JPH0841555A - Fractional recovery of lead and zinc from incinerated ash - Google Patents

Fractional recovery of lead and zinc from incinerated ash

Info

Publication number
JPH0841555A
JPH0841555A JP17828994A JP17828994A JPH0841555A JP H0841555 A JPH0841555 A JP H0841555A JP 17828994 A JP17828994 A JP 17828994A JP 17828994 A JP17828994 A JP 17828994A JP H0841555 A JPH0841555 A JP H0841555A
Authority
JP
Japan
Prior art keywords
zinc
sulfide
lead
precipitate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17828994A
Other languages
Japanese (ja)
Other versions
JP2972524B2 (en
Inventor
Shunichi Mizukami
俊一 水上
Toshihide Kinari
寿秀 木成
Yoshibumi Kameoka
義文 亀岡
Tadashi Ito
正 伊藤
Hiroaki Kawabata
博昭 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17828994A priority Critical patent/JP2972524B2/en
Publication of JPH0841555A publication Critical patent/JPH0841555A/en
Application granted granted Critical
Publication of JP2972524B2 publication Critical patent/JP2972524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To successively precipitate the lead and zinc in an incinerated ash as the sulfides and to fractionally recover the lead and zinc efficiently by supplying sodium sulfide to a soln. containing eluted heavy metals from the ash and regulating the pH of the soln. CONSTITUTION:The incinerated ash of refuse, etc., is mixed with hydrochloric acid to elute the heavy metals from the ash, and solid is separated from liq. to prepare the soln. of the heavy metals. Sodium sulfide or gaseous hydrogen sulfide is supplied while agitating the soln., and the pH is regulated to 0.4-1.2 to precipitate lead as the sulfide, which is separated and recovered. Sodium sulfide or gaseous hydrogen sulfide is then supplied to the soln. separated from the precipitate, and the pH is regulated to >=2 to precipitate the zinc as the sulfide, which is separated and recovered. Consequently, lead and zinc are fractionally separated from the incinerated ash efficiently, and the waste water generated in the recovery is made harmless.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼却灰からの鉛及び亜
鉛の分別回収方法に関し、詳細には、都市ゴミ焼却灰及
び/又は産業廃棄物焼却灰から鉛及び亜鉛を分別して回
収する方法に関し、特には、焼却灰から鉛及び亜鉛を非
鉄精錬原料として使用可能な純度の鉛含有化合物(硫化
物)及び亜鉛含有化合物(硫化物)として分別回収する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering lead and zinc from incinerated ash, and more specifically, a method for separately recovering lead and zinc from incinerated ash of municipal waste and / or incinerated ash of industrial waste. In particular, it relates to a method for separately collecting lead and zinc from incinerated ash as a lead-containing compound (sulfide) and a zinc-containing compound (sulfide) having a purity that can be used as a non-ferrous refining raw material.

【0002】[0002]

【従来の技術】都市ゴミや産業廃棄物を焼却すると、
鉛、亜鉛、カドミウム、銅等の有害重金属を含有するボ
トムアッシュ(残渣)とフライアッシュ(飛灰)とが発
生する。前者のボトムアッシュは、そのまま或いはセメ
ント固化等をした後、埋立て処理されている。後者のフ
ライアッシュは、有害重金属の含有量が多いこと等から
特別管理一般廃棄物に指定され、廃掃法により無公害化
処理することが義務付けられているため、セメント固
化、キレート固化、溶融固化等の処理をした後、一部に
ついては有効利用されているが、その殆どは未だ充分に
満足のいく処理技術とはなりえていない。
[Prior Art] When incinerating municipal waste or industrial waste,
Bottom ash (residue) containing harmful heavy metals such as lead, zinc, cadmium and copper, and fly ash (fly ash) are generated. The former bottom ash is landfilled as it is or after solidification of cement or the like. The latter fly ash is designated as specially controlled general waste due to its high content of harmful heavy metals, etc., and it is obliged to treat it as pollution-free by the waste cleaning method.Therefore, cement solidification, chelate solidification, melt solidification, etc. Although some have been effectively used after the above treatment, most of them have not yet become sufficiently satisfactory treatment techniques.

【0003】かかる処理技術に関し、特に、最近では埋
立地の確保が困難となっていることから、焼却灰の減量
化を図るためにボトムアッシュやフライアッシュを溶融
してスラグ化する技術のさらなる向上が望まれている。
この技術において、スラグ化した固体内には重金属が固
定されるが、焼却灰を溶融スラグ化する際に揮散灰と呼
ばれる飛灰が発生し、この揮散灰には沸点の低い重金属
(鉛、亜鉛、カドミウム、銅等)が濃縮されて多量に含
まれており、従って、依然として課題が残されている。
With regard to such treatment technology, in particular, since it has recently become difficult to secure landfill sites, further improvement of technology for melting bottom ash and fly ash to form slag in order to reduce the amount of incinerated ash. Is desired.
In this technology, heavy metals are fixed in the slag-formed solid, but fly ash called volatilized ash is generated when the incinerated ash is melted into slag, and heavy metal with a low boiling point (lead, zinc , Cadmium, copper, etc.) are concentrated and contained in a large amount, and therefore, problems still remain.

【0004】一方、フライアッシュ(飛灰)の処理方法
として、飛灰をペレット状に造粒した後、それを高温で
焼成して重金属を固定し、骨材等に利用する方法も開発
されている。しかし、この場合も焼成時に揮散灰が発生
し、この揮散灰には重金属が濃縮されて含まれているの
で、依然として課題が残されている。
On the other hand, as a method of treating fly ash (fly ash), a method has been developed in which after fly ash is pelletized into pellets, the fly ash is baked at a high temperature to fix heavy metals and used as aggregates and the like. There is. However, also in this case, volatilized ash is generated at the time of firing, and since the volatilized ash contains concentrated heavy metals, the problem still remains.

【0005】このように従来の灰処理技術では、灰の溶
融や焼成等の高温処理時に発生する揮散灰を含む全ての
焼却灰から確実に重金属を回収処理する方法は確立され
ていない。
As described above, in the conventional ash treatment technology, a method for surely recovering heavy metals from all incinerated ash including volatilized ash generated during high temperature treatment such as melting and firing of ash has not been established.

