JP3646245B2 - Processing method for fly ash containing heavy metals - Google Patents

Processing method for fly ash containing heavy metals Download PDF

Info

Publication number
JP3646245B2
JP3646245B2 JP32400198A JP32400198A JP3646245B2 JP 3646245 B2 JP3646245 B2 JP 3646245B2 JP 32400198 A JP32400198 A JP 32400198A JP 32400198 A JP32400198 A JP 32400198A JP 3646245 B2 JP3646245 B2 JP 3646245B2
Authority
JP
Japan
Prior art keywords
heavy metal
fly ash
salt
filtered water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32400198A
Other languages
Japanese (ja)
Other versions
JP2000140795A (en
Inventor
三雄 鐙屋
隆史 黒川
俊章 徳光
正久 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP32400198A priority Critical patent/JP3646245B2/en
Publication of JP2000140795A publication Critical patent/JP2000140795A/en
Application granted granted Critical
Publication of JP3646245B2 publication Critical patent/JP3646245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ゴミ焼却施設や産業廃棄物焼却場等における焼却炉や溶融炉あるいは汚泥を処理するセメントキルン等から発生する重金属含有飛灰の処理方法に関する。
【0002】
【従来の技術】
一般事業所や一般家庭から排出されるゴミ(「都市ゴミ」または「一般廃棄 物」と称されている)は都市ゴミ焼却施設や産業廃棄物焼却工場等に集められ焼却処分されている。その際に焼却炉から発生する焼却灰や飛灰は薬剤処理、または、溶融炉、セメントキルン処理等の中間処理を施し最終処分場に堆積されている。
【0003】
しかしながら、上記溶融炉やセメントキルン等での中間処理では、蒸気圧の高い鉛、亜鉛およびカドミウム等の重金属は炉内で揮発して排ガスに入り、この排ガスに入った重金属は排ガス処理設備のなかで凝縮して再び飛灰となってしまうという問題があった。
この再度の飛灰中には、塩素、ナトリウム、カルシウム等の塩類と共に鉛、 銅、亜鉛、カドミウム等の重金属が多量に含まれれており、これらの回収を含めた安定した処理方法が求められていた。
【0004】
このような飛灰について、特開平7−109533号公報には、飛灰を槽内の水に懸濁し、この懸濁液を酸またはアルカリの添加によりアルカリ域の適当値にpH調整することによって飛灰中の重金属を水酸化物として沈殿させ、その沈殿を回収する方法について開示している。また本出願人も、先に、湿式処理方式によって対処する方法を出願している(特開平8−117727号公報および特開平8−141539号公報)。
特開平8−117724号公報には、飛灰を水でスラリー化し、pH調整して浸出し、固液分離する第1工程と、該第1工程からの殿物をリパルプし、硫酸により浸出溶解した後、固液分離して鉛産物を得る第2工程と、前記第1工程と前記第2工程からの酸性濾液に中和剤またさらに水硫化ソーダを加えて亜鉛、銅を含む産物を濾別し、濾過水を排水液とする第3工程とからなる方法が開示されており、特開平8−141539号公報には、飛灰を水と中和剤で中和して固液分離する第1工程と、該第1工程からの殿物をリパルプし、硫酸により浸出溶解して後。固液分離して鉛産物を得る第2工程と、該第2工程からの濾液に中和剤を加えて亜鉛、銅を含む産物を濾別する第3工程と、該第3工程の濾過水を該第1工程の中和液として繰り返し、該第1工程からの濾液について硫化剤を添加して排液処理する方法が開示されている。
【0005】
このような湿式処理方法により、飛灰に含まれている重金属を安定な形で分離し、重金属資源として有効に回収すると共に、飛灰を湿式処理した後の排水を、国の排水基準すなわち水質汚濁防止法第3条第1項の規制に沿って無害化できるようになった。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平7−109533号公報においては回収した重金属殿物中に塩化カルシウム等の塩類が多量に入り込み、製錬工程では塩素の持ち込みを嫌うことから重金属のリサイクルという面での問題が残った。さらに、近年、地域によっては環境公害に対する懸念からさらに規制を強化し、上記の国の排水基準値を上回る厳しい基準値で上乗せ規制を課すところがでている。
例えば、地方条例(I市の上乗せ基準値)によれば、カドミウム0.01mg/l(国の排水基準値0.1mg/l,以下同様)、フッ素10mg/l(15mg/l)、水銀0.0005mg/l(0.005mg/l)、COD10mg/l(120mg/l)を上限とするように厳しく規制されるような状況にある。
【0007】
また、飛灰を湿式処理した排水は、20〜50g/lにも及ぶ多量の塩素が含まれ、溶存する重金属類は塩化物錯イオンを形成し易く、その除去が非常に困難な特異的な排水になっており、従来の技術では上記の地域の上乗せ規制に対応できない場合が生じているのが現状である。
また前記排水にセレンが混入した場合も従来法では排水基準値以下に除去するのは非常に困難で、多くの工数やコストをかけていた。
【0008】
