JPH0841647A - Cvd reactor - Google Patents

Cvd reactor

Info

Publication number
JPH0841647A
JPH0841647A JP17733094A JP17733094A JPH0841647A JP H0841647 A JPH0841647 A JP H0841647A JP 17733094 A JP17733094 A JP 17733094A JP 17733094 A JP17733094 A JP 17733094A JP H0841647 A JPH0841647 A JP H0841647A
Authority
JP
Japan
Prior art keywords
substrate
gas
raw material
reaction chamber
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17733094A
Other languages
Japanese (ja)
Other versions
JP3504340B2 (en
Inventor
Taichi Yamaguchi
太一 山口
Takayoshi Ooyoshi
孝恵 大吉
Tsukasa Kono
宰 河野
Akira Kagawa
昭 香川
Shigeo Nagaya
重夫 長屋
Naoki Hirano
直樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP17733094A priority Critical patent/JP3504340B2/en
Publication of JPH0841647A publication Critical patent/JPH0841647A/en
Application granted granted Critical
Publication of JP3504340B2 publication Critical patent/JP3504340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a CVD reactor by which a coating-film layer of uniform composition is formed on the surface of a substrate in uniform thickness. CONSTITUTION:This reactor is provided with a chamber 21 to form a coating- film layer on the surface of a substrate 3 by the CVD reaction of a raw gas, a means 25 to supply the raw gas into the chamber 21, an evacuating means 30 to evacuate in the chamber 21 and a means 35 to move the substrate in the chamber The raw gas supply means 25 has a nozzle 26 to send the raw gas to the substrate surface. A reduced-diameter part 27 is formed in the nozzle 26 to throttle and then diffuse the raw gas. As a result, the raw gas flows to the substrate as a turbulent flow to form a coating-film layer on the substrate surface, a turbulent flow is uniformly formed over the area wider than the nozzle 26, and a coating-film layer of uniform composition is formed on the substrate surface in uniform thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基体の表面に化学気相
蒸着法(CVD法)を用いて被膜層を形成する際に用い
られるCVD反応装置に係わり、特に、長尺の基体に被
膜層を形成する際に用いて好適なCVD反応装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD reactor used for forming a coating layer on the surface of a substrate by a chemical vapor deposition method (CVD method), and particularly to a long substrate. The present invention relates to a CVD reactor suitable for use in forming a layer.

【0002】[0002]

【従来の技術】従来、長尺の基体に超電導体の被膜層を
CVD法を用いて製造する場合、図2ないし図3に示す
ようなCVD反応装置が知られている。図2に示すCV
D反応装置は、原料収納管1aと基体挿入管1bとを十
字状に連通させた反応チャンバ1と、この反応チャンバ
1の原料収納管1aの一端に接続された原料ガス供給管
2と、この原料ガス供給管2に対向配設され、原料収納
管1aの他端に接続されたガス排気ポンプ(図示略)
と、基体挿入管1bの両端にそれぞれ配置され、基体3
を巻き付け、巻き出すリール4、5と、このリール4に
基体3を巻き付ける電動モーター6とから構成されてい
る。反応チャンバ1の原料収納管1aには、二本の原料
ガス供給管2a、2bが配され、これら原料ガス供給管
2a、2bの先端に、これらから供給される原料ガスを
混合する混合路7が設けられている。この混合路7は、
通気孔を有する仕切板を複数並設した構造にされてい
る。
2. Description of the Related Art Conventionally, a CVD reactor as shown in FIGS. 2 to 3 is known when a coating layer of a superconductor is produced on a long substrate by a CVD method. CV shown in FIG.
The D reactor comprises a reaction chamber 1 in which a raw material storage pipe 1a and a substrate insertion pipe 1b are connected in a cross shape, a raw material gas supply pipe 2 connected to one end of the raw material storage pipe 1a of the reaction chamber 1, A gas exhaust pump (not shown) which is arranged opposite to the raw material gas supply pipe 2 and is connected to the other end of the raw material storage pipe 1a.
And the base body insertion tube 1b is arranged at both ends of the base body 3
It is composed of reels 4 and 5 for winding and unwinding, and an electric motor 6 for winding the substrate 3 around the reel 4. The raw material storage pipe 1a of the reaction chamber 1 is provided with two raw material gas supply pipes 2a and 2b, and a mixing passage 7 for mixing the raw material gas supplied from these raw material gas supply pipes 2a and 2b is provided. Is provided. This mixing path 7
It has a structure in which a plurality of partition plates having ventilation holes are arranged in parallel.

【0003】このようなCVD反応装置を用いて基体3
の表面にNb3Ge超電導体の被膜層を製造する方法を
説明する。まず、二本の原料ガス供給管2a、2bにN
bのハロゲン化物とGeのハロゲン化物とをそれぞれヘ
リウムガスとともに流し、これら二本の原料ガス供給管
2a、2bの周囲に水素ガスとヘリウムガスとの混合ガ
スを流し、原料ガスを反応チャンバ1内に供給する。こ
れらを、混合路7内に通すことにより、混合して乱流と
し、基体3表面に吹き流す。この基体3の原料ガスが接
する部分を加熱し、原料ガスをCVD反応させ、このC
VD反応による生成物を基体3に堆積させ、この基体3
の表面にNb3Geの被膜層を形成する。このときに、
ガス排気ポンプで原料ガスを排気することにより、原料
ガスを基体3表面に吹き流す。次いで、この基体3を一
方のリール4に巻き取り、他方のリール5から新たな基
体3を巻き出すことにより、被膜層を形成した基体3が
連続して製造される。
A substrate 3 is formed by using such a CVD reactor.
A method for producing a coating layer of Nb 3 Ge superconductor on the surface of is explained. First, the two source gas supply pipes 2a and 2b are filled with N
The halide of b and the halide of Ge are respectively caused to flow together with helium gas, and a mixed gas of hydrogen gas and helium gas is caused to flow around these two source gas supply pipes 2a and 2b so that the source gas is supplied into the reaction chamber 1. Supply to. These are passed through the mixing passage 7 to be mixed into a turbulent flow and blown to the surface of the substrate 3. The portion of the substrate 3 in contact with the raw material gas is heated to cause a CVD reaction of the raw material gas,
The product of the VD reaction is deposited on the substrate 3 and
A Nb 3 Ge coating layer is formed on the surface of the. At this time,
By exhausting the raw material gas with a gas exhaust pump, the raw material gas is blown to the surface of the substrate 3. Next, the base 3 is wound on one reel 4 and a new base 3 is unwound from the other reel 5, whereby the base 3 having the coating layer formed thereon is continuously manufactured.