【0006】ところで、都市ゴミや産業廃棄物の焼却灰
から重金属を回収あるいは処理する方法として種々の提
案がなされている(例えば、特開昭49-113703 号公報、
特開昭53-25081号公報、特開昭58-46353号公報、特公昭
58-53594号公報、特公昭60-7948 号公報、特開平4-2651
89号公報)。これらには、焼却灰中の重金属を含有する
重金属溶解水溶液に硫化ソーダ又は水酸化ナトリウム等
のアルカリ源を添加することによって重金属の硫化物又
は水酸化物を得られることが示されている。しかしなが
ら、これらの方法においては、焼却灰中の有害重金属を
無害化して有価重金属を回収し、有効利用する技術とし
ては未だ不充分である。何故なら、これらの方法では重
金属を含有する水溶液から重金属の硫化物又は水酸化物
を一括して沈澱生成させ、分離しているため、得られる
硫化物又は水酸化物中の有価重金属の含有量が低く、非
鉄精錬原料として要求される純度(例えば、鉛含有量:
40wt%以上、亜鉛含有量:50wt%以上)の品位を満足す
るものでないことから重金属のリサイクルはならず、最
終的には何らかの方法で処理した後に投棄せざるを得な
いからである。
By the way, various proposals have been made as a method for recovering or treating heavy metals from incinerated ash of municipal waste and industrial waste (for example, Japanese Patent Laid-Open No. 49-113703).
JP-A-53-25081, JP-A-58-46353, JP-B
58-53594, JP-B-60-7948, JP-A 4-2651
89 publication). It is shown in these documents that a heavy metal sulfide or hydroxide can be obtained by adding an alkali source such as sodium sulfide or sodium hydroxide to a heavy metal-dissolved aqueous solution containing heavy metals in incinerated ash. However, these methods are still insufficient as a technique for detoxifying harmful heavy metals in incinerated ash and recovering valuable heavy metals for effective use. Because, in these methods, the sulfides or hydroxides of the heavy metals are collectively precipitated and separated from the aqueous solution containing the heavy metals and separated, so that the content of valuable heavy metals in the obtained sulfides or hydroxides is increased. Has a low purity and is required as a non-ferrous refining raw material (for example, lead content:
This is because the quality of 40 wt% or more and zinc content: 50 wt% or more) is not satisfied, so heavy metals are not recycled, and eventually they have to be disposed of after being treated by some method.

【0007】[0007]

【発明が解決しようとする課題】このように、前記従来
の焼却灰処理技術、特に焼却灰からの重金属の回収方法
においては、解決すべき課題がある。即ち、都市ゴミや
産業廃棄物の焼却灰から重金属を実用的に回収するに際
しては、重金属回収の際に発生する排水の無害化を図る
と共に、得られる重金属の品位(純度)を高くし、非鉄
精錬原料としてリサイクル利用可能な水準にすることが
必要であり、かかる要件を満たす必要があるが、従来の
焼却灰からの重金属の回収方法においては、このような
要件を満たし得ないという問題点がある。
As described above, there are problems to be solved in the above conventional incineration ash treatment technology, particularly in the method for recovering heavy metals from incineration ash. That is, when practically recovering heavy metals from the incineration ash of municipal waste or industrial waste, the wastewater generated during the recovery of heavy metals should be made harmless, and the quality (purity) of the heavy metals obtained should be high and non-ferrous. It is necessary to make it a level that can be recycled as a refining raw material, and it is necessary to meet such requirements, but in the conventional method of recovering heavy metals from incinerated ash, there is a problem that such requirements cannot be met. is there.

【0008】より詳細には、従来法では重金属の回収率
及び品位を向上させるための分別回収法について殆ど検
討されておらず、分別沈澱させるための適正pH領域につ
いては何ら示されていないし、又、非鉄精錬原料性状面
からみた塩素含有量についても考慮されておらず、従っ
て、非鉄精錬原料として使用可能な品位の重金属を回収
する技術を確立するに至ってなく、都市ゴミや産業廃棄
物の焼却灰から鉛や亜鉛等の有価重金属を実用的に回収
することができないという問題点がある。
More specifically, in the conventional method, little consideration has been given to a fractional recovery method for improving the recovery rate and quality of heavy metals, and there is no indication of an appropriate pH range for the fractional precipitation. However, chlorine content from the viewpoint of properties of non-ferrous refining raw materials has not been taken into consideration. Therefore, it has not been possible to establish a technology for recovering heavy metals of high grade that can be used as non-ferrous refining raw materials, and the incineration of municipal waste and industrial waste has not been established. There is a problem that valuable heavy metals such as lead and zinc cannot be practically recovered from ash.

【0009】本発明は、このような事情に着目してなさ
れたものであって、その目的は、都市ゴミや産業廃棄物
の焼却灰(灰の溶融や焼成等の高温処理時に発生する揮
散灰を含む)から鉛及び亜鉛を実用的に回収し得る方
法、即ち、焼却灰から鉛及び亜鉛を非鉄精錬原料として
使用可能な純度の鉛含有物質及び亜鉛含有物質として効
率良く分別回収し得ると共に、この回収の際に発生する
排水を無害化し得る焼却灰からの鉛及び亜鉛の分別回収
方法を提供しようとするものである。ここで、分別回収
物質の品位(純度)の目標値は、鉛含有物質については
鉛含有量:40wt%以上、亜鉛含有物質については亜鉛含
有量:50wt%以上の値に設定した。尚、これら分別回収
物質中の塩素量は、非鉄精錬関連設備保全の観点から1
wt%以下にすることが望まれる。
The present invention has been made in view of such circumstances, and its purpose is to incinerate ash of municipal waste and industrial waste (volatilized ash generated during high temperature treatment such as melting and burning of ash). From the incineration ash, it is possible to efficiently separate and recover lead and zinc from the incineration ash as a lead-containing substance and a zinc-containing substance having a purity that can be used as a non-ferrous refining raw material, An object of the present invention is to provide a method for separately collecting lead and zinc from incinerated ash that can render wastewater generated during this recovery harmless. Here, the target value of the grade (purity) of the separated and recovered substance was set to a value of 40 wt% or more for the lead-containing substance and a zinc content of 50 wt% or more for the zinc-containing substance. In addition, the amount of chlorine in these separately collected substances is 1 from the viewpoint of maintenance of non-ferrous refining equipment.
It is desirable to set it to wt% or less.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る焼却灰からの鉛及び亜鉛の分別回収方
法は次のような構成としている。即ち、請求項1記載の
焼却灰からの鉛及び亜鉛の分別回収方法は、焼却灰中の
重金属を溶出させて含有する重金属溶解溶液に硫化ソー
ダ又は硫化水素ガスを供給すると共に、この溶液のpHを
0.4〜1.2 にすることにより、鉛を硫化物として沈澱さ
せ分離し、しかる後、この沈澱物分離後の溶液に硫化ソ
ーダ又は硫化水素ガスを供給すると共に、この溶液のpH
を2以上にすることにより、亜鉛を硫化物として沈澱さ
せ分離することを特徴とする焼却灰からの鉛及び亜鉛の
分別回収方法である。
In order to achieve the above object, the method for separately collecting lead and zinc from incinerated ash according to the present invention has the following constitution. That is, the method for separately collecting lead and zinc from incinerated ash according to claim 1 supplies sodium sulfide or hydrogen sulfide gas to a heavy metal-dissolved solution containing the heavy metal in the incinerated ash that is dissolved and contained, and the pH of the solution. To
By setting 0.4 to 1.2, lead is precipitated and separated as sulfide, and then sodium sulfide or hydrogen sulfide gas is supplied to the solution after separation of the precipitate, and the pH of this solution is
Is set to 2 or more, zinc is precipitated and separated as a sulfide, and the lead and zinc are separated and recovered from the incineration ash.