本発明は、このような状況に鑑み、飛灰中の有用重金属を塩素、カルシウム等の塩類と分離し、製錬工程において再利用可能な形で分離回収でき、且つ飛灰処理の多量に塩素を含有する排水についてセレンが混入しても他の重金属と同時に除去でき、厳しい地域排水規制に対応できる飛灰処理方法の提供を目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、第1に、亜鉛、銅、鉛の少なくとも一種と塩素とを含む飛灰の処理方法であって、前記飛灰に鉱酸を加えてスラリー化し、pHを5以下に調整して塩類、特に塩化物を溶出させる塩類溶出工程と、該塩類溶出工程のスラリーに中和剤を添加してpHを8〜12に調整し、重金属含有殿物と塩類含有濾液とに固液分離する重金属分離工程と、該重金属分離工程で得られた塩類含有濾液に第1鉄塩を添加しpHを8以上に調整して固液分離し、共沈重金属を含む鉄塩殿物と濾過水を得る鉄塩共沈工程とからなることを特徴とする重金属含有飛灰の処理方法;第2に、前記鉄塩共沈工程の反応温度が30℃以上であることを特徴とする前記第1に記載の重金属含有飛灰に処理方法;第3に、前記鉄塩共沈工程の反応温度が30℃以上であり、且つ、反応は酸化が抑制された雰囲気下で行うことを特徴とする前記第1に記載の重金属含有飛灰の処理方法;第4に、前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程を有することを特徴とする前記第1〜第3のいずれかに記載の重金属含有飛灰の処理方法;第5に、前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程と、得られた濾過水に、吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする前記第1〜第3のいずれかに記載の重金属含有飛灰の処理方法;第6に、前記鉄塩共沈工程で得られた濾過水に、吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする前記第1〜第3のいずれかに記載の重金属含有飛灰の処理方法;第7に、前記重金属分離工程で得られた重金属含有殿物を、湯または水で洗浄し、洗浄殿物と洗浄濾過水を得、得られた洗浄濾過水を前記塩類溶出工程における飛灰のスラリー化用水とする洗浄工程を有することを特徴とする前記第1〜第6のいずれかに記載の重金属含有飛灰の処理方法;第8に、亜鉛、銅、鉛の少なくとも一種と塩素とを含む飛灰の処理方法であって、前記飛灰に水および鉱酸を加えてスラリー化し、pHを5以下に調整して塩類、特に塩化物を溶出させる塩類溶出工程と、該塩類溶出工程のスラリーに中和剤を添加してpHを8〜12に調整し、重金属含有殿物と塩類含有濾液とに固液分離する重金属分離工程と、該重金属分離工程で得られた前記重金属含有殿物に鉱酸を加えてリパルプすると共に、pHを4以下に調整して固液分離し、鉛を主成分とする鉛産物を得る鉛産物回収工程と、該鉛産物回収工程で得られた濾液に中和剤を添加し、pHを8以上に調整して固液分離し、銅と亜鉛を主成分とする銅・亜鉛産物を得る銅・亜鉛産物回収工程と、前記重金属分離工程で得られた塩類含有濾液に第1鉄塩を添加しpHを8以上に調整して固液分離し、共沈重金属を含む鉄塩殿物と濾過水を得る鉄塩共沈工程とからなることを特徴とする重金属含有飛灰の処理方法;第9に、前記鉄塩共沈工程の反応温度が、30℃以上であることを特徴とする前記第8に記載の重金属含有飛灰の処理方法;第10に、前記鉄塩共沈工程の反応温度が、30℃以上であ り、且つ、反応は酸化が抑制された雰囲気下で行われることを特徴とする前記第8に記載の重金属含有飛灰の処理方法;第11に、前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩残渣と濾過水を得るアルミ塩共沈工程を有することを特徴とする前記第8〜第10のいずれかに記載の重金属含有飛灰の処理方法;第12に、前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程と、得られた濾過水に吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする前記第8〜第10のいずれかに記載の重金属含有飛灰の処理方法;第13に、前記鉄塩共沈工程で得られた濾過水に吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする前記第8〜第10のいずれかに記載の重金属含有飛灰の処理方法;第14に、前記重金属分離工程で得られた重金属含有殿物を湯または水で洗浄し、洗浄殿物と洗浄濾過水を得る洗浄工程を有し、該洗浄濾過水を、前記銅・亜鉛産物回収工程からの濾過水と共に前記塩類溶出工程の飛灰のスラリー化用水とすることを特徴とする前記第8〜13のいずれかに記載の重金属含有飛灰の処理方法を提供する。
【0010】
【発明の実施の態様】
本発明を、産業廃棄物を対象とする焼却炉からの飛灰の処理方法の場合を例に図1の処理工程図によって説明する。先ず、飛灰を水と混合させてスラリー化させ、このスラリーを攪拌しながら、塩酸または硫酸等の鉱酸を添加してpHを5以下、好ましくは、pH4以下に調整し、塩素、ナトリウム、カルシウム等の塩類、特に塩化物を液側に移行させる(塩類溶出工程)。なお、前記スラリーのpHは、飛灰の組成によって異なるため、鉱酸の添加量は飛灰に応じて調整する。したがって、前記スラリーのpHがすでに最適pHにある場合には鉱酸を加える必要はない。
【0011】
次いで、水酸化ナトリウムまたは炭酸ナトリウム等のアルカリ中和剤を添加してpHを8〜12の間に調整した後、固液分離することによって重金属を含有する殿物と、塩素、ナトリウム、カルシウム等塩類を含有する濾液とに固液分離する(重金属分離工程)。以上のように、塩類溶出工程で飛灰中の塩類を酸性側において十分に溶出させた後、重金属分離工程でこの酸性の溶出液を中和することにより、重金属含有殿物中の塩素等の塩類の含有率を著しく減少させることが可能となる。この塩素含有率の低い重金属含有殿物は、そのまま製錬工程の原料とすることもできる。
【0012】
そして、前記重金属分離工程からの塩類含有濾液に塩化第1鉄等の第1鉄塩を添加し、pHを8以上に調整し、液中に残留する微量の重金属を鉄塩と共に共沈させた後、これを固液分離することにより、鉄塩共沈殿物と清浄な濾過水を得ることができる(鉄共沈工程)。
【0013】
すなわち、第1鉄塩を添加してpH調整することにより、高い溶存塩素に拘らず、第1鉄イオンが総て水酸化第1鉄を生成し、この晶出初期の活性な水酸化第1鉄がその沈殿過程で液中の残存重金属例えばHgやSeの他Cu,Pb,Z n,Cd,Cr,As,Sb,Bi,Ni等を取り込んで共沈させるものと考えられ、重金属を極低レベルまで低減できる等除去効率を飛躍的に高めることができる。例えば、従来の技術では活性炭等吸着剤による吸着処理を必要としていた水銀についても、本方法の鉄塩共沈処理で十分に処理可能となった。
【0014】