【0004】また、図3に示すCVD反応装置は、原料
収納管10aの一端を基体挿入管10bの中央部に連通
させたT字状の反応チャンバ10と、この反応チャンバ
10の原料収納管10aの他端に接続された原料ガス供
給管11と、反応チャンバ10の基体挿入管10bの一
端付近に配設されたガス排気ポンプ(図示略)と、反応
チャンバ10の基体挿入管10bの両端にそれぞれ配置
され、基体3を巻き付け、巻き出すリール12、13
と、このリール13に基体3を巻き付ける電動モーター
14と、これらリール12、13内にそれぞれ配設さ
れ、基体3を直接通電加熱する電極12a、13aとか
ら構成されている。反応チャンバ10の原料収納管10
aには、二本の原料ガス供給管11a、11bが配さ
れ、これらの先端に、原料ガスを混合する混合路14が
設けられている。この混合路14は、通気孔を有する仕
切板を複数並設した構造にされている。
Further, in the CVD reaction apparatus shown in FIG. 3, a T-shaped reaction chamber 10 in which one end of the raw material storage pipe 10a is communicated with the central portion of the substrate insertion pipe 10b, and the raw material storage pipe 10a of the reaction chamber 10 are provided. Of the source gas supply pipe 11 connected to the other end of the reaction chamber 10, a gas exhaust pump (not shown) disposed near one end of the substrate insertion pipe 10b of the reaction chamber 10, and both ends of the substrate insertion pipe 10b of the reaction chamber 10. The reels 12 and 13 which are respectively arranged to wind and unwind the base body 3
And an electric motor 14 for winding the substrate 3 around the reel 13, and electrodes 12a, 13a respectively arranged in the reels 12, 13 for directly energizing and heating the substrate 3. Raw material storage tube 10 of reaction chamber 10
Two raw material gas supply pipes 11a and 11b are arranged in a, and a mixing passage 14 for mixing the raw material gas is provided at the tip of these pipes. The mixing passage 14 has a structure in which a plurality of partition plates having ventilation holes are arranged in parallel.

【0005】このようなCVD反応装置を用いて基体3
の表面にNb3Ge超電導体の被膜層を製造する方法を
説明する。まず、二本の原料ガス供給管11a、11b
にNbのハロゲン化物とGeのハロゲン化物とをそれぞ
れヘリウムガスとともに流し、これら二本の原料ガス供
給管11a、11bの周囲に水素ガスとヘリウムガスと
の混合ガスを流し、原料ガスを反応チャンバ10内に供
給する。これらを、混合路14内に通すことにより、混
合して乱流とし、混合路14で約350℃に加熱し、基
体3表面に吹き流す。このときに、ガス排気ポンプで原
料ガスを排気することにより、原料ガスを基体3表面に
吹き流すとともに、両方のリール12、13の電極12
a、13aを直接通電することにより、基体3を加熱
し、原料ガス雰囲気中でCVD反応させ、このCVD反
応による生成物を基体3に堆積させ、この基体3の表面
にNb3Geの被膜層を形成する。次いで、この基体3
を一方のリール13に巻き取り、他方のリール12から
新たな基体3を巻き出すことにより、被膜層を形成した
基体3が連続して製造される。このCVD反応装置は、
ガス排気ポンプを基体3を巻き取るリール13付近に配
したので、原料ガスは反応チャンバ10の原料収納管1
0aから基体挿入管10b内に直交して流れ、基体3表
面の反応部位が長く形成される。
The substrate 3 is formed by using such a CVD reactor.
A method for producing a coating layer of Nb 3 Ge superconductor on the surface of is explained. First, the two source gas supply pipes 11a and 11b
A Nb halide and a Ge halide together with helium gas, and a mixed gas of hydrogen gas and helium gas around these two source gas supply pipes 11a and 11b. Supply in. These are mixed into a turbulent flow by passing them through the mixing passage 14, heated to about 350 ° C. in the mixing passage 14, and blown onto the surface of the substrate 3. At this time, by exhausting the raw material gas with a gas exhaust pump, the raw material gas is blown to the surface of the substrate 3 and the electrodes 12 of both reels 12 and 13 are discharged.
By directly energizing a and 13a, the substrate 3 is heated to cause a CVD reaction in a source gas atmosphere, a product of this CVD reaction is deposited on the substrate 3, and a coating layer of Nb 3 Ge is formed on the surface of the substrate 3. To form. Then, this substrate 3
Is wound on one reel 13 and a new substrate 3 is unwound from the other reel 12, whereby the substrate 3 having the coating layer formed thereon is continuously manufactured. This CVD reactor is
Since the gas exhaust pump is arranged in the vicinity of the reel 13 for winding the substrate 3, the raw material gas is supplied to the raw material storage pipe 1 of the reaction chamber 10.
Flowing from 0a into the substrate insertion tube 10b at right angles, the reaction site on the surface of the substrate 3 is formed long.

【0006】[0006]

【発明が解決しようとする課題】ところで、前述したC
VD反応装置にあっては、反応チャンバ1、10の原料
収納管1a、10aおよび基体挿入管1b、10bが交
差する部分と、基体挿入管1b、10bの両端部付近と
では、原料ガスの流れに差が生じ、基体3に形成される
被膜層の均一性を損なうという問題があった。特に、図
3に示すCVD反応装置では、原料ガスが反応チャンバ
10内を直交して流れるため、被膜層の均一性が損なわ
れるという問題があった。
By the way, the aforementioned C
In the VD reaction apparatus, the flow of the raw material gas is different between the portions of the reaction chambers 1 and 10 where the raw material storage pipes 1a and 10a and the substrate insertion pipes 1b and 10b intersect and near both ends of the substrate insertion pipes 1b and 10b. However, there is a problem in that the uniformity of the coating layer formed on the substrate 3 is impaired. Particularly, in the CVD reaction apparatus shown in FIG. 3, since the source gas flows in the reaction chamber 10 at right angles, there is a problem that the uniformity of the coating layer is impaired.

【0007】そして、基体3を移動させながら蒸着する
ため、反応チャンバ1、10の基体3の入口、出口付近
に原料ガスの反応が均一でない部分を生じさせる。この
原料ガスの反応が不均一な部分は、原料ガスの停留、温
度の不均一等により正確な合成が期待できず、被膜層の
組成や厚みにムラを生じる。
Since the substrate 3 is vapor-deposited while moving, a portion where the reaction of the source gas is not uniform is generated near the inlet and outlet of the substrate 3 in the reaction chambers 1 and 10. In the portion where the reaction of the raw material gas is non-uniform, accurate synthesis cannot be expected due to retention of the raw material gas, non-uniform temperature, etc., and unevenness occurs in the composition and thickness of the coating layer.