【0011】請求項2記載の焼却灰からの鉛及び亜鉛の
分別回収方法は、前記鉛を硫化物として沈澱させ分離し
て得られる沈澱物中の硫化物での鉛含有量が40wt%以上
であり、前記亜鉛を硫化物として沈澱させ分離して得ら
れる沈澱物中の硫化物での亜鉛含有量が50wt%以上であ
る請求項1記載の焼却灰からの鉛及び亜鉛の分別回収方
法である。
According to a second aspect of the present invention, there is provided a method for separately collecting lead and zinc from incinerated ash, wherein the lead content in the sulfide in the precipitate obtained by precipitating and separating lead as sulfide is 40 wt% or more. The method for fractionating and recovering lead and zinc from incinerated ash according to claim 1, wherein the zinc content in the sulfide in the precipitate obtained by precipitating and separating zinc as sulfide is 50 wt% or more. .

【0012】請求項3記載の焼却灰からの鉛及び亜鉛の
分別回収方法は、前記鉛を硫化物として沈澱させ分離し
た後、この沈澱物を乾燥して非鉄精錬原料用鉛含有化合
物を得、前記亜鉛を硫化物として沈澱させ分離した後、
この沈澱物を乾燥して非鉄精錬原料用亜鉛含有化合物を
得る請求項1又は2記載の焼却灰からの鉛及び亜鉛の分
別回収方法である。
According to a third aspect of the method for separately collecting lead and zinc from incinerated ash, after the lead is precipitated as a sulfide and separated, the precipitate is dried to obtain a lead-containing compound for a non-ferrous refining raw material, After precipitating and separating the zinc as sulfide,
The method for fractionating and recovering lead and zinc from incinerated ash according to claim 1 or 2, wherein the precipitate is dried to obtain a zinc-containing compound for a non-ferrous refining raw material.

【0013】請求項4記載の焼却灰からの鉛及び亜鉛の
分別回収方法は、前記鉛を硫化物として沈澱させ分離し
た後、この沈澱物を水で洗浄して該沈澱物中の塩素を1
wt%以下にし、前記亜鉛を硫化物として沈澱させ分離し
た後、この沈澱物を水で洗浄して該沈澱物中の塩素を1
wt%以下にする請求項1、2又は3記載の焼却灰からの
鉛及び亜鉛の分別回収方法である。
According to the method for separately collecting lead and zinc from incinerated ash according to claim 4, after the lead is precipitated as a sulfide and separated, the precipitate is washed with water to remove chlorine in the precipitate by 1%.
After the content of the zinc is less than wt%, the zinc is precipitated as a sulfide and separated, and then this precipitate is washed with water to remove chlorine in the precipitate to 1%.
The method for separating and recovering lead and zinc from incinerated ash according to claim 1, 2 or 3, wherein the content is less than wt%.

【0014】請求項5記載の焼却灰からの鉛及び亜鉛の
分別回収方法は、前記鉛を硫化物として沈澱させる際の
溶液のpHを 0.9〜1.2 とし、前記亜鉛を硫化物として沈
澱させる際の溶液のpHを2〜3とする請求項1、2、3
又は4記載の焼却灰からの鉛及び亜鉛の分別回収方法で
ある。
According to the method for separately collecting lead and zinc from incinerated ash according to claim 5, the pH of the solution for precipitating lead as a sulfide is set to 0.9 to 1.2, and the pH for precipitating zinc as a sulfide is set. The pH of the solution is set to 2 to 3, 4.
Alternatively, it is a method for separately collecting lead and zinc from the incinerated ash described in 4.

【0015】[0015]

【作用】本発明は、前記目的を達成すべく、焼却灰中の
重金属を溶出させて含有する重金属溶解溶液に対し、種
々の条件で重金属の沈澱分離試験を行うと共に、その試
験の際に発生する排水についての成分分析を行い、その
結果得られた知見に基づき完成されたものである。
In order to achieve the above object, the present invention conducts a precipitation and separation test of heavy metals under various conditions on a heavy metal solution containing elution of heavy metals in incinerated ash. It was completed on the basis of the knowledge obtained as a result of the component analysis of the generated wastewater.

【0016】即ち、焼却灰中の重金属を溶出させて該重
金属が溶解して含まれる溶液(重金属溶解溶液)に対
し、沈澱剤として硫化ソーダ又は硫化水素ガスを供給す
ると共に、この溶液のpHを 0.4〜1.2 にすると、該溶液
中の鉛と銅とが各々90%以上の回収率で優先的に硫化物
として沈澱し、この沈澱物中の鉛含有量は該沈澱物中の
全硫化物に対して40wt%以上となること、そして、この
沈澱物を分離した後の溶液に沈澱剤として硫化ソーダ又
は硫化水素ガスを供給すると共に、この溶液のpHを2以
上にすると、主に該溶液中の亜鉛とカドミウムとが各々
99%以上の回収率で硫化物として沈澱し、この沈澱物中
の亜鉛含有量は該沈澱物中の全硫化物に対して50wt%以
上となることがわかった。又、この沈澱分離プロセスに
おいて発生する排水は有害物質濃度が規制排水基準濃度
(表3に示した公共用水域への全国一律基準値)以下で
あり、無害化されていることが判った。
That is, sodium sulfide or hydrogen sulfide gas is supplied as a precipitating agent to a solution (heavy metal dissolving solution) in which the heavy metal in the incinerated ash is dissolved and the heavy metal is dissolved, and the pH of this solution is adjusted. When it is 0.4 to 1.2, lead and copper in the solution are preferentially precipitated as sulfides with a recovery rate of 90% or more, and the lead content in the precipitate is equal to the total sulfides in the precipitate. On the other hand, when the content of the solution is 40 wt% or more, and the solution after separating the precipitate is supplied with sodium sulfide or hydrogen sulfide gas as a precipitant and the pH of the solution is set to 2 or more, the solution is mainly in the solution. Each of zinc and cadmium
It was found that the sulfide was precipitated at a recovery rate of 99% or more, and the zinc content in this precipitate was 50% by weight or more based on the total sulfide in the precipitate. In addition, it was found that the concentration of harmful substances in the wastewater generated in this precipitation separation process was less than the standard concentration of regulated wastewater (nationwide uniform standard value for public water bodies shown in Table 3), and was rendered harmless.