前記鉄塩共沈工程の反応温度は室温以上、好ましくは30℃以上、さらに好ましくは45℃以上で行う。また、この反応は大気雰囲気においても可能である が、好ましくは空気を遮断した槽中で行う、さらに好ましくは窒素ガス雰囲気等の非酸化性雰囲気下で行う等、酸化が抑制された雰囲気下で行うことにより顕著に効率を高めることができる。反応温度を30℃以上とし、且つ、反応を酸化性が抑制された雰囲気下で行うことにより、重金属の析出効率が相乗的に高まるのみならず、反応液からの濾過効率も向上する。
【0015】
前記塩類含有濾液にフッ素を含有する場合は、鉄塩共沈工程からの濾過水に塩化アルミニウム等のアルミニウム塩を添加してpHを6〜8程度に調整することにより残留するフッ素をフッ化アルミニウムとして除去することができ、同時に生成する水酸化アルミニウムにより微量に残存する重金属をも共沈させることができ、この溶液を固液分離することにより、アルミニウム塩共沈殿物と共に清浄な濾過水を得ることができる(アルミ塩共沈工程)。
【0016】
また、前記アルミ塩共沈工程からの濾過水が、なお問題となる程度にCODを含む場合は、さらに、活性炭あるいはキレート剤等の吸着剤による吸着処理に供することにより、CODを低減させることができる。この活性炭での吸着処理 は、勿論カラムを使用してもよいが、前工程のアルミニウム塩と共に、顆粒状あるいは粉状で加えて固液分離してもよい。勿論液中のCODは除去され、また水酸化アルミニウムの濾過性を極度に改善することができる。
【0017】
なお、前記鉄塩共沈工程からの濾過水が問題になる程度のフッ素を含まず、且つ問題になる程度のCODを含む場合は、アルミ塩共沈工程を省略し、前記濾過水をそのまま吸着工程に供することができる。
【0018】
さらに、前記重金属分離工程からの中和殿物即ち重金属含有殿物をリパルプあるいはフィルタープレス中での通水洗浄(正洗、逆洗)により、塩素、ナトリウム、カルシウム等塩類をさらに中和殿物より分離することができ、洗浄濾過水は飛灰のスラリー化用水として前記塩類溶出工程に循環させる(洗浄工程)。
【0019】
前記重金属分離工程からの重金属含有殿物はそのまま製錬工程の原料となりうるが、さらに分別しておくと製錬工程の処理の軽減となる。すなわち前記重金属含有殿物を洗浄工程において、水で洗浄し、含有塩類を回収した後の洗浄殿物を処理対象としてもよい。対象殿物に水を加えてリパルプし、塩酸または硫酸等の鉱酸を添加してpHを4以下好ましくはpH3以下に調整し、亜鉛、銅、カドミウムを主成分とする重金属を溶解させ、固液分離により、鉱酸に難溶の鉛を主成分とする重金属を鉛産物として回収する(鉛産物回収工程)。
【0020】
前記鉛産物回収工程からの濾液には、アルカリ中和剤を添加してpHを8以上好ましくはpH11程度に調整することにより、亜鉛、銅、カドミウムを主成分とする重金属の水酸化物を生成させ、固液分離することにより、銅・亜鉛産物と濾過水を得ることができる。この濾過水は、前記洗浄工程からの洗浄濾過水と合わせて、塩類溶出工程における飛灰のスラリー化用水として繰り返すことによ り、重金属の回収性と共に飛灰処理の経済性を高めることができる。
【0021】
以上のように、本発明においては、飛灰に含まれている重金属を、鉛を主体とする鉛産物と、水酸化物態の銅、亜鉛およびカドミウムを主体とする銅・亜鉛産物として分別回収して製練原料として利用でき、また、鉄塩殿物あるいはアルミニウム塩殿物を回収して、溶鉱炉、セメントキルンの原料としてリサイクルで き、さらに、排水としては、重金属や有害元素が十分に除去され、国の排水規制は勿論、地域の上乗せ規制をも満足できる清浄な濾過水を得ることができるものである。
【0022】
【実施例1】
先ず、10リットルビーカーに純水8リットルを入れて攪拌しながら、原料としてA処理工場の飛灰800gを入れてスラリーとし、10分間攪拌しながら、鉱酸として36%塩酸を添加してpHを4に調整・維持し、30分間溶解処理を行い(塩類溶出工程)、次いで、アルカリ中和剤として200g/リットルの苛性ソーダ溶液を添加してpHを11に調整し30分間維持した後、濾過操作により重金属を主とする重金属含有殿物と塩類を主とする塩類含有濾液とに分離した(重金属分離工程)。次いで得られた重金属含有殿物を5リットルビーカーに移し、純水を2.0リットル入れてスラリーとし30分間攪拌維持した後、洗浄殿物と洗浄濾液を得た(洗浄工程)。
表1に原料飛灰の組成および洗浄工程で得られた洗浄殿物の品位を、また、表2に前記脱塩工程からの塩類含有濾液の組成を示した。
【0023】
【表1】

Figure 0003646245
【0024】
【表2】
Figure 0003646245
備考:T.Se=0.36mg/lの内訳 Se6+=0.30mg/l Se4+=0.06mg/l
引き続き得られた洗浄殿物を10リットルビーカーに移し、純水5リットルでリパルプし、95%H2SO4を添加し、pHを3に調整して鉛以外の重金属を溶 出せしめ、鉛を主とした鉛産物を得た(鉛産物回収工程)。得られた鉛産物の品位を表1に示した。
さらに分別された濾液に200g/lの苛性ソーダ溶液を添加してpHを11に調整し、銅・亜鉛を主成分とする水酸化物の産物と中和後、濾過水とに濾別した(銅・亜鉛産物回収工程)。得られた銅・亜鉛産物の品位を表1に示した。
【0025】
【実施例2】
〔試験1〕
表2に示す塩類含有濾液300ミリリットルを500ミリリットルのビーカーにとり、第一鉄塩として硫酸第一鉄を鉄量として350mg/リットルを添加 し、各設定温度と雰囲気のもとにpHを9に調整・維持して30分間反応させた後、吸引濾過(C濾紙使用)により、鉄殿物と濾液とに分離した(鉄塩共沈工 程)。
表3に得られた濾液のSeとSbの品位を示した。
【0026】
【表3】
Figure 0003646245
注: 6* の反応中雰囲気は窒素ガス雰囲気で、他は大気開放雰囲気とした。
【0027】
SeとSbについて鉄塩共沈工程における反応温度と反応雰囲気を調査したものであるが、約30℃付近から顕著な除去効果が見られる。また、反応温度45℃での比較であるが、窒素雰囲気とすることによりさらに顕著な除去効果が得られた。
【0028】
〔試験2〕
次に表2に示す塩類含有濾液を4リットルを5リットルビーカーにとり、第一鉄塩として硫酸第一鉄を鉄量として500mg/リットルを添加し、60℃に加温のもとでpHを9に調整・維持して30分間反応させた後、吸引濾過(C濾紙使用)により鉄塩殿物と濾過水とに分離した(鉄塩共沈工程)。
得られた濾過水の品位を表4に示した。
【0029】
【表4】
Figure 0003646245
表中( )内の数値は現時点では基準はないが近い将来予想される値である。鉄塩共沈工程における処理で、濾過水として、国の排水基準値は勿論、前記I市の上乗せ基準値をも満足できる清浄水を得ることができた。