【0008】また、図2に示すCVD反応装置は、原料
ガスが基体3に対して直交する方向に流れるため、原料
ガスが基体3に接する部分が短く、原料ガスの反応効率
が悪いという問題があった。また、図3に示すCVD反
応装置は、基体3を直接通電加熱するため、被膜層を均
一な膜厚に形成できるが、ガス排気ポンプ付近では、原
料ガスと基体3とが移動するため、温度を制御するのが
非常に困難になり、被膜層を部分的に正確に合成でき
ず、被膜層の厚みにムラが生じるという問題があった。
Further, in the CVD reactor shown in FIG. 2, since the source gas flows in a direction orthogonal to the substrate 3, the portion where the source gas is in contact with the substrate 3 is short and the reaction efficiency of the source gas is poor. there were. Further, the CVD reactor shown in FIG. 3 directly heats the substrate 3 by electric current, so that the coating layer can be formed to have a uniform film thickness. However, in the vicinity of the gas exhaust pump, the source gas and the substrate 3 move, so However, there is a problem that it becomes very difficult to control the temperature of the coating layer, the coating layer cannot be partially accurately synthesized, and the thickness of the coating layer becomes uneven.

【0009】本発明は前記課題を有効に解決するもの
で、均一な組成の厚みの被膜層を基体表面に形成可能な
CVD反応装置を提供することを目的とする。
The present invention effectively solves the above problems, and an object thereof is to provide a CVD reactor capable of forming a coating layer having a uniform composition on the surface of a substrate.

【0010】[0010]

【課題を解決するための手段】かかる課題は、原料ガス
をCVD反応させ、このCVD反応により被膜層を長尺
の基体表面に形成させる反応チャンバと、該反応チャン
バ内に原料ガスを供給する原料ガス供給手段と、前記反
応チャンバ内のガスを排気するガス排気手段と、前記基
体を前記反応チャンバ内で移動させる基体移動手段とを
備えたCVD反応装置であって、前記原料ガス供給手段
は、前記原料ガスを基体表面に向けて流すノズルを有
し、該ノズルに、原料ガスを絞り込んで拡散させる縮径
部を形成することで解決される。
This problem is solved by a reaction chamber in which a raw material gas is subjected to a CVD reaction to form a coating layer on the surface of a long substrate by the CVD reaction, and a raw material which supplies the raw material gas into the reaction chamber. A CVD reaction apparatus comprising gas supply means, gas exhaust means for exhausting gas in the reaction chamber, and substrate moving means for moving the substrate in the reaction chamber, wherein the source gas supplying means is: The problem can be solved by having a nozzle for flowing the raw material gas toward the surface of the substrate, and forming a reduced diameter portion for narrowing and diffusing the raw material gas in the nozzle.

【0011】前記ガス排気手段は、前記原料ガス供給手
段のノズルに対して基体を挟んで対向配設することが好
ましい。前記ガス排気手段は、前記反応チャンバ内に配
設される排気管を有し、該排気管に、前記基体の蒸着対
象領域と同等以上の面積を有する排気口を基体の裏面側
に向いて形成することが好ましい。前記反応チャンバ
に、前記基体を出し入れする出入り口を形成し、前記反
応チャンバには、前記出入り口を介する気体の出入りを
抑制するスィープガスの供給機構を付設するのが好まし
い。
It is preferable that the gas exhausting means is disposed opposite to the nozzle of the raw material gas supplying means with the substrate interposed therebetween. The gas exhaust means has an exhaust pipe arranged in the reaction chamber, and an exhaust port having an area equal to or larger than a deposition target region of the substrate is formed in the exhaust pipe toward a rear surface side of the substrate. Preferably. It is preferable that an inlet / outlet for taking the substrate in and out is formed in the reaction chamber, and a sweep gas supply mechanism for suppressing the inflow / outflow of gas through the inlet / outlet is attached to the reaction chamber.

【0012】[0012]

【作用】本発明のCVD反応装置は、反応チャンバで原
料ガスをCVD反応させ、このCVD反応により被膜層
を基体表面に形成する。この反応チャンバ内では、原料
ガス供給手段で原料ガスを供給し、ガス排気手段で反応
チャンバ内のガスを排気し、基体移動手段で長尺の基体
を該反応チャンバ内に移動させる。原料ガス供給手段は
原料ガスをノズルから基体表面に流し、このノズルの縮
径部で原料ガスを絞り込んで拡散させる。このため、原
料ガスは乱流となって基体に流れ、基体の表面に被膜層
が形成される。
In the CVD reactor of the present invention, the raw material gas is subjected to the CVD reaction in the reaction chamber, and the coating layer is formed on the surface of the substrate by this CVD reaction. In this reaction chamber, the source gas is supplied by the source gas supply unit, the gas in the reaction chamber is exhausted by the gas exhaust unit, and the long substrate is moved into the reaction chamber by the substrate moving unit. The raw material gas supply means causes the raw material gas to flow from the nozzle to the surface of the substrate, and narrows and diffuses the raw material gas at the reduced diameter portion of the nozzle. Therefore, the raw material gas becomes a turbulent flow and flows to the substrate, and a coating layer is formed on the surface of the substrate.

【0013】[0013]

【実施例】以下、本発明のCVD反応装置の一実施例に
ついて、図1を参照しながら説明する。図1に示すよう
に、符号20はCVD反応装置であり、このCVD反応
装置20は、原料化合物ガスなどの原料ガスをCVD反
応させ、このCVD反応による被膜層を長尺の基体3の
表面に形成させる反応チャンバ21と、この反応チャン
バ21内に原料ガスを供給する原料ガス供給手段25
と、前記反応チャンバ21内のガスを排気するガス排気
手段30と、基体3を前記反応チャンバ21内で移動さ
せる基体移動手段35とを備える。
EXAMPLES An example of the CVD reactor of the present invention will be described below with reference to FIG. As shown in FIG. 1, reference numeral 20 is a CVD reaction device, and this CVD reaction device 20 causes a raw material gas such as a raw material compound gas to undergo a CVD reaction, and a coating layer formed by this CVD reaction is formed on the surface of the long substrate 3. A reaction chamber 21 to be formed and a raw material gas supply means 25 for supplying a raw material gas into the reaction chamber 21.
A gas exhaust unit 30 for exhausting the gas in the reaction chamber 21, and a substrate moving unit 35 for moving the substrate 3 in the reaction chamber 21.