【0017】そこで、本発明に係る焼却灰からの鉛及び
亜鉛の分別回収方法は、焼却灰中の重金属を溶出させて
含有する重金属溶解溶液に硫化ソーダ又は硫化水素ガス
を供給すると共に、この溶液のpHを 0.4〜1.2 にするこ
とにより、鉛を硫化物として沈澱させ分離し、しかる
後、この沈澱物分離後の溶液に硫化ソーダ又は硫化水素
ガスを供給すると共に、この溶液のpHを2以上にするこ
とにより、亜鉛を硫化物として沈澱させ分離するように
した。従って、焼却灰から鉛及び亜鉛を非鉄精錬原料と
して使用可能な純度の鉛含有物質(鉛含有量:40wt%以
上)及び亜鉛含有物質(亜鉛含有量:50wt%以上)とし
て効率良く分別回収し得ると共に、この回収の際に発生
する排水を無害化し得、そのため焼却灰から鉛及び亜鉛
を実用的に回収し得るようになる。
Therefore, in the method for separately collecting lead and zinc from incinerated ash according to the present invention, sodium sulfide or hydrogen sulfide gas is supplied to a heavy metal-dissolved solution containing the heavy metal in the incinerated ash dissolved therein, and this solution is also supplied. By precipitating lead as a sulfide and separating it by adjusting the pH of the solution to 0.4 to 1.2, sodium sulfide or hydrogen sulfide gas is supplied to the solution after separating the precipitate, and the pH of this solution is 2 or more. By this, zinc was precipitated as sulfide and separated. Therefore, it is possible to efficiently separate and recover lead and zinc from incinerated ash as a lead-containing substance (lead content: 40 wt% or more) and a zinc-containing substance (zinc content: 50 wt% or more) with a purity that can be used as a non-ferrous refining raw material. At the same time, the waste water generated during this recovery can be rendered harmless, and therefore lead and zinc can be practically recovered from the incinerated ash.

【0018】ここで、鉛を硫化物として沈澱させる際の
溶液のpHを 0.4〜1.2 としているのは、 0.4未満にする
と、鉛の沈澱量が低下して鉛の回収率が低下し(90%未
満となり)、鉛含有化合物の純度が下がると共に、後に
pH2以上で亜鉛含有化合物を回収した際に溶液中に残っ
ていた鉛が沈澱して不純物として混ざり、亜鉛含有化合
物の純度も下がり、1.2 超にすると、亜鉛の硫化物沈澱
量が増えて鉛含有化合物の純度が下がると共に、後にpH
2以上で亜鉛含有化合物を回収した際に亜鉛の収率が悪
くなるからである。
Here, the pH of the solution when precipitating lead as a sulfide is 0.4 to 1.2. When the pH is less than 0.4, the amount of lead precipitated is reduced and the lead recovery rate is reduced (90%). Less than), and as the purity of the lead-containing compound decreases,
When the zinc-containing compound was recovered at pH 2 or higher, the lead that remained in the solution was precipitated and mixed as an impurity, and the purity of the zinc-containing compound also decreased. If it exceeds 1.2, the amount of zinc sulfide precipitates will increase and lead-containing As the purity of the compound decreases, the pH
This is because the zinc yield becomes poor when the zinc-containing compound is recovered when the amount is 2 or more.

【0019】亜鉛を硫化物として沈澱させる際の溶液の
pHを2以上としているのは、pHを2未満にすると、亜鉛
の沈澱回収率が低下し、亜鉛含有化合物の純度が下がる
と共に、排水中の亜鉛濃度やカドミウム濃度が排水基準
値を上回ってしまうからである。
Of the solution in which zinc is precipitated as sulphide
The pH is set to 2 or more. When the pH is set to be less than 2, the precipitation recovery rate of zinc is reduced, the purity of the zinc-containing compound is lowered, and the zinc concentration and cadmium concentration in the wastewater exceed the wastewater standard value. Because.

【0020】前記鉛を硫化物として沈澱させ分離した
後、この沈澱物を乾燥すると非鉄精錬原料用鉛含有化合
物が得られる。前記亜鉛を硫化物として沈澱させ分離し
た後、この沈澱物を乾燥すると非鉄精錬原料用亜鉛含有
化合物が得られる(請求項3記載の方法)。
After the lead is precipitated as a sulfide and separated, the precipitate is dried to obtain a lead-containing compound for a non-ferrous refining raw material. After the zinc is precipitated as a sulfide and separated, the precipitate is dried to obtain a zinc-containing compound for a non-ferrous refining raw material (claim 3).

【0021】前記鉛を硫化物として沈澱させ分離した
後、この沈澱物を水で洗浄して該沈澱物中の塩素を1wt
%以下にし、又、前記亜鉛を硫化物として沈澱させ分離
した後、この沈澱物を水で洗浄して該沈澱物中の塩素を
1wt%以下にすることが望ましい(請求項4記載の方
法)。これらを非鉄精錬原料として用いる場合に、非鉄
精錬関連設備保全の観点から、1wt%以下にすることが
望まれているからである。
After the lead is precipitated as a sulfide and separated, the precipitate is washed with water to obtain 1 wt% of chlorine in the precipitate.
% Or less, and after the zinc is precipitated as a sulfide and separated, the precipitate is washed with water so that chlorine in the precipitate is less than 1 wt% (method according to claim 4). . This is because, when these are used as non-ferrous refining raw materials, it is desired to be 1 wt% or less from the viewpoint of maintenance of non-ferrous refining-related equipment.

【0022】前記鉛を硫化物として沈澱させる際の溶液
のpHを 0.9〜1.2 とし、又、前記亜鉛を硫化物として沈
澱させる際の溶液のpHを2〜3とすることが望ましい
(請求項5記載の方法)。より確実に、鉛の沈澱量が増
大して鉛の回収率が向上し、又、亜鉛の沈澱量が増大し
て亜鉛の回収率が向上し、鉄やアルミ等がこれよりも高
いpH域で沈澱し始め純度が下がるのを避けることができ
るからである。
The pH of the solution when precipitating lead as sulfide is 0.9 to 1.2, and the pH of the solution when precipitating zinc as sulfide is 2-3. Method described). More surely, the precipitation amount of lead is increased to improve the recovery rate of lead, and the precipitation amount of zinc is increased to improve the recovery rate of zinc. This is because it is possible to avoid that the purity starts to fall and the purity decreases.