【0030】
〔試験3〕
試験2で処理された濾過水(処理後)2.5リットル(F:16mg/リットル含有)を3リットルビーカーにとり、アルミニウム塩として塩化アルミニウムをアルミニウム量で50mg/リットルを添加し、45℃に加温のもとで、pHを7に調整・維持して30分間反応させた後、吸引濾過(C濾紙使用)により、殿物と濾液とに分離した(アルミ塩共沈工程)。
得られた濾液のフッ素濃度は4.2mg/リットルであり、前記I市の上乗せ基準値の10mg/リットルを大きく下回った。
【0031】
〔試験4〕
試験3で得られた濾液を排水処理用ヤシがら系活性炭を充填したミニカラムに対してSV比が5の条件で通液処理を施し、最終排水を得た(COD吸着工 程)。
最終排水中のCODは<1mg/リットルの値を示し、前記I市の上乗せ基準値の10mg/リットルを十分に下回った。
【0032】
【発明の効果】
請求項1の発明によれば、飛灰中の塩類を酸により十分に溶解した後、中和することによって重金属含有殿物中から塩素を著しく除くことが可能となり製錬工程の原料となりえる。且つセレンが混入した飛灰処理の排水についても、セレンの他、銅、鉛等の重金属を同時に極低レベルまで低減でき、国の排水規制を上回る厳しい地域排水規制に対応できる濾過排水を得ることができるという効果を奏する。
請求項2および3の発明によれば、さらに重金属を低減した濾過排水が安定して得られるという効果を奏する。請求項4〜6の発明によれば、さらに飛灰の組成に対応した追加的な排水浄化処理を行え、濾過排水に万全を期すことができるという効果を奏する。請求項7の発明によれば、上記の効果に加えて、重金属の回収性および飛灰処理の経済性を高めることができるという効果を奏する。
【0033】
請求項8の発明によれば、飛灰における塩類と重金属の十分な分離を可能と し、厳しい地域排水規制に対応できる濾過排水を得ると共に、銅、亜鉛、鉛等の有用重金属を製練原料として塩素の少ない安定した形で得られるという効果を奏する。
請求項9および10の発明によれば、さらに重金属を低減した濾過排水が安定して得られるという効果を奏する。請求項11〜13の発明によれば、飛灰の組成に対応した追加的な排水浄化処理を行い濾過排水に万全を期すことができるという効果を奏する。請求項14の発明によれば、上記の効果に加えて、重金属の回収性および飛灰処理の経済性を高めるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の重金属含有飛灰の処理方法を示す工程図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating heavy metal-containing fly ash generated from an incinerator, a melting furnace, a cement kiln for treating sludge, or the like in a municipal waste incineration facility or an industrial waste incineration plant.
[0002]
[Prior art]
Garbage discharged from general offices and households (referred to as “urban waste” or “general waste”) is collected and incinerated at municipal waste incineration facilities and industrial waste incineration plants. Incineration ash and fly ash generated from the incinerator at that time are subjected to chemical treatment or intermediate treatment such as melting furnace and cement kiln treatment, and are deposited in the final disposal site.
[0003]
However, in the intermediate treatment in the above melting furnace, cement kiln, etc., heavy metals such as lead, zinc and cadmium with high vapor pressure volatilize in the furnace and enter the exhaust gas, and the heavy metal contained in the exhaust gas is in the exhaust gas treatment equipment. There was a problem that it would condense and become fly ash again.
This second fly ash contains a large amount of heavy metals such as lead, copper, zinc and cadmium together with salts such as chlorine, sodium and calcium, and a stable treatment method including recovery of these is required. It was.
[0004]
JP-A-7-109533 discloses such fly ash by suspending fly ash in water in a tank and adjusting the pH of the suspension to an appropriate value in the alkali range by adding acid or alkali. It discloses a method for precipitating heavy metals in fly ash as hydroxides and recovering the precipitates. The present applicant has also filed a method for coping with the wet processing method (Japanese Patent Laid-Open Nos. 8-117727 and 8-141539).