【0014】反応チャンバ21は、ラッパ状に形成され
ている。この反応チャンバ21の基部には、原料ガス供
給手段25が配設されている。そして、反応チャンバ2
1内には、この反応チャンバ21の内周面に沿う仕切管
40が配されている。これら反応チャンバ21と仕切管
40とにより、二重壁構造に形成され、これらの間に
は、後述するスィープガスを流すガス流路41(スィー
プガスの供給機構)が形成されている。そして、仕切管
40は、一端が原料ガス供給手段25に接合され、他端
がガス排気手段30に対向配設されたラッパ状に形成さ
れている。
The reaction chamber 21 is formed in a trumpet shape. A raw material gas supply means 25 is arranged at the base of the reaction chamber 21. And the reaction chamber 2
A partition pipe 40 is arranged in the inside of the chamber 1 along the inner peripheral surface of the reaction chamber 21. The reaction chamber 21 and the partition tube 40 form a double wall structure, and a gas flow path 41 (a sweep gas supply mechanism) for flowing a sweep gas described later is formed between them. The partition tube 40 is formed in a trumpet shape, one end of which is joined to the raw material gas supply means 25 and the other end of which is arranged opposite to the gas exhaust means 30.

【0015】原料ガス供給手段25は、原料ガスを基体
3の表面に流すノズル26を有する。このノズル26に
は、原料ガスを絞り込んで拡散させる縮径部27が形成
されている。この縮径部27に、前記仕切管40の一端
が接合されている。このため、前記ガス流路41は、反
応チャンバ21の内周面と、原料ガス供給手段25およ
び仕切管40との間に形成されている。
The raw material gas supply means 25 has a nozzle 26 for flowing the raw material gas onto the surface of the substrate 3. The nozzle 26 is formed with a reduced diameter portion 27 that narrows and diffuses the raw material gas. One end of the partition pipe 40 is joined to the reduced diameter portion 27. Therefore, the gas flow path 41 is formed between the inner peripheral surface of the reaction chamber 21 and the raw material gas supply means 25 and the partition tube 40.

【0016】この反応チャンバ21と仕切管40との中
央部に、これらの拡径方向に直交する方向に基体3が配
されている。この基体3は、対象となる被膜層の性質に
より、種々のものを用いてもよく、例えば、インコネ
ル、ハステロイなどの金属材料や、アルミナ、石英ガラ
ス等のセラミック材料をテープ状に加工したもの等が好
適である。
At the center of the reaction chamber 21 and the partition tube 40, the substrate 3 is arranged in the direction orthogonal to the direction of expansion of these diameters. Various materials may be used as the substrate 3 depending on the properties of the target coating layer. For example, a metal material such as Inconel or Hastelloy, or a ceramic material such as alumina or quartz glass processed into a tape shape. Is preferred.

【0017】ガス排気手段30は、原料ガス供給手段2
5のノズル26に対して基体3を挟んで対向配設されて
いる。ガス排気手段30は、反応チャンバ21内に配さ
れ、仕切管40の他端に対向配設される排気管31と、
この排気管31に接続された吸引ポンプとを有する。こ
の排気管31には、基体3の蒸着対象領域と同等以上の
面積を有する排気口32が形成されている。この排気口
32は、基体3の裏面に向けて開口形成されている。
The gas exhaust means 30 is a source gas supply means 2
No. 5 nozzles 26 are arranged so as to face each other with the base body 3 interposed therebetween. The gas exhausting means 30 is disposed in the reaction chamber 21, and an exhaust pipe 31 is disposed opposite to the other end of the partition pipe 40.
It has a suction pump connected to the exhaust pipe 31. In the exhaust pipe 31, an exhaust port 32 having an area equal to or larger than the vapor deposition target region of the substrate 3 is formed. The exhaust port 32 is formed so as to open toward the back surface of the base body 3.

【0018】反応チャンバ21には、この反応チャンバ
21と基体3とが交差する位置に、基体3を反応チャン
バ21内に入れる入口22と、基体3を反応チャンバ2
1の外に出す出口23とがそれぞれ形成されている。こ
れら入口22と出口23との外部で、反応チャンバ21
の外周面付近に、基体移動手段35が配されている。こ
の基体移動手段35は、基体3を反応チャンバ21内に
巻き出すリール36と、この巻き出された基体3を巻き
付けるリール37と、このリール37を回転させ、この
リール37に基体3を巻き付ける電動モータ38とを有
する。
In the reaction chamber 21, an inlet 22 for inserting the substrate 3 into the reaction chamber 21 is provided at a position where the reaction chamber 21 and the substrate 3 intersect, and the substrate 3 is provided in the reaction chamber 2.
1 and the outlet 23 which goes out of 1 are each formed. Outside the inlet 22 and the outlet 23, the reaction chamber 21
Substrate moving means 35 is arranged near the outer peripheral surface of. The substrate moving means 35 is an electric motor for reeling the substrate 3 into the reaction chamber 21, a reel 37 for winding the reeled substrate 3, and a reel 37 for rotating the reel 37 to wind the substrate 3 around the reel 37. And a motor 38.

【0019】また、前記ガス流路41には、仕切管40
内の原料ガスと反応チャンバ21の外部の空気等との移
動するのを阻止するスィープガスが流されている。この
スィープガスは、仕切管40の外周面または反応チャン
バ21の内周面に沿って流れるとともに、基体3の移動
方向に沿って直交する方向に流れる。このため、入口2
2では、基体3の移動にともなって空気などが反応チャ
ンバ21内に流れ、この空気の流れに対して直交する方
向にスィープガスが流れ、空気が反応チャンバ21内に
流入するのを阻止している。また、出口23では、基体
3の移動にともなって原料ガスなどが仕切管40の外に
流れ、この原料ガスの流れに対して直交する方向にスィ
ープガスが流れ、原料ガスが仕切管40の外部に流出す
るのを阻止している。すなわち、スィープガスは、入口
22と出口23とでエアカーテンの役目を果たしてい
る。ここで、スィープガスとしては、酸素ガス、アルゴ
ンガス、ヘリウムガス、または、これらの混合ガス等が
用いられている。このスィープガスの流量は、供給ガス
流量と排気効率を考慮して設定され、例えば、供給ガス
流量(l/h)に対して、20〜50%に設定される。
The gas passage 41 has a partition pipe 40.
A sweep gas that prevents the raw material gas inside and the air outside the reaction chamber 21 from moving is flowed. The sweep gas flows along the outer peripheral surface of the partition tube 40 or the inner peripheral surface of the reaction chamber 21, and also flows in a direction orthogonal to the moving direction of the substrate 3. Therefore, entrance 2
In No. 2, air or the like flows into the reaction chamber 21 as the substrate 3 moves, and sweep gas flows in a direction orthogonal to the flow of the air to prevent the air from flowing into the reaction chamber 21. . At the outlet 23, the raw material gas or the like flows out of the partition tube 40 along with the movement of the base body 3, the sweep gas flows in a direction orthogonal to the flow of the raw material gas, and the raw material gas goes out of the partition tube 40. It is blocking the outflow. That is, the sweep gas functions as an air curtain at the inlet 22 and the outlet 23. Here, as the sweep gas, oxygen gas, argon gas, helium gas, or a mixed gas thereof is used. The flow rate of the sweep gas is set in consideration of the supply gas flow rate and the exhaust efficiency, and is set to, for example, 20 to 50% with respect to the supply gas flow rate (l / h).

