [Table 4]

【0037】表4から明らかなように、本発明方法品
(No.29 〜48) はいずれも、外観及び密着性が良好であ
った。電解液の温度が10℃と低いもの(No.36) 、又は45
℃と高いもの(No.39) 、電解液のNH4 + 濃度が0.3mol/d
m3と低いもの(No.40) は、緑青皮膜が他の実施例に比較
して薄く、又アノード電流密度が7A/dm2 を下回ったも
の(No.44,45)は被膜形成に時間を要したが、外観は水色
や青色の良好な発色を呈した。密着性も、緑青皮膜が5
〜6 μmと薄いもの(No.32,44)と49〜50μmと厚いもの
(No.33) で若干劣ったが、他は良好であった。尚、実施
例4の場合に比べて、緑青皮膜の基材との密着性は良好
であったが、外観は、やや黒味を帯びたものであった。
これは、電解液中のNH4 + の影響によるものである。
As is apparent from Table 4, the method product of the present invention
(Nos. 29 to 48) all had good appearance and good adhesion. Electrolyte with low temperature of 10 ℃ (No.36), or 45
High (° C) (No.39), NH 4 + concentration in the electrolyte is 0.3 mol / d
Those with a low m 3 (No. 40) have a thin patina film compared to the other examples, and those with an anode current density of less than 7 A / dm 2 (No. 44, 45) take a long time to form a film. However, the appearance showed good color development of light blue and blue. Adhesion is also 5 for patina film
~ 6 μm thin (No.32,44) and 49-50 μm thick
(No. 33) was slightly inferior, but others were good. Although the adhesion of the patina film to the substrate was better than that of Example 4, the appearance was slightly blackish.
This is due to the effect of NH 4 + in the electrolytic solution.

【0038】これに対し、比較例品のNo.49 は、緑青皮
膜厚さが5μm未満の為下地の銅基材が部分的に露出し
て外観不良となった。この露出部分は、曲げ試験により
一層拡大した。No.50 は緑青皮膜厚さが50μmを超えた
為、外観は優れるものの、密着性が悪く曲げ試験で剥離
した。No.51 は電解液のpHが 7.0と低かった為、緑青
皮膜が粒子状になって電解液中に遊離し、緑青被膜は2
μmの厚さにしか形成されなかった。No.52 はpH値が
9.5と高かった為、銅板表面は強い黒色を呈し緑青被膜
は殆ど形成されていなかった。
On the other hand, in Comparative Example No. 49, since the patina film thickness was less than 5 μm, the underlying copper base material was partially exposed, resulting in poor appearance. The exposed portion was further expanded by the bending test. No. 50 had an excellent appearance because the patina film thickness exceeded 50 μm, but it had poor adhesion and peeled off in the bending test. In No. 51, the pH of the electrolytic solution was as low as 7.0, so the patina film became particulate and was released into the electrolysis solution.
It was formed only to a thickness of μm. No.52 has a pH value
Since it was as high as 9.5, the surface of the copper plate had a strong black color and almost no patina film was formed.

【0039】[0039]

【発明の効果】以上述べたように、本発明では、電気化
学的な緑青皮膜形成方法において、電解液の劣化を、電
解液へ炭酸ガスを通気溶存させて防止するので、電解液
を交換することなく、緑青皮膜を継続して形成でき、生
産性に優れる。更にコイルに巻いた長尺の基材を連続的
に処理することもでき、生産性及びコストの大幅低減が
可能となる。依って工業上顕著な効果を奏する。
As described above, in the present invention, in the electrochemical method for forming a patina, the deterioration of the electrolytic solution is prevented by aeration and dissolving carbon dioxide gas in the electrolytic solution, so that the electrolytic solution is replaced. It is possible to continuously form a patina film without having to do so and has excellent productivity. Further, it is possible to continuously process a long base material wound around a coil, and it is possible to greatly reduce productivity and cost. Therefore, it has a remarkable industrial effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表層が銅又は銅合金からなる
基材を、炭酸水素イオンを含む電解液、又は炭酸水素イ
オンと炭酸イオンを含む電解液のいずれかの電解液中で
アノード酸化する緑青皮膜形成方法において、電解液中
に炭酸ガスを通気溶存させることにより、電解液のpH
を7.5 〜9.5 に制御し、又炭酸水素イオン又は炭酸イオ
ンを補給して、緑青皮膜を5〜50μmの厚さに形成する
ことを特徴とする緑青皮膜の形成方法。
1. A patina film which anodizes a base material having at least a surface layer made of copper or a copper alloy in an electrolytic solution containing hydrogen carbonate ions or an electrolytic solution containing hydrogen carbonate ions and carbonate ions. In the forming method, the pH of the electrolytic solution is changed by dissolving carbon dioxide gas in the electrolytic solution by aeration.
Is controlled to 7.5 to 9.5, and hydrogen carbonate ions or carbonate ions are replenished to form a patina film having a thickness of 5 to 50 μm.
【請求項2】 少なくとも表層が銅又は銅合金からなる
基材を、炭酸水素イオンとアンモニウムイオンを含む電
解液、又は炭酸水素イオンと炭酸イオンとアンモニウム
イオンを含む電解液中でアノード酸化する緑青皮膜形成
方法において、電解液中に炭酸ガスを通気溶存させるこ
とにより、電解液のpHを7.2 〜9.0に制御し、又炭酸
水素イオン又は炭酸イオンを補給して、緑青皮膜を5〜
50μmの厚さに形成することを特徴とする緑青皮膜の形
成方法。
2. A patina film for anodic oxidation of a substrate having at least a surface layer made of copper or a copper alloy in an electrolytic solution containing hydrogen carbonate ions and ammonium ions or an electrolytic solution containing hydrogen carbonate ions, carbonate ions and ammonium ions. In the formation method, the pH of the electrolytic solution is controlled to 7.2 to 9.0 by aerating and dissolving carbon dioxide gas in the electrolytic solution, and hydrogen carbonate ions or carbonate ions are replenished to form a patina film of 5 to 5%.
A method for forming a patina film, which comprises forming the film to a thickness of 50 μm.
JP17537894A 1994-07-27 1994-07-27 Formation of verdigris coating film Pending JPH0841686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17537894A JPH0841686A (en) 1994-07-27 1994-07-27 Formation of verdigris coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17537894A JPH0841686A (en) 1994-07-27 1994-07-27 Formation of verdigris coating film