In JP-A-8-117724, fly ash is slurried with water, adjusted to pH and leached, and solid-liquid separation is performed. The pulp from the first step is repulped and leached and dissolved with sulfuric acid. After that, a second step for obtaining a lead product by solid-liquid separation, and a neutralizer or further sodium hydrosulfide are added to the acidic filtrate from the first step and the second step to filter the product containing zinc and copper. Separately, a method comprising a third step in which filtered water is used as drainage is disclosed, and Japanese Patent Application Laid-Open No. 8-141539 discloses solid-liquid separation by neutralizing fly ash with water and a neutralizing agent. After the first step and the pulp from the first step are repulped and leached and dissolved with sulfuric acid. A second step of obtaining a lead product by solid-liquid separation, a third step of adding a neutralizing agent to the filtrate from the second step to separate a product containing zinc and copper, and filtered water of the third step Is repeatedly used as a neutralization liquid in the first step, and a draining treatment is performed by adding a sulfiding agent to the filtrate from the first step.
[0005]
By such a wet treatment method, heavy metals contained in fly ash are stably separated and effectively recovered as heavy metal resources, and waste water after wet treatment of fly ash is treated with national wastewater standards, that is, water quality. It has become possible to detoxify in accordance with the regulations of Article 3, Paragraph 1 of the Pollution Control Law.
[0006]
[Problems to be solved by the invention]
However, in JP-A-7-109533, a large amount of salt such as calcium chloride enters the recovered heavy metal deposit, and the problem in terms of recycling heavy metal remains because it dislikes the introduction of chlorine in the smelting process. . Furthermore, in recent years, regulations have been further tightened due to concerns about environmental pollution in some regions, and regulations are imposed with strict standards exceeding the national wastewater standards.
For example, according to the local ordinance (I city additional standard value), cadmium 0.01 mg / l (national wastewater standard value 0.1 mg / l, the same applies hereinafter), fluorine 10 mg / l (15 mg / l), mercury 0 .0005 mg / l (0.005 mg / l) and COD of 10 mg / l (120 mg / l) are severely regulated.
[0007]
In addition, wastewater obtained by wet-treating fly ash contains a large amount of chlorine ranging from 20 to 50 g / l, and dissolved heavy metals easily form chloride complex ions, which are very difficult to remove. The current situation is that there is a case where the conventional technology cannot cope with the above-mentioned additional regulations.
Further, even when selenium is mixed into the waste water, it is very difficult to remove the waste water below the waste water standard value by the conventional method, and many man-hours and costs are required.
[0008]
In view of such a situation, the present invention can separate useful heavy metals in fly ash from salts such as chlorine and calcium, and can be separated and recovered in a form that can be reused in the smelting process, and a large amount of fly ash can be treated with chlorine. The purpose of the present invention is to provide a fly ash treatment method that can be removed at the same time as other heavy metals even if selenium is mixed in wastewater containing selenium, and can meet strict regional drainage regulations.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, first, the present invention is a method for treating fly ash containing at least one of zinc, copper, lead and chlorine, and slurrying the fly ash by adding a mineral acid, A salt elution step for eluting salts, particularly chlorides, by adjusting the pH to 5 or less, and a neutralizer is added to the slurry of the salt elution step to adjust the pH to 8-12, and heavy metal-containing residue and salts A heavy metal separation step for solid-liquid separation into a contained filtrate, and a ferrous salt added to the salt-containing filtrate obtained in the heavy metal separation step to adjust the pH to 8 or higher for solid-liquid separation, including a coprecipitated heavy metal A method for treating heavy metal-containing fly ash comprising an iron salt deposit and an iron salt coprecipitation step for obtaining filtered water; secondly, the reaction temperature of the iron salt coprecipitation step is 30 ° C. or higher. A method for treating the heavy metal-containing fly ash according to the first aspect, wherein the iron salt coprecipitation step is characterized in that: The method for treating heavy metal-containing fly ash according to the first aspect, wherein the reaction temperature is 30 ° C. or higher and the reaction is performed in an atmosphere in which oxidation is suppressed; fourth, the iron salt coprecipitation It has an aluminum salt coprecipitation step of adding aluminum salt to the filtered water obtained in the process, adjusting the pH to 6-8 and performing solid-liquid separation to obtain an aluminum salt deposit containing coprecipitated heavy metals and filtered water. The method for treating heavy metal-containing fly ash according to any one of 1 to 3 above, characterized in that: Fifth, an aluminum salt is added to the filtered water obtained in the iron salt coprecipitation step to adjust the pH to 6 The aluminum salt co-precipitation step for obtaining a solid solution and a co-precipitated heavy metal and filtered water by adjusting to ~ 8, and subjecting the obtained filtered water to COD component adsorption treatment with an adsorbent It has the COD adsorption | suction process of obtaining clean water, The said 1st-3rd characterized by the above-mentioned A method for treating heavy metal-containing fly ash according to any one of the above; sixth, a COD adsorption step of obtaining purified water by subjecting the filtered water obtained in the iron salt coprecipitation step to adsorption of a COD component with an adsorbent The method for treating heavy metal-containing fly ash according to any one of the first to third aspects, characterized by comprising: seventh, washing the heavy metal-containing residue obtained in the heavy metal separation step with hot water or water In any one of the first to sixth aspects, the method includes a washing step of obtaining a washing residue and washing filtrate, and using the obtained washing filtrate as water for slurrying fly ash in the salt elution step. A method for treating heavy metal-containing fly ash as described above; eighth, a method for treating fly ash containing at least one of zinc, copper, lead and chlorine, and adding water and mineral acid to the fly ash to make a slurry; Salts that adjust pH to 5 or less and elute salts, especially chlorides An elution step, a heavy metal separation step of adjusting the pH to 8 to 12 by adding a neutralizing agent to the slurry of the salt elution step, and solid-liquid separation into a heavy