【0023】前記焼却灰中の重金属を溶出させて含有す
る重金属溶解溶液を得るには、焼却灰と溶液とを混合し
て焼却灰を溶解し重金属を溶出させればよい。このと
き、重金属溶出のための溶液としては、水や酸を使用す
ることができるが、重金属の溶出量の増大及び後工程の
pH調整の簡便化の点から酸を使用することが望ましい。
In order to obtain a heavy metal-dissolved solution containing the heavy metal in the incineration ash by elution, the incineration ash and the solution may be mixed to dissolve the incineration ash to elute the heavy metal. At this time, as a solution for elution of heavy metals, water or acid can be used, but an increase in the elution amount of heavy metals and a post-process
It is desirable to use an acid from the viewpoint of simplifying pH adjustment.

【0024】前記重金属溶解溶液への硫化ソーダ又は硫
化水素ガスの供給の際、更にはこの溶液のpH調整の際、
溶液を攪拌すると、溶液pHを均一にし易く、沈澱物が生
成し易くなる。この沈澱物分離後の溶液への硫化ソーダ
又は硫化水素ガスの供給の際、更にはこの溶液のpH調整
の際も、上記と同様の意味で溶液を攪拌するとよい。
When sodium sulfide or hydrogen sulfide gas is supplied to the heavy metal-dissolved solution, and further when the pH of the solution is adjusted,
When the solution is stirred, the solution pH is easily made uniform and a precipitate is easily formed. When supplying sodium sulfide or hydrogen sulfide gas to the solution after separating the precipitate, and further when adjusting the pH of the solution, the solution may be stirred in the same meaning as above.

【0025】前記重金属溶解溶液に硫化ソーダを供給す
ると、溶液のpHは大きくなる。そのため、前記重金属溶
解溶液(沈澱剤供給前の溶液)のpHが大きいと、沈澱剤
供給後の溶液のpHは更に大きくなり、1.2 超になる場合
もあり、この場合には酸を添加してpHを 0.4〜1.2 に調
整する必要がある。或いは、予め沈澱剤供給前の溶液に
酸を添加してpHを小さくしておく必要がある。これに対
し、沈澱剤供給前の溶液のpHが小さいと、かかる酸添加
の必要がないので、それだけ工程が少なくてよい。かか
る点からしても、重金属溶出用溶液としては酸を使用す
ることが望ましい。
When sodium sulfide is supplied to the solution for dissolving heavy metals, the pH of the solution increases. Therefore, if the pH of the heavy metal solution (solution before supplying the precipitant) is high, the pH of the solution after supplying the precipitant becomes even higher, sometimes exceeding 1.2. The pH needs to be adjusted to 0.4-1.2. Alternatively, it is necessary to add an acid to the solution before supplying the precipitant to reduce the pH in advance. On the other hand, when the pH of the solution before supplying the precipitant is low, the acid addition is not necessary, and thus the number of steps can be reduced accordingly. From this point of view, it is desirable to use an acid as the solution for eluting heavy metals.

【0026】上記沈澱剤供給及び溶液pH調整による沈
澱、沈澱物分離後の溶液のpHは 0.4〜1.2 である。該溶
液に沈澱剤を供給し溶液のpHを2以上にするには、沈澱
剤として硫化ソーダを供給する場合は、この硫化ソーダ
の供給量によりpH2以上にし得るが、その供給量が少な
くてそれだけではpH2以上にできないときはアルカリを
添加すればよく、又、沈澱剤として硫化水素ガスを供給
する場合は、アルカリを添加すればよい。
The pH of the solution after precipitation and separation of the precipitate by supplying the above precipitant and adjusting the pH of the solution is 0.4 to 1.2. In order to supply a precipitant to the solution and adjust the pH of the solution to 2 or more, when sodium sulfide is supplied as the precipitant, the pH can be adjusted to 2 or more depending on the supply amount of this sodium sulfide, but the supply amount is small and that much. Then, if the pH cannot be adjusted to 2 or more, alkali may be added, and if hydrogen sulfide gas is supplied as a precipitant, alkali may be added.

【0027】[0027]

【実施例】【Example】

(実施例1)都市ゴミ焼却飛灰と3Nの塩酸とを該灰濃
度:20wt/vol%にして混合し、該灰中の重金属を溶解時
間:60min、溶解温度:室温で溶出させた後、これを固液
分離して重金属溶解溶液(鉛:1472mg/l、亜鉛:1644mg
/l、カドミウム:81.9mg/l、銅:344.2mg/l )を得た。
(Example 1) Municipal refuse incineration fly ash and 3N hydrochloric acid were mixed at the ash concentration of 20 wt / vol%, and the heavy metals in the ash were dissolved at a dissolution time of 60 min at a dissolution temperature of room temperature, This is solid-liquid separated to dissolve heavy metal solution (lead: 1472 mg / l, zinc: 1644 mg
/ l, cadmium: 81.9 mg / l, copper: 344.2 mg / l) were obtained.

【0028】上記重金属溶解溶液:100mlを攪拌しながら
硫化ソーダを添加すると共に、溶液のpHを所定値に調整
し、重金属を硫化物として沈澱させ分離回収し、各重金
属の回収率を求め、溶液のpHとの関係を調べた。ここ
で、溶液のpHをパラメータとして変化させた。各重金属
の回収率は、上記沈澱後分離前の溶液中の各重金属含有
量と沈澱分離後の溶液(濾過液)中の各重金属含有量と
の差から求めた。
The above-mentioned heavy metal dissolved solution: 100 ml of sodium sulfide was added to the solution while stirring, the pH of the solution was adjusted to a predetermined value, and the heavy metal was precipitated and separated and collected as a sulfide to determine the recovery rate of each heavy metal. The relationship with pH was investigated. Here, the pH of the solution was changed as a parameter. The recovery rate of each heavy metal was determined from the difference between the content of each heavy metal in the solution after precipitation and before separation, and the content of each heavy metal in the solution (filtrate) after separation by precipitation.