【0020】このCVD反応装置20を用いて超電導体
の被膜層を基体3に製造することができる。この超電動
体としては、臨界温度(Tc)が液体窒素温度(約77
K)よりも高い、A1Ba2Cu37-Xなる組成式で表さ
れる酸化物超電導体を製造することができる。ここで、
Aは、Yと希土類元素(La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu)の中から選択される一種または二種以
上の元素を示している。また、Y2Ba4Cu8X、Y3
Ba3Cu6Xなる組成、あるいは(Bi、Pb)2Ca
2Sr2Cu3X、(Bi、Pb)2Ca2Sr3Cu4X
なる組成、あるいはTl2Ba2Ca2Cu3X、Tl1
2Ca2Cu3X、Tl1Ba2Ca3Cu4xなる組成
に代表される臨界温度の高い酸化物超電導体のいずれか
らなるものを用いても良い。
A coating layer of a superconductor can be produced on the substrate 3 by using this CVD reactor 20. For this super-electric body, the critical temperature (Tc) is the liquid nitrogen temperature (about 77
It is possible to produce an oxide superconductor represented by the composition formula A 1 Ba 2 Cu 3 O 7-X , which is higher than K). here,
A is Y and rare earth elements (La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu) represents one or more elements selected from the group. In addition, Y 2 Ba 4 Cu 8 O x , Y 3
The composition is Ba 3 Cu 6 O x , or (Bi, Pb) 2 Ca
2 Sr 2 Cu 3 O x , (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O x
Or Tl 2 Ba 2 Ca 2 Cu 3 O x , Tl 1 B
a 2 Ca 2 Cu 3 O X , Tl 1 Ba 2 Ca 3 Cu 4 O to x a composition may be used made of either high oxide superconductor critical temperature represented.

【0021】このようなCVD反応装置20は、反応チ
ャンバ21で原料ガスをCVD反応させ、このCVD反
応による生成物を基体3の表面に堆積させ、この生成物
を被覆層とする。この被覆層を基体3の表面に形成させ
る。そして、この反応チャンバ21内では、原料ガス供
給手段25で原料ガスを供給し、ガス排気手段25で反
応チャンバ21内のガスを排気することにより、原料ガ
スを基体3の表面に向けて流す。また、基体移動手段3
5で基体3を該反応チャンバ21内に移動させることに
より、基体3を原料ガス雰囲気中に連続して送る。原料
ガス供給手段25で原料ガスをノズル26から基体3の
表面に流し、このノズル26の縮径部27では、原料ガ
スを絞り込んで拡散させる。このため、原料ガスは、乱
流となって基体3に流れ、基体3の表面にCVD反応に
よる生成物を堆積させ、基体3の表面に被膜層を形成さ
せる。
In such a CVD reaction apparatus 20, a source gas is subjected to a CVD reaction in the reaction chamber 21, a product of this CVD reaction is deposited on the surface of the substrate 3, and this product is used as a coating layer. This coating layer is formed on the surface of the substrate 3. Then, in the reaction chamber 21, the source gas is supplied to the surface of the substrate 3 by supplying the source gas with the source gas supply means 25 and exhausting the gas in the reaction chamber 21 with the gas exhaust means 25. Also, the substrate moving means 3
By moving the substrate 3 into the reaction chamber 21 at 5, the substrate 3 is continuously fed into the source gas atmosphere. The raw material gas supply means 25 causes the raw material gas to flow from the nozzle 26 to the surface of the substrate 3, and the reduced diameter portion 27 of the nozzle 26 narrows down and diffuses the raw material gas. Therefore, the raw material gas becomes a turbulent flow and flows to the substrate 3, deposits the product of the CVD reaction on the surface of the substrate 3, and forms a coating layer on the surface of the substrate 3.

【0022】このようなCVD反応装置20によれば、
反応チャンバ21に原料ガス供給手段25から原料ガス
を供給するとともに、この反応チャンバ21内のガスを
ガス排気手段30により排気するので、原料ガスは反応
チャンバ21内を原料ガス供給手段25からガス排気手
段30にわたって流れ、原料ガス雰囲気を反応チャンバ
21内に作る。この中で、CVD反応による被膜層を基
体3の表面に形成させる。そして、基体移動手段35に
より基体3を反応チャンバ3内に移動させることによ
り、基体3に被膜層を連続して形成する。
According to such a CVD reactor 20,
The source gas is supplied from the source gas supply means 25 to the reaction chamber 21, and the gas in the reaction chamber 21 is exhausted by the gas exhaust means 30, so that the source gas is exhausted from the source gas supply means 25 in the reaction chamber 21. Flowing through the means 30, a source gas atmosphere is created in the reaction chamber 21. In this, the coating layer by the CVD reaction is formed on the surface of the substrate 3. Then, by moving the substrate 3 into the reaction chamber 3 by the substrate moving means 35, a coating layer is continuously formed on the substrate 3.

【0023】原料ガス供給手段25は、原料ガスを基体
3の表面に流すノズル26を有し、該ノズル26には、
原料ガスを絞り込んで拡散させる縮径部27が形成され
ているので、原料ガスをノズル26から基体3の表面に
流し、このノズル26の縮径部27では、原料ガスを絞
り込んで拡散させる。このため、原料ガスは、一様な乱
流となって基体3に流れ、基体3の表面に被膜層を形成
する。したがって、ノズル26より広い領域にわたって
一様な乱流を発生させることができ、基体3の表面に均
一な厚みの被膜層を形成させることができる。
The raw material gas supply means 25 has a nozzle 26 for flowing the raw material gas to the surface of the substrate 3, and the nozzle 26 has
Since the reduced diameter portion 27 that narrows and diffuses the raw material gas is formed, the raw material gas is caused to flow from the nozzle 26 to the surface of the substrate 3, and the reduced diameter portion 27 of this nozzle 26 narrows and diffuses the raw material gas. Therefore, the raw material gas becomes a uniform turbulent flow and flows to the base body 3 to form a coating layer on the surface of the base body 3. Therefore, a uniform turbulent flow can be generated over a wider area than the nozzle 26, and a coating layer having a uniform thickness can be formed on the surface of the substrate 3.