metal-containing residue and a salt-containing filtrate, and the heavy metal separation step A lead product recovery step of adding a mineral acid to the heavy metal-containing product obtained in step 1 and repulping, adjusting the pH to 4 or less, and solid-liquid separation to obtain a lead product containing lead as a main component, and the lead A copper / zinc product recovery step in which a neutralizer is added to the filtrate obtained in the product recovery step, the pH is adjusted to 8 or more, and solid-liquid separation is performed to obtain a copper / zinc product mainly composed of copper and zinc; The ferrous salt is obtained by adding ferrous salt to the salt-containing filtrate obtained in the heavy metal separation step, adjusting the pH to 8 or higher, and performing solid-liquid separation to obtain a salt solution containing coprecipitated heavy metal and filtered water. A method for treating heavy metal-containing fly ash characterized by comprising: a precipitation step; The method for treating heavy metal-containing fly ash according to the eighth aspect, wherein the temperature is 30 ° C. or higher; tenth, the reaction temperature of the iron salt coprecipitation step is 30 ° C. or higher; and The method for treating heavy metal-containing fly ash according to the eighth aspect, wherein the reaction is performed in an atmosphere in which oxidation is suppressed; eleventh, to the filtered water obtained in the iron salt coprecipitation step, The above-mentioned eighth to tenth steps characterized by comprising aluminum salt coprecipitation steps of adding aluminum salt to adjust pH to 6-8 and performing solid-liquid separation to obtain aluminum salt residue containing coprecipitated heavy metal and filtered water. A method for treating heavy metal-containing fly ash according to any one of the above; twelfth, an aluminum salt is added to the filtered water obtained in the iron salt coprecipitation step and the pH is adjusted to 6-8, followed by solid-liquid separation. , An aluminum salt coprecipitation step for obtaining coagulated heavy metal containing aluminum salt and filtered water, The method for treating heavy metal-containing fly ash according to any one of the eighth to tenth aspects, further comprising a COD adsorption step of obtaining purified water by subjecting the filtered water to adsorption of a COD component with an adsorbent; Thirteenth, any of the eighth to tenth aspects, further comprising a COD adsorption step of obtaining purified water by subjecting the filtered water obtained in the iron salt coprecipitation step to adsorption treatment of a COD component with an adsorbent. A method for treating heavy metal-containing fly ash according to claim 14; and a washing step of washing the heavy metal-containing residue obtained in the heavy metal separation step with hot water or water to obtain the washed residue and washing filtered water. The heavy metal-containing material according to any one of the eighth to thirteenth aspects, wherein the washed filtered water is used as water for slurrying fly ash in the salt elution step together with filtered water from the copper / zinc product recovery step. A method for treating fly ash is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described with reference to the process diagram of FIG. 1 by taking as an example a method for treating fly ash from an incinerator intended for industrial waste. First, fly ash is mixed with water to make a slurry, and while stirring this slurry, a mineral acid such as hydrochloric acid or sulfuric acid is added to adjust the pH to 5 or less, preferably pH 4 or less, chlorine, sodium, Salts such as calcium, especially chlorides are transferred to the liquid side (salt elution step). In addition, since the pH of the slurry varies depending on the fly ash composition, the amount of mineral acid added is adjusted according to the fly ash. Therefore, it is not necessary to add mineral acid when the pH of the slurry is already at the optimum pH.
[0011]
Next, an alkali neutralizing agent such as sodium hydroxide or sodium carbonate is added to adjust the pH to between 8 and 12, and then a solid containing a heavy metal and chlorine, sodium, calcium, etc. by solid-liquid separation. Solid-liquid separation into a filtrate containing salts (heavy metal separation step). As described above, after the salts in the fly ash are sufficiently eluted on the acidic side in the salt elution step, the acidic eluate is neutralized in the heavy metal separation step, so that It becomes possible to significantly reduce the salt content. This heavy metal-containing residue having a low chlorine content can be used as a raw material for the smelting process as it is.
[0012]
Then, a ferrous salt such as ferrous chloride was added to the salt-containing filtrate from the heavy metal separation step, the pH was adjusted to 8 or more, and a trace amount of heavy metal remaining in the liquid was coprecipitated with the iron salt. Thereafter, this is subjected to solid-liquid separation, whereby an iron salt coprecipitate and clean filtered water can be obtained (iron coprecipitation step).
[0013]
That is, by adjusting the pH by adding a ferrous salt, all ferrous ions produce ferrous hydroxide regardless of high dissolved chlorine, and this active first active hydration hydroxide is crystallized. It is thought that iron takes in and coprecipitates residual heavy metals such as Cu, Pb, Zn, Cd, Cr, As, Sb, Bi, Ni, etc. in addition to Hg and Se during the precipitation process. The removal efficiency, such as being able to reduce to a low level, can be dramatically increased. For example, mercury that has been required to be adsorbed by an adsorbent such as activated carbon in the prior art can be sufficiently treated by the iron salt coprecipitation treatment of this method.
[0014]
The reaction temperature of the iron salt coprecipitation step is room temperature or higher, preferably 30 ° C. or higher, more preferably 45 ° C. or higher. Although this reaction can be performed in an air atmosphere, it is preferably performed in a tank where air is shut off, and more preferably in a non-oxidizing atmosphere such as a nitrogen gas atmosphere. This can significantly increase efficiency. By carrying out the reaction in an atmosphere in which the reaction temperature is 30 ° C. or higher and the oxidizability is suppressed, the deposition efficiency of heavy metals is not only synergistically increased, but also the filtration efficiency from the reaction solution is improved.
[0015]
When the salt-containing filtrate contains fluorine, aluminum fluoride such as aluminum chloride is added to the filtered water from the iron salt coprecipitation step to adjust the pH to about 6 to 8, and the remaining fluorine is aluminum fluoride. At the same time, trace amounts of heavy metal remaining can be coprecipitated with the aluminum hydroxide produced at the same time, and this solution is solid-liquid separated to obtain clean filtered water together with the aluminum salt coprecipitate. (Aluminum salt coprecipitation process).