【0029】各溶液pHで得られた各重金属の回収率を表
1に示す。溶液pH:0.4 以上では鉛の回収率は90%以上
である。99.9%以上の回収率を得るための溶液pHは、鉛
では0.9 以上、亜鉛及びカドミウムでは2以上、銅では
0.1 以上である。又、鉛の回収率:99.9%以上が得られ
ているpH領域:0.9 〜1.2 における亜鉛の回収率は7〜
15%であり、亜鉛は殆ど沈澱していないことから、溶液
のpHを0.9 〜1.2 として沈澱させると、特に、鉛が多く
て亜鉛の少ない硫化物(鉛を主成分とする硫化物)を分
別回収し得てよいことがわかる。更に、かかる硫化物の
分別回収後(沈澱分離後)の溶液から亜鉛を主成分とす
る硫化物を沈澱させるには、その際の溶液のpHは2以上
にするとよいことが示唆される。
Table 1 shows the recovery rate of each heavy metal obtained at each solution pH. Solution pH: When the pH is 0.4 or more, the lead recovery rate is 90% or more. The solution pH for obtaining a recovery rate of 99.9% or higher is 0.9 or higher for lead, 2 or higher for zinc and cadmium, and 2 for copper.
It is 0.1 or more. In addition, lead recovery rate: 99.9% or more is obtained. PH range: 0.9-1.2 zinc recovery rate is 7-
Since it is 15% and zinc hardly precipitates, when the pH of the solution is set to 0.9 to 1.2, sulfides containing a large amount of lead and a small amount of zinc (sulfides containing lead as a main component) are separated. It turns out that it can be recovered. Further, it is suggested that the pH of the solution at that time should be 2 or more in order to precipitate the sulfide containing zinc as a main component from the solution after the fractional recovery of the sulfide (after the precipitation separation).

【0030】(実施例2)実施例1と同様の重金属溶解
溶液3.0 リットル(l)に同様の方法により硫化ソーダを
添加すると共に、溶液のpHを 1.0に調整して、鉛を主成
分とする硫化物を沈澱させ分離し、しかる後、この沈澱
物分離後の溶液に硫化ソーダを添加し攪拌すると共に、
この溶液のpHを2又は3にし、亜鉛を主成分とする硫化
物を沈澱させ、これを濾過して固液分離した後、得られ
た濾液中の有害物質濃度について分析し、排水基準濃度
と比較検討した。その結果を表2に示す。表2からわか
る如く、濾液は全ての有害物質について公共用水域への
全国一律排水基準以下であり、排水として無害化されて
いる。又、濾液中の亜鉛及び銅は各々 0.1〜0.8mg/l、
0.05〜1mg/lであり、その他の有害物質以外のものに係
る排水基準についても全て規制値を満たしていることが
確認された。
(Example 2) Sodium sulfide was added to 3.0 liters (l) of the same heavy metal solution as in Example 1 by the same method, and the pH of the solution was adjusted to 1.0 to contain lead as a main component. Sulfide is precipitated and separated, and thereafter, sodium sulfide is added to the solution after separation of the precipitate and stirred, and
The pH of this solution was adjusted to 2 or 3 and the sulfide containing zinc as the main component was precipitated. This was filtered and solid-liquid separated, and then the concentration of harmful substances in the obtained filtrate was analyzed to obtain the standard concentration of wastewater. We compared and examined. The results are shown in Table 2. As can be seen from Table 2, the filtrate is below the national uniform drainage standard for public water bodies for all harmful substances, and is harmless as drainage. In addition, zinc and copper in the filtrate are 0.1-0.8 mg / l,
It was 0.05 to 1 mg / l, and it was confirmed that the drainage standards for substances other than other harmful substances also met the regulation values.

【0031】(実施例3)実施例1と同様の重金属溶解
溶液3.0 リットルに同様の方法により硫化ソーダを添加
すると共に、溶液のpHを 0.9に調整して、鉛を主成分と
する硫化物を沈澱させ分離し、しかる後、この沈澱物分
離後の溶液に硫化ソーダを添加し攪拌すると共に、この
溶液のpHを3にし、亜鉛を主成分とする硫化物を沈澱さ
せ分離し、得られた硫化物についてX線回折及び重金属
含有量分析を行った。一方、比較のため、実施例1と同
様の重金属溶解溶液3.0 リットルに硫化ソーダを添加す
ると共に、溶液のpHを3にし、重金属を硫化物として一
括沈澱させ分離し、得られた硫化物についてX線回折及
び重金属含有量分析を行った。
Example 3 Sodium sulfide was added to 3.0 liters of the same heavy metal solution as in Example 1 by the same method, and the pH of the solution was adjusted to 0.9 to obtain a sulfide containing lead as a main component. Precipitated and separated, and thereafter, sodium sulfide was added to the solution after the precipitation was separated and stirred, and the pH of this solution was adjusted to 3 to precipitate and separate the sulfide containing zinc as a main component. X-ray diffraction and heavy metal content analysis were performed on the sulfides. On the other hand, for comparison, sodium sulfide was added to 3.0 liters of the same heavy metal solution as in Example 1, the pH of the solution was adjusted to 3 and the heavy metals were collectively precipitated as sulfides and separated. Line diffraction and heavy metal content analysis were performed.

【0032】その結果、得られた硫化物中の重金属含有
量を表3に示し、硫化物のX線回折結果を図2に示す。
これらの結果から明らかな如く、上記pH0.9 で沈澱分離
して得られた鉛を主成分とする硫化物は、鉛含有量:5
4.7%の硫化物であり、pH3で沈澱分離して得られた亜
鉛を主成分とする硫化物は、亜鉛含有量:53.2%の硫化
物である。尚、これら硫化物中の塩素含有量は約8%で
あった。一方、比較例に係る一括沈澱法により沈澱させ
分離して得られた硫化物は、鉛含有量:25.7%、亜鉛含
有量:30.2%の硫化物であり、品位に劣っていた。 (実施例4)
As a result, the heavy metal content in the obtained sulfide is shown in Table 3, and the X-ray diffraction result of the sulfide is shown in FIG.
As is clear from these results, the lead-containing sulfide obtained by precipitation separation at the above pH of 0.9 had a lead content of 5%.
The sulfide containing 4.7% of zinc and the zinc-based sulfide obtained by precipitation separation at pH 3 had a zinc content of 53.2%. The chlorine content in these sulfides was about 8%. On the other hand, the sulfide obtained by precipitating and separating by the batch precipitation method according to the comparative example was a sulfide having a lead content of 25.7% and a zinc content of 30.2%, and was inferior in quality. (Example 4)

【0033】前記実施例3で得られた鉛を主成分とする
硫化物(沈澱物)、及び、亜鉛を主成分とする硫化物
(沈澱物)について、塩素含有量を低減させるため、各
沈澱物に水道水5.0リットルを加えて10分間攪拌し、各
沈澱物を洗浄した。その結果、塩素含有量は約8%から
0.6〜0.7 %の水準に低減した。又、この水道水に代え
て、pH8のアルカリ水或いは80℃の温水を用いて洗浄し
たところ、洗浄効果は少し向上することが確認された。
For the lead-containing sulfide (precipitate) and the zinc-containing sulfide (precipitate) obtained in Example 3, each precipitate was used to reduce the chlorine content. To the product, 5.0 liters of tap water was added and stirred for 10 minutes to wash each precipitate. As a result, the chlorine content is about 8%
Reduced to the level of 0.6-0.7%. Further, it was confirmed that the washing effect was slightly improved when alkaline water having a pH of 8 or hot water having a temperature of 80 ° C. was used instead of the tap water.