Publications (1)

Publication Number Publication Date
JPH0841686A true JPH0841686A (en) 1996-02-13

Family

ID=15995067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17537894A Pending JPH0841686A (en) 1994-07-27 1994-07-27 Formation of verdigris coating film

Country Status (1)

Country Link
JP (1) JPH0841686A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054253A1 (en) * 2001-12-20 2003-07-03 Hideo Yoshida Anodization method and treating device therefor
WO2004101864A1 (en) * 2003-05-16 2004-11-25 Hideo Yoshida Anodic oxidation method and production method for titanium oxide coating and method of supporting catalyst
US7300527B2 (en) 2002-04-25 2007-11-27 Hideo Yoshida Method for activating surface of base material and apparatus thereof
CN103014815A (en) * 2012-11-28 2013-04-03 常州大学 Copper wire roller type fast anode oxidation treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054253A1 (en) * 2001-12-20 2003-07-03 Hideo Yoshida Anodization method and treating device therefor
US7300527B2 (en) 2002-04-25 2007-11-27 Hideo Yoshida Method for activating surface of base material and apparatus thereof
US7736442B2 (en) 2002-04-25 2010-06-15 Hideo Yoshida Method for activating surface of base material and apparatus thereof
WO2004101864A1 (en) * 2003-05-16 2004-11-25 Hideo Yoshida Anodic oxidation method and production method for titanium oxide coating and method of supporting catalyst
US8475643B2 (en) 2003-05-16 2013-07-02 Hideo Yoshida Anodic oxidation method and production for titanium oxide coating and method of supporting catalyst
CN103014815A (en) * 2012-11-28 2013-04-03 常州大学 Copper wire roller type fast anode oxidation treatment method
CN103014815B (en) * 2012-11-28 2016-05-04 常州大学 Copper conductor roll-type fast anode oxidation treatment method

Similar Documents

Publication Publication Date Title
WO2003078694A1 (en) Electrode for generation of hydrogen
EP0113931B1 (en) Cathode for the electrolytic production of hydrogen, and its use
US20060237326A1 (en) Method for treating surface of magnesium or magnesium alloy
JP6855833B2 (en) Manufacturing method of Sn-plated steel sheet and Sn-plated steel sheet
US3951759A (en) Chromium electroplating baths and method of electrodepositing chromium
JPH0347999A (en) Support metal having improved surface mor- phology
US5628893A (en) Halogen tin composition and electrolytic plating process
JPH0841686A (en) Formation of verdigris coating film
JP4060627B2 (en) Roughened steel sheet and roughening method
US5045157A (en) Process for producing aluminum support for printing-plate
US5198095A (en) Method for continuously manganese-electroplating or manganese-alloy-electroplating steel sheet
FR2547598A1 (en) METHOD FOR MANUFACTURING ELECTRODE FOR ELECTROCHEMICAL METHODS AND CATHODE FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN
JPH10130878A (en) Electrolytic nickel plating method
WO2015111328A1 (en) Steel sheet for container and manufacturing method therefor
US3837879A (en) Removing of worn coating from metal electrodes
JPH03260100A (en) Production of base for printing plate
JP3224329B2 (en) Insoluble metal anode
CN1329969A (en) Method for preparing one-sided platinum plated refractory metal plate and extended metal grid
JPH1112751A (en) Method for electroless plating with nickel and/or cobalt
JP2001342589A (en) Method and apparatus for manufacturing copper foil
KR102524705B1 (en) Method of producing surface-treated steel sheet and surface-treated steel sheet
JP6091150B2 (en) Surface modification method by fluorination treatment
JPH0891842A (en) Production of basic chromium sulfate to be used for chromium system electroplating
SU1090761A1 (en) Solution for catodic application of protective films to titanium alloys
JP3002265B2 (en) Method for producing high-purity chromium metal