[0016]
Further, when the filtered water from the aluminum salt coprecipitation step still contains COD to the extent that it causes a problem, the COD can be reduced by subjecting it to an adsorption treatment with an adsorbent such as activated carbon or a chelating agent. it can. Of course, a column may be used for this adsorption treatment with activated carbon, but it may be added in the form of granules or powder together with the aluminum salt of the previous step and separated into solid and liquid. Of course, COD in the liquid is removed, and the filterability of aluminum hydroxide can be extremely improved.
[0017]
If the filtered water from the iron salt coprecipitation step does not contain a significant amount of fluorine and contains a problematic amount of COD, the aluminum salt coprecipitation step is omitted and the filtered water is adsorbed as it is. It can be used for the process.
[0018]
Further, the neutralized precipitate from the heavy metal separation step, that is, the heavy metal-containing precipitate, is washed with water in a repulp or filter press (normal washing, backwashing) to further neutralize salts such as chlorine, sodium and calcium. The washed filtered water can be circulated in the salt elution process as water for slurrying fly ash (washing process).
[0019]
The heavy metal-containing residue from the heavy metal separation step can be used as a raw material for the smelting step as it is, but if further separated, the processing of the smelting step is reduced. That is, in the cleaning process, the heavy metal-containing residue may be treated with water and the washed residue after the contained salts are recovered may be treated. Water is added to the object and repulped, and a mineral acid such as hydrochloric acid or sulfuric acid is added to adjust the pH to 4 or less, preferably 3 or less, to dissolve heavy metals mainly composed of zinc, copper and cadmium, By liquid separation, heavy metals mainly composed of lead that is hardly soluble in mineral acids are recovered as lead products (lead product recovery step).
[0020]
In the filtrate from the lead product recovery step, an alkali neutralizer is added to adjust the pH to 8 or more, preferably about pH 11, thereby producing heavy metal hydroxides mainly composed of zinc, copper and cadmium. And solid-liquid separation can obtain a copper / zinc product and filtered water. This filtered water, together with the washed filtered water from the washing step, is repeated as the fly ash slurry water in the salt elution step, thereby improving the recovery of heavy metals and the economics of fly ash treatment. .
[0021]
As described above, in the present invention, heavy metals contained in fly ash are separated and recovered as lead products mainly composed of lead and copper / zinc products mainly composed of hydroxide copper, zinc and cadmium. It can be used as a raw material for smelting, and iron salt or aluminum salt can be recovered and recycled as raw materials for blast furnaces and cement kilns. In addition, heavy metals and harmful elements are sufficiently removed as waste water. Thus, it is possible to obtain clean filtered water that satisfies not only the national drainage regulations but also the local regulations.
[0022]
[Example 1]
First, 8 liters of pure water is put into a 10 liter beaker and stirred, and 800 g of fly ash from the A processing plant is added as a raw material to make a slurry. While stirring for 10 minutes, 36% hydrochloric acid is added as mineral acid to adjust the pH. Adjusted to and maintained at 4, dissolved for 30 minutes (salt elution step), then added with 200 g / liter of caustic soda solution as an alkali neutralizer, adjusted to pH 11 and maintained for 30 minutes, followed by filtration operation Thus, a heavy metal-containing residue mainly composed of heavy metals and a salt-containing filtrate mainly composed of salts were separated (heavy metal separation step). Next, the obtained heavy metal-containing residue was transferred to a 5 liter beaker, and 2.0 liters of pure water was added to form a slurry and maintained for 30 minutes, and then a washing residue and a washing filtrate were obtained (washing step).
Table 1 shows the composition of the raw fly ash and the quality of the washed residue obtained in the washing step, and Table 2 shows the composition of the salt-containing filtrate from the desalting step.
[0023]
[Table 1]
Figure 0003646245
[0024]
[Table 2]
Figure 0003646245
Remarks: Breakdown of T.Se = 0.36mg / l Se 6 + = 0.30mg / l Se 4 + = 0.06mg / l
Subsequently, the resulting washed product is transferred to a 10 liter beaker, repulped with 5 liters of pure water, added with 95% H 2 SO 4 , adjusted to pH 3 to dissolve heavy metals other than lead, and lead is removed. The main lead products were obtained (lead product recovery process). Table 1 shows the quality of the lead products obtained.
Further, 200 g / l of caustic soda solution was added to the separated filtrate to adjust the pH to 11, neutralized with a hydroxide product mainly composed of copper / zinc, and then filtered into filtered water (copper).・ Zinc product recovery process). The quality of the obtained copper / zinc product is shown in Table 1.
[0025]
[Example 2]
[Test 1]
Take 300 ml of the salt-containing filtrate shown in Table 2 in a 500 ml beaker, add ferrous sulfate as the ferrous salt and 350 mg / liter of iron, and adjust the pH to 9 under each set temperature and atmosphere. -After maintaining for 30 minutes, the mixture was separated into iron and filtrate by suction filtration (using C filter paper) (iron salt coprecipitation process).
Table 3 shows the grade of Se and Sb of the filtrate obtained.
[0026]
[Table 3]
Figure 0003646245
Note: The atmosphere during 6 * reaction was a nitrogen gas atmosphere, and the others were open to the atmosphere.
[0027]
Regarding Se and Sb, the reaction temperature and reaction atmosphere in the iron salt coprecipitation step were investigated, and a remarkable removal effect was observed from around 30 ° C. Moreover, as compared with the reaction temperature of 45 ° C., a more remarkable removal effect was obtained by using a nitrogen atmosphere.