【0034】尚、本発明に係る焼却灰からの鉛及び亜鉛
の分別回収方法は、例えば図1に示す如き装置及びプロ
セスフローによって行われる。この図1において、1は
塩酸タンク、2は硫化ソーダタンク、3は揮散灰ホッパ
ー、4は溶解槽(灰からの重金属溶出槽)、5は溶解残
渣濾過器、6はコンプレッサー、7は溶解液タンク、8
はPb沈澱槽、9はPb沈澱後濾液タンク、10はZn沈澱槽、
11は硫化物濾過器、12はZn沈澱後濾液タンク、13は硫化
水素ガス除去塔、14は消石灰ホッパー、15は中和槽を示
すものである。
The method for separately collecting lead and zinc from incinerated ash according to the present invention is carried out, for example, by the apparatus and process flow shown in FIG. In FIG. 1, 1 is a hydrochloric acid tank, 2 is a sodium sulfide tank, 3 is a volatilized ash hopper, 4 is a dissolution tank (heavy metal elution tank from ash), 5 is a dissolution residue filter, 6 is a compressor, and 7 is a dissolution liquid. Tank, 8
Is a Pb precipitation tank, 9 is a filtrate tank after Pb precipitation, 10 is a Zn precipitation tank,
Reference numeral 11 is a sulfide filter, 12 is a filtrate tank after Zn precipitation, 13 is a hydrogen sulfide gas removal tower, 14 is a slaked lime hopper, and 15 is a neutralization tank.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明に係る焼却灰からの鉛及び亜鉛の
分別回収方法によれば、焼却灰から鉛及び亜鉛を非鉄精
錬原料として使用可能な純度の鉛含有物質(鉛含有量:
40wt%以上)及び亜鉛含有物質(亜鉛含有量:50wt%以
上)として効率良く分別回収し得ると共に、この回収の
際に発生する排水を無害化し得、そのため焼却灰から鉛
及び亜鉛を実用的に回収し、有効利用し得るようにな
る。
EFFECT OF THE INVENTION According to the method for separately collecting lead and zinc from incinerated ash according to the present invention, a lead-containing substance (lead content:
(40 wt% or more) and zinc-containing substances (zinc content: 50 wt% or more) can be efficiently separated and collected, and wastewater generated during this collection can be rendered harmless, so that lead and zinc can be practically used from incineration ash. It can be collected and used effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る焼却灰からの鉛及び亜鉛の分別回
収方法のプロセスフローの一例を説明する図である。
FIG. 1 is a diagram illustrating an example of a process flow of a method for separately collecting lead and zinc from incinerated ash according to the present invention.

【図2】実施例3に係る沈澱法により得られた硫化物の
X線回折結果を示す図であり、図2の(A) は二段沈澱法
により得られた鉛を主成分とする硫化物についてのX線
回折結果、(B) は二段沈澱法により得られた亜鉛を主成
分とする硫化物についてのX線回折結果、(C) は一括沈
澱法により得られた硫化物についてのX線回折結果であ
る。
FIG. 2 is a diagram showing an X-ray diffraction result of a sulfide obtained by the precipitation method according to Example 3, where (A) of FIG. 2 is a sulfur-containing sulfide containing lead as a main component obtained by the two-step precipitation method. X-ray diffraction results of the sulfide obtained by the two-step precipitation method, (B) X-ray diffraction results of the sulfide containing zinc as the main component, and (C) of the sulfide obtained by the batch precipitation method. It is an X-ray diffraction result.

【符号の説明】[Explanation of symbols]

1--塩酸タンク、2--硫化ソーダタンク、3--灰ホッパ
ー、4--溶解槽、5--溶解残渣濾過器、6--コンプレッ
サー、7--溶解液タンク、8--Pb沈澱槽、9--Pb沈澱後
濾液タンク、10--Zn沈澱槽、11--硫化物濾過器、12--Zn
沈澱後濾液タンク、13--硫化水素ガス除去塔、14--消石
灰ホッパー、15--中和槽。
1--hydrochloric acid tank, 2--sodium sulfide tank, 3--ash hopper, 4--dissolution tank, 5--dissolution residue filter, 6--compressor, 7--dissolution tank, 8--Pb precipitation Tank, filtrate tank after 9--Pb precipitation, 10--Zn precipitation tank, 11--sulfide filter, 12--Zn
After precipitation, filtrate tank, 13--hydrogen sulfide gas removal tower, 14--slaked lime hopper, 15--neutralization tank.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年11月4日[Submission date] November 4, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】[0036]

【表2】 [Table 2]