【0024】また、ガス排気手段30は、原料ガス供給
手段25のノズル26に対して基体3を挟んで対向配設
するので、基体3の表面に向かって流れる原料ガスが基
体3の裏面側から吸引され、原料ガスが基体3の表面を
横切る方向にのみ流れ、被膜層の厚みにムラが発生する
のを防止できる。ガス排気手段30の排気管31に、基
体3の蒸着対象領域と同等以上の面積を有する排気口3
2を形成するので、基体3表面全面の原料ガスを吸引す
ることができ、原料ガスの流れを基体3に対してほぼ直
交させることができ、ガスの偏った流れを防止すること
ができる。
Further, since the gas exhaust means 30 is arranged to face the nozzle 26 of the raw material gas supply means 25 with the base body 3 interposed therebetween, the raw material gas flowing toward the front surface of the base body 3 from the back surface side of the base body 3 is disposed. It is possible to prevent the raw material gas being sucked and flowing only in the direction traversing the surface of the substrate 3 and causing unevenness in the thickness of the coating layer. The exhaust pipe 31 of the gas exhaust means 30 has an exhaust port 3 having an area equal to or larger than the vapor deposition target region of the substrate 3.
Since No. 2 is formed, the source gas on the entire surface of the substrate 3 can be sucked, the flow of the source gas can be made substantially orthogonal to the substrate 3, and the uneven flow of gas can be prevented.

【0025】反応チャンバ21に、基体3を出し入れす
る出入り口22、23を形成し、該出入り口22、23
を原料ガスの流れに対しほぼ平行な方向に付設し、原料
ガスの流れに沿ってスィープガスを流すので、このスィ
ープガスは反応チャンバ21の内外に原料ガスや空気等
のガスが移動するのを阻止することができ、原料ガスや
大気中の空気が混ざり合うのを防止し、原料ガスと空気
とをスィープガスで仕切ることができ、蒸着領域を限定
することができる。このため、被膜層の均一性を向上さ
せることができる。
The reaction chamber 21 is formed with entrances and exits 22 and 23 for taking in and out the substrate 3, and the entrances and exits 22 and 23 are formed.
Is attached in a direction substantially parallel to the flow of the raw material gas, and the sweep gas is caused to flow along the flow of the raw material gas, so that this sweep gas prevents the movement of the raw material gas and the gas such as air into and out of the reaction chamber 21. It is possible to prevent the raw material gas and the air in the atmosphere from being mixed with each other, the raw material gas and the air can be partitioned by the sweep gas, and the vapor deposition region can be limited. Therefore, the uniformity of the coating layer can be improved.

【0026】(実験例)上述したCVD反応装置20を
用い、このCVD反応装置20に、長手方向の長さが3
0cm、幅方向の長さが6cmの反応チャンバ21を用
いる。そして、基体3に、長さ1m、幅5mm、厚さ
0.1mmの長尺のハステロイ−276を用いる。この
基体3に、例えば、Y−Ba−Cu−O系の超電導体の
被膜層を作製するために、Y−ビス−2,2,6,6−テトラ
メチル−3,5−ヘプタンジオナート(Y(DPM)3と略
す。)、Ba−ビス−2,2,6,6−テトラメチル−3,5−ヘ
プタンジオナート(Ba(DPM)2と略す。)、Cu
−ビス−2,2,6,6−テトラメチル−3,5−ヘプタンジオナ
ート(Cu(DPM)2と略す。)を用いる。
(Experimental Example) The above-described CVD reactor 20 was used, and this CVD reactor 20 had a length of 3 in the longitudinal direction.
A reaction chamber 21 having a length of 0 cm and a width of 6 cm is used. Then, a long Hastelloy-276 having a length of 1 m, a width of 5 mm and a thickness of 0.1 mm is used for the base body 3. For example, in order to form a coating layer of a Y-Ba-Cu-O-based superconductor on this substrate 3, Y-bis-2,2,6,6-tetramethyl-3,5-heptanedionate ( Y (DPM) 3 ), Ba-bis-2,2,6,6-tetramethyl-3,5-heptanedionate (abbreviated as Ba (DPM) 2 ), Cu
-Bis-2,2,6,6-tetramethyl-3,5-heptanedionate (abbreviated as Cu (DPM) 2 ) is used.

【0027】前記基体3を基体移動手段35により1c
m/minの送入速度で反応チャンバ21内に送入し、
さらに、原料ガス供給手段25のノズル26から反応チ
ャンバ21内に、Y(DPM)3、Ba(DPM)2、C
u(DPM)2よりなる原料ガスを500ml/min
で供給する。同時に、ガス排気手段30の排気管31か
ら反応チャンバ21内のガスを所定速度で排気する。こ
れら原料ガスの供給、排気をする際に、スィープガスを
各200ml/minで供給する。こうして、Y−Ba
−Cu−O系の被膜層を基体3に作製する。この被膜層
の膜厚は、約0.8〜1.2μmであり、被膜層の膜厚
のバラツキは少なかった。この被膜層の組成は均一であ
り、この被膜層の超電導体の臨界温度は、77.3K以
上であった。
The substrate 3 is moved to 1c by the substrate moving means 35.
It is fed into the reaction chamber 21 at a feeding speed of m / min,
Furthermore, Y (DPM) 3 , Ba (DPM) 2 , C from the nozzle 26 of the source gas supply means 25 into the reaction chamber 21.
Source gas consisting of u (DPM) 2 500 ml / min
Supplied by. At the same time, the gas in the reaction chamber 21 is exhausted from the exhaust pipe 31 of the gas exhaust unit 30 at a predetermined speed. When supplying and exhausting these source gases, sweep gas is supplied at a rate of 200 ml / min each. Thus, Y-Ba
A —Cu—O-based coating layer is formed on the substrate 3. The film thickness of this coating layer was about 0.8 to 1.2 μm, and there was little variation in the film thickness of the coating layer. The composition of this coating layer was uniform, and the critical temperature of the superconductor of this coating layer was 77.3K or higher.