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22B 19/30 B09B 3/00 304 G (72)発明者 伊藤 正 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 (72)発明者 河端 博昭 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication C22B 19/30 B09B 3/00 304 G (72) Inventor Tadashi Ito 1-3 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo No. 18 Kobe Steel Co., Ltd. Kobe Head Office (72) Inventor Hiroaki Kawabata 1-3-18 Wakihamacho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Head Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 焼却灰中の重金属を溶出させて含有する
重金属溶解溶液に硫化ソーダ又は硫化水素ガスを供給す
ると共に、この溶液のpHを 0.4〜1.2 にすることによ
り、鉛を硫化物として沈澱させ分離し、しかる後、この
沈澱物分離後の溶液に硫化ソーダ又は硫化水素ガスを供
給すると共に、この溶液のpHを2以上にすることによ
り、亜鉛を硫化物として沈澱させ分離することを特徴と
する焼却灰からの鉛及び亜鉛の分別回収方法。
1. Precipitating lead as a sulfide by supplying sodium sulfide or hydrogen sulfide gas to a heavy metal-dissolving solution containing eluted heavy metals in incinerated ash and adjusting the pH of the solution to 0.4 to 1.2. After that, sodium sulfide or hydrogen sulfide gas is supplied to the solution after the separation of the precipitate, and the pH of the solution is set to 2 or more to precipitate and separate zinc as a sulfide. A method for separately collecting lead and zinc from incinerated ash.
【請求項2】 前記鉛を硫化物として沈澱させ分離して
得られる沈澱物中の硫化物での鉛含有量が40wt%以上で
あり、前記亜鉛を硫化物として沈澱させ分離して得られ
る沈澱物中の硫化物での亜鉛含有量が50wt%以上である
請求項1記載の焼却灰からの鉛及び亜鉛の分別回収方
法。
2. A precipitate obtained by precipitating and separating lead as sulfide, wherein the content of lead in the sulfide is 40 wt% or more, and the precipitate obtained by precipitating and separating zinc as sulfide. The method for fractionating and recovering lead and zinc from incinerated ash according to claim 1, wherein the zinc content of sulfide in the product is 50 wt% or more.
【請求項3】 前記鉛を硫化物として沈澱させ分離した
後、この沈澱物を乾燥して非鉄精錬原料用鉛含有化合物
を得、前記亜鉛を硫化物として沈澱させ分離した後、こ
の沈澱物を乾燥して非鉄精錬原料用亜鉛含有化合物を得
る請求項1又は2記載の焼却灰からの鉛及び亜鉛の分別
回収方法。
3. After precipitating and separating lead as a sulfide, this precipitate is dried to obtain a lead-containing compound for a non-ferrous refining raw material, and after precipitating and separating zinc as a sulfide, separating the precipitate. The method for fractionating and recovering lead and zinc from incinerated ash according to claim 1 or 2, wherein the zinc-containing compound for a non-ferrous refining raw material is obtained by drying.
【請求項4】 前記鉛を硫化物として沈澱させ分離した
後、この沈澱物を水で洗浄して該沈澱物中の塩素を1wt
%以下にし、前記亜鉛を硫化物として沈澱させ分離した
後、この沈澱物を水で洗浄して該沈澱物中の塩素を1wt
%以下にする請求項1、2又は3記載の焼却灰からの鉛
及び亜鉛の分別回収方法。
4. The lead is precipitated and separated as a sulfide, and the precipitate is washed with water to obtain 1 wt% of chlorine in the precipitate.
% Or less, and the zinc is precipitated as a sulfide and separated, and then this precipitate is washed with water to obtain 1 wt% of chlorine in the precipitate.
% Or less, the method for separately collecting lead and zinc from incinerated ash according to claim 1, 2 or 3.
【請求項5】 前記鉛を硫化物として沈澱させる際の溶
液のpHを 0.9〜1.2とし、前記亜鉛を硫化物として沈澱
させる際の溶液のpHを2〜3とする請求項1、2、3又
は4記載の焼却灰からの鉛及び亜鉛の分別回収方法。
5. The pH of the solution when the lead is precipitated as a sulfide is 0.9 to 1.2, and the pH of the solution when the zinc is precipitated as a sulfide is 2 to 3. Alternatively, the method for separately collecting lead and zinc from the incinerated ash as described in 4 above.
JP17828994A 1994-07-29 1994-07-29 Separation and recovery of lead and zinc from incinerated ash Expired - Lifetime JP2972524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17828994A JP2972524B2 (en) 1994-07-29 1994-07-29 Separation and recovery of lead and zinc from incinerated ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17828994A JP2972524B2 (en) 1994-07-29 1994-07-29 Separation and recovery of lead and zinc from incinerated ash

Publications (2)

Publication Number Publication Date
JPH0841555A true JPH0841555A (en) 1996-02-13
JP2972524B2 JP2972524B2 (en) 1999-11-08

Family

ID=16045870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17828994A Expired - Lifetime JP2972524B2 (en) 1994-07-29 1994-07-29 Separation and recovery of lead and zinc from incinerated ash

Country Status (1)

Country Link
JP (1) JP2972524B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749006A1 (en) * 1996-05-24 1997-11-28 Solvay PROCESS FOR THE MANUFACTURE OF AN AQUEOUS INDUSTRIAL SODIUM CHLORIDE SOLUTION
JP2002121624A (en) * 2000-10-13 2002-04-26 Sumitomo Metal Mining Co Ltd Method for separating and removing zinc from solution of nickel sulfate
WO2006119611A1 (en) * 2005-05-10 2006-11-16 George Puvvada A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites
JP2008062169A (en) * 2006-09-07 2008-03-21 Taiheiyo Cement Corp Method and system for treating fine powder containing calcium component and lead component
CN102755984A (en) * 2012-07-10 2012-10-31 北京大学深圳研究生院 Harmless combined treatment method and system for sulfureted hydrogen and fly ash

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749006A1 (en) * 1996-05-24 1997-11-28 Solvay PROCESS FOR THE MANUFACTURE OF AN AQUEOUS INDUSTRIAL SODIUM CHLORIDE SOLUTION
WO1997045370A1 (en) * 1996-05-24 1997-12-04 Solvay Société Anonyme Method for producing an industrial aqueous sodium chloride solution
JP2002121624A (en) * 2000-10-13 2002-04-26 Sumitomo Metal Mining Co Ltd Method for separating and removing zinc from solution of nickel sulfate
WO2006119611A1 (en) * 2005-05-10 2006-11-16 George Puvvada A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites
KR101011382B1 (en) * 2005-05-10 2011-01-28 더글라스 바르톨로뮤 A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites
JP2008062169A (en) * 2006-09-07 2008-03-21 Taiheiyo Cement Corp Method and system for treating fine powder containing calcium component and lead component
JP4579211B2 (en) * 2006-09-07 2010-11-10 太平洋セメント株式会社 Processing method and processing system for fine powder containing calcium component and lead component
CN102755984A (en) * 2012-07-10 2012-10-31 北京大学深圳研究生院 Harmless combined treatment method and system for sulfureted hydrogen and fly ash

Also Published As

Publication number Publication date
JP2972524B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP4478585B2 (en) How to recover valuable materials from fly ash
JP3802046B1 (en) Method for processing heavy metal-containing powder
JP2001348627A (en) Method for recovering heavy metal from fly ash
JP2002018395A (en) Treating method for waste
JP3052535B2 (en) Treatment of smelting intermediates
JP2004035937A (en) Method of recovering chloride from aqueous solution
JP2972524B2 (en) Separation and recovery of lead and zinc from incinerated ash
JP3441239B2 (en) Method for wet processing of fly ash containing heavy metals from high temperature processing furnace
JP2003225633A (en) Method of treating chloride-containing dust
JP3646245B2 (en) Processing method for fly ash containing heavy metals
JP2003236503A (en) Treatment method of waste containing lead component
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
JP3766908B2 (en) Waste disposal method
JPH10109077A (en) Method for recovering heavy metal from molten fry ash
JPH09192625A (en) Alkali fly ash detoxicating treatment
JP3794260B2 (en) Waste disposal method
JP2944466B2 (en) Separation and recovery method of heavy metals from incineration ash
JP2005177757A (en) Calcium-and heavy metal-containing matter treatment method
JP4277108B2 (en) Heavy metal recovery from fly ash
JP2000212654A (en) Recovery of heavy metal from substance containing heavy metal and chlorine
JP2003211127A (en) Method for treating dust containing chloride
JP3524601B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP3914814B2 (en) Method for treating fly ash containing calcium
JP3646244B2 (en) Method for treating fly ash containing heavy metals
JP2003201524A (en) Waste treatment method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990803

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term