【0028】[0028]

【発明の効果】以上説明したように、本発明のCVD反
応装置によれば、原料ガスをCVD反応させ、このCV
D反応により被膜層を基体表面に形成させる反応チャン
バと、該反応チャンバ内に原料ガスを供給する原料ガス
供給手段と、前記反応チャンバ内のガスを排気するガス
排気手段と、長尺の基体を前記反応チャンバ内を移動さ
せる基体移動手段とを備えたCVD反応装置であって、
前記原料ガス供給手段は、前記原料ガスを基体表面に向
けて流すノズルを有し、該ノズルには、原料ガスを絞り
込んで拡散させる縮径部が形成されているので、原料ガ
スをノズルから基体表面に流し、このノズルの縮径部で
は、原料ガスを絞り込んで拡散させる。このため、原料
ガスは、一様な乱流となって基体に流れ、基体の表面に
被膜層を堆積させる。したがって、ノズルより広い領域
にわたって均一な乱流を発生させることができ、基体の
表面に均一な厚みの被膜層を形成させることができる。
As described above, according to the CVD reactor of the present invention, the raw material gas is subjected to the CVD reaction, and the CV
A reaction chamber for forming a coating layer on the surface of a substrate by the D reaction, a source gas supply unit for supplying a source gas into the reaction chamber, a gas exhaust unit for exhausting the gas in the reaction chamber, and a long substrate. A CVD reaction apparatus comprising a substrate moving means for moving the inside of the reaction chamber,
The raw material gas supply means has a nozzle for flowing the raw material gas toward the surface of the substrate, and the nozzle has a reduced diameter portion for narrowing and diffusing the raw material gas. It is made to flow to the surface, and the raw material gas is narrowed and diffused at the reduced diameter portion of this nozzle. Therefore, the raw material gas becomes a uniform turbulent flow and flows to the substrate, depositing a coating layer on the surface of the substrate. Therefore, a uniform turbulent flow can be generated over a wider area than the nozzle, and a coating layer having a uniform thickness can be formed on the surface of the substrate.

【0029】また、請求項2記載のCVD反応装置によ
れば、前記ガス排気手段を、前記原料ガス供給手段のノ
ズルに対して基体を挟んで対向配設したので、基体表面
に向かって流れる原料ガスがガス排気手段に吸引され、
原料ガスが基体表面を横切る方向にのみ流れ、被膜層の
厚みにムラが発生するのを防止できる。さらに、請求項
3記載のCVD反応装置によれば、前記ガス排気手段
は、前記反応チャンバ内に配設される排気管を有し、該
排気管に、前記基体の蒸着対象領域と同等以上の面積を
有する排気口を基体の裏面側に向いて形成したので、原
料ガスを基体の裏面全面にわたって吸引することがで
き、原料ガスの流れを基体に対してほぼ直交させること
ができ、ガスの偏った流れを防止することができ、均一
な厚みの被膜層を基体に形成させることができる。
Further, according to the CVD reactor of the second aspect, since the gas exhausting means is arranged so as to face the nozzle of the raw material gas supplying means so as to sandwich the base, the raw material flowing toward the surface of the base. Gas is sucked into the gas exhaust means,
It is possible to prevent the raw material gas from flowing only in the direction crossing the surface of the substrate and causing unevenness in the thickness of the coating layer. Further, according to the CVD reaction apparatus of claim 3, the gas exhausting means has an exhaust pipe arranged in the reaction chamber, and the exhaust pipe has a volume equal to or more than a deposition target region of the substrate. Since the exhaust port having an area is formed to face the back surface side of the substrate, the source gas can be sucked over the entire back surface of the substrate, the flow of the source gas can be made substantially orthogonal to the substrate, and the gas is unbalanced. Flow can be prevented, and a coating layer having a uniform thickness can be formed on the substrate.

【0030】さらに、請求項4記載のCVD反応装置に
よれば、前記反応チャンバに、前記基体を出し入れする
出入り口を形成され、前記反応チャンバには、前記出入
り口を介する気体の出入りを抑制するスィープガスの供
給機構を付設したので、原料ガスと大気中の空気とが混
ざり合うのを防止することができ、原料ガスと空気とを
スィープガスで仕切ることができるので、蒸着領域を限
定することができる。このため、被膜層の均一性を向上
させることができるという効果を奏することができる。
Further, according to the CVD reactor of claim 4, an inlet / outlet port for loading / unloading the substrate is formed in the reaction chamber, and a sweep gas for suppressing the inflow / outflow of gas through the inlet / outlet port is formed in the reaction chamber. Since the supply mechanism is additionally provided, it is possible to prevent the raw material gas and the air in the atmosphere from being mixed with each other, and the raw material gas and the air can be partitioned by the sweep gas, so that the vapor deposition region can be limited. Therefore, it is possible to obtain the effect that the uniformity of the coating layer can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のCVD反応装置を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a CVD reaction apparatus of the present invention.

【図2】 従来のCVD反応装置を示す構成図である。FIG. 2 is a configuration diagram showing a conventional CVD reactor.

【図3】 従来の他のCVD反応装置を示す構成図であ
る。
FIG. 3 is a configuration diagram showing another conventional CVD reactor.

【符号の説明】[Explanation of symbols]

3…基体、20…CVD反応装置、21…反応チャン
バ、22…入口、23…出口、25…原料ガス供給手
段、26…ノズル、27…縮径部、30…ガス排気手
段、31…排気口、35…基体移動手段、41…ガス流
路(スィープガスの供給機構)。
3 ... Substrate, 20 ... CVD reactor, 21 ... Reaction chamber, 22 ... Inlet, 23 ... Outlet, 25 ... Raw material gas supply means, 26 ... Nozzle, 27 ... Reduced diameter portion, 30 ... Gas exhaust means, 31 ... Exhaust port , 35 ... Substrate moving means, 41 ... Gas flow path (sweep gas supply mechanism).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 香川 昭 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 平野 直樹 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Osamu Kono, 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor, Akira Kagawa 1-1-5, Kiba, Koto-ku, Tokyo Stock Association Fujikura (72) Inventor Shigeo Nagaya 1-20 Kitakanzan, Otaka-cho, Midori-ku, Nagoya-shi, Aichi Chubu Electric Power Co., Inc. Electric Power Research Laboratory (72) Inventor Naoki Hirano Otaka-cho, Midori-ku, Nagoya, Aichi No. 1 at Kitakanzan, Chubu Electric Power Co., Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスをCVD反応させ、このCVD
反応により被膜層を長尺の基体の表面に形成させる反応
チャンバと、該反応チャンバ内に原料ガスを供給する原
料ガス供給手段と、前記反応チャンバ内のガスを排気す
るガス排気手段と、前記基体を前記反応チャンバ内で移
動させる基体移動手段とを備えたCVD反応装置であっ
て、前記原料ガス供給手段は、前記原料ガスを基体表面
に向けて流すノズルを有し、該ノズルには、原料ガスを
絞り込んで拡散させる縮径部が形成されていることを特
徴とするCVD反応装置。
1. A raw material gas is subjected to a CVD reaction, and this CVD is performed.
A reaction chamber for forming a coating layer on the surface of a long substrate by a reaction, a source gas supply unit for supplying a source gas into the reaction chamber, a gas exhaust unit for exhausting the gas in the reaction chamber, and the substrate And a substrate moving means for moving the raw material gas in the reaction chamber, wherein the raw material gas supply means has a nozzle for flowing the raw material gas toward the surface of the base material, and the nozzle has a raw material. A CVD reactor characterized in that a reduced diameter portion for narrowing and diffusing gas is formed.
【請求項2】 前記ガス排気手段は、前記原料ガス供給
手段のノズルに対して基体を挟んで対向配設されている
ことを特徴とする請求項1記載のCVD反応装置。
2. The CVD reaction apparatus according to claim 1, wherein the gas exhaust unit is arranged to face the nozzle of the raw material gas supply unit with a substrate interposed therebetween.
【請求項3】 前記ガス排気手段は、前記反応チャンバ
内に配設される排気管を有し、該排気管には、前記基体
の蒸着対象領域と同等以上の面積を有する排気口が基体
の裏面側に向いて形成されていることを特徴とする請求
項1または2に記載のCVD反応装置。
3. The gas exhaust means has an exhaust pipe arranged in the reaction chamber, and the exhaust pipe has an exhaust port having an area equal to or larger than a deposition target region of the substrate of the substrate. The CVD reaction apparatus according to claim 1 or 2, wherein the CVD reaction apparatus is formed so as to face the back surface side.
【請求項4】 前記反応チャンバには、前記基体を出し
入れする出入り口が形成され、前記反応チャンバには、
前記出入り口を介する気体の出入りを抑制するスィープ
ガスの供給機構が付設されていることを特徴とする請求
項1〜3のいずれかに記載のCVD反応装置。
4. The reaction chamber is formed with an inlet / outlet for taking the substrate in and out, and in the reaction chamber,
4. The CVD reaction apparatus according to claim 1, further comprising a sweep gas supply mechanism that suppresses gas from entering and exiting through the entrance and exit.
JP17733094A 1994-07-28 1994-07-28 CVD reactor Expired - Fee Related JP3504340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17733094A JP3504340B2 (en) 1994-07-28 1994-07-28 CVD reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17733094A JP3504340B2 (en) 1994-07-28 1994-07-28 CVD reactor

Publications (2)

Publication Number Publication Date
JPH0841647A true JPH0841647A (en) 1996-02-13
JP3504340B2 JP3504340B2 (en) 2004-03-08

Family

ID=16029095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17733094A Expired - Fee Related JP3504340B2 (en) 1994-07-28 1994-07-28 CVD reactor

Country Status (1)

Country Link
JP (1) JP3504340B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103161A (en) * 1981-12-16 1983-06-20 Hitachi Ltd Semiconductor device
JP2013014484A (en) * 2011-07-06 2013-01-24 Sony Corp Method and apparatus for producing graphene
JP2016517620A (en) * 2013-03-15 2016-06-16 ザ ユニバーシティ オブ ヒューストン システム Method and system for producing high quality superconducting tape
JP2016183421A (en) * 2016-06-17 2016-10-20 ソニー株式会社 Production method of graphene film
CN109518166A (en) * 2019-01-28 2019-03-26 南京爱通智能科技有限公司 A kind of gas uniform flow system suitable for ultra-large atomic layer deposition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103161A (en) * 1981-12-16 1983-06-20 Hitachi Ltd Semiconductor device
JP2013014484A (en) * 2011-07-06 2013-01-24 Sony Corp Method and apparatus for producing graphene
JP2016517620A (en) * 2013-03-15 2016-06-16 ザ ユニバーシティ オブ ヒューストン システム Method and system for producing high quality superconducting tape
US9892827B2 (en) 2013-03-15 2018-02-13 The University Of Houston System Methods and systems for fabricating high quality superconducting tapes
US10395799B2 (en) 2013-03-15 2019-08-27 The University Of Houston System Methods and systems for fabricating high quality superconducting tapes
US11410797B2 (en) 2013-03-15 2022-08-09 University Of Houston System Methods and systems for fabricating high quality superconducting tapes
US11417444B2 (en) 2013-03-15 2022-08-16 University Of Houston System Methods and systems for fabricating high quality superconducting tapes
US11923105B2 (en) 2013-03-15 2024-03-05 University Of Houston System Methods and systems for fabricating high quality superconducting tapes
JP2016183421A (en) * 2016-06-17 2016-10-20 ソニー株式会社 Production method of graphene film
CN109518166A (en) * 2019-01-28 2019-03-26 南京爱通智能科技有限公司 A kind of gas uniform flow system suitable for ultra-large atomic layer deposition
CN109518166B (en) * 2019-01-28 2023-09-22 南京爱通智能科技有限公司 Gas uniform flow system suitable for ultra-large scale atomic layer deposition

Also Published As

Publication number Publication date
JP3504340B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
CN100367525C (en) Superconductor method and reactor
JP3354747B2 (en) CVD reactor and method for producing oxide superconductor
US4828664A (en) Process for the production of a niobium oxycarbonitride superconducting fiber bundle
JPH0280303A (en) Process and apparatus for forming thin superconducting film
JP5778174B2 (en) Oxygen radical generation for radical enhanced thin film deposition
US6740586B1 (en) Vapor delivery system for solid precursors and method of using same
JP3504340B2 (en) CVD reactor
US7647887B2 (en) Thin film forming apparatus
JP2007521392A (en) Metal organic chemical vapor deposition (MOCVD) process and apparatus for producing multilayer high temperature superconducting (HTS) coated tapes
US8124171B2 (en) Method of and apparatus for manufacturing tape-formed oxide superconductor
JP3822077B2 (en) Manufacturing method of oxide superconductor tape wire and oxide superconductor tape wire
JP3741861B2 (en) CVD reactor
JPH0543396A (en) Production of oxide superconductor and production device therefor
JP3392299B2 (en) Raw material solution vaporizer for CVD
JP3276277B2 (en) Liquid material supply device for CVD
JP3913314B2 (en) Liquid material supply device for CVD
JP3127011B2 (en) CVD reactor
JP3771142B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP3342785B2 (en) Apparatus and method for producing oxide superconducting conductor
JPH11353960A (en) Device for manufacturing oxide superconductive conductor and its manufacture
JP2003036744A (en) Oxide superconductor and manufacturing method thereof
JP3330964B2 (en) Method and apparatus for manufacturing high-temperature superconducting wire
JP2001319535A (en) Device and method for producing oxide superconductor
JPH0544042A (en) Cvd reactor
JPS624875A (en) Plasma vapor phase growth device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20031202

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20111219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20131219

LAPS Cancellation because of no payment of annual fees