[0028]
[Test 2]
Next, 4 liters of the salt-containing filtrate shown in Table 2 was placed in a 5 liter beaker, and 500 mg / liter of ferrous sulfate as the ferrous salt was added in an amount of iron, and the pH was adjusted to 9 at 60 ° C. under heating. The mixture was allowed to react for 30 minutes and then separated into iron salt and filtered water by suction filtration (using C filter paper) (iron salt coprecipitation step).
The quality of the obtained filtered water is shown in Table 4.
[0029]
[Table 4]
Figure 0003646245
The numbers in parentheses in the table are not expected at this time but are expected in the near future. Through the treatment in the iron salt coprecipitation process, clean water that can satisfy the above-mentioned standard value of I city as well as the national standard value of drainage water was obtained as filtered water.
[0030]
[Test 3]
Take 2.5 liters of filtered water (after treatment) treated in Test 2 (F: containing 16 mg / liter) into a 3 liter beaker, add aluminum chloride as an aluminum salt in an amount of 50 mg / liter, and heat to 45 ° C. After adjusting and maintaining the pH at 7 under temperature and reacting for 30 minutes, the mixture was separated into a residue and a filtrate by suction filtration (using C filter paper) (aluminum salt coprecipitation step).
The fluorine concentration of the obtained filtrate was 4.2 mg / liter, which was significantly lower than the above-mentioned reference value of 10 mg / liter.
[0031]
[Test 4]
The filtrate obtained in Test 3 was subjected to liquid passing treatment on a mini-column filled with palm activated carbon for wastewater treatment under the condition of SV ratio of 5 to obtain final wastewater (COD adsorption process).
The COD in the final wastewater showed a value of <1 mg / liter, which was well below the above-mentioned reference value of 10 mg / liter.
[0032]
【The invention's effect】
According to the first aspect of the present invention, the salt in the fly ash is sufficiently dissolved with an acid and then neutralized, so that chlorine can be remarkably removed from the heavy metal-containing residue, which can be a raw material for the smelting process. In addition to selenium, heavy metals such as copper and lead can be simultaneously reduced to extremely low levels, and filtered effluent that can meet strict regional effluent regulations exceeding the national effluent regulations. There is an effect that can be.
According to invention of Claim 2 and 3, there exists an effect that the filtration waste_water | drain which further reduced heavy metal is obtained stably. According to invention of Claims 4-6, the additional waste water purification process corresponding to the composition of fly ash can be performed, and there exists an effect that a drainage can be ensured completely. According to invention of Claim 7, in addition to said effect, there exists an effect that the recoverability of heavy metal and the economical efficiency of a fly ash process can be improved.
[0033]
According to the invention of claim 8, it is possible to sufficiently separate salts and heavy metals in fly ash, and to obtain filtered waste water that can meet strict regional waste water regulations, and to use useful heavy metals such as copper, zinc, lead, etc. As an effect, it can be obtained in a stable form with little chlorine.
According to the ninth and tenth aspects of the present invention, there is an effect that the filtered waste water further reducing heavy metals can be obtained stably. According to invention of Claims 11-13, there exists an effect that the additional waste water purification process corresponding to the composition of fly ash can be performed, and a filtering drainage can be ensured. According to the invention of claim 14, in addition to the above effects, there is an effect of improving the recoverability of heavy metals and the economics of fly ash treatment.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method for treating heavy metal-containing fly ash according to the present invention.

Claims (14)

亜鉛、銅、鉛の少なくとも一種と塩素とを含む飛灰の処理方法であって、前記飛灰に鉱酸を加えてスラリー化し、pHを5以下に調整して塩類を溶出させる塩類溶出工程と、該塩類溶出工程のスラリーに中和剤を添加してpHを8〜12に調整し、重金属含有殿物と塩類含有濾液とに固液分離する重金属分離工程と、該重金属分離工程で得られた塩類含有濾液に第1鉄塩を添加しpHを8以上に調整して固液分離し、共沈重金属を含む鉄塩殿物と濾過水を得る鉄塩共沈工程とからなることを特徴とする重金属含有飛灰の処理方法。A method for treating fly ash containing at least one of zinc, copper, lead and chlorine, wherein a salt elution step is performed by adding mineral acid to the fly ash to form a slurry, and adjusting the pH to 5 or less to elute the salts. Obtained by the heavy metal separation step of adjusting the pH to 8 to 12 by adding a neutralizing agent to the slurry of the salt elution step and separating the solid into a heavy metal-containing residue and a salt-containing filtrate, and the heavy metal separation step. Ferrous salt is added to the salt-containing filtrate, and the pH is adjusted to 8 or higher, and the solid-liquid separation is performed. A method for treating heavy metal-containing fly ash. 前記鉄塩共沈工程の反応温度が30℃以上であることを特徴とする請求項1に記載の重金属含有飛灰の処理方法。The method for treating heavy metal-containing fly ash according to claim 1, wherein a reaction temperature in the iron salt coprecipitation step is 30 ° C or higher. 前記鉄塩共沈工程の反応温度が30℃以上であり、且つ、反応は酸化が抑制された雰囲気下で行うことを特徴とする請求項1に記載の重金属含有飛灰の処理方法。The method for treating heavy metal-containing fly ash according to claim 1, wherein a reaction temperature in the iron salt coprecipitation step is 30 ° C or higher and the reaction is performed in an atmosphere in which oxidation is suppressed. 前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程を有することを特徴とする請求項1〜3のいずれかに記載の重金属含有飛灰の処理方法。Aluminum salt is added to the filtered water obtained in the iron salt coprecipitation step to adjust the pH to 6 to 8 and solid-liquid separation to obtain an aluminum salt deposit containing coprecipitated heavy metals and filtered water. It has a sedimentation process, The processing method of the heavy metal containing fly ash in any one of Claims 1-3 characterized by the above-mentioned. 前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程と、得られた濾過水に吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする請求項1〜3のいずれかに記載の重金属含有飛灰の処理方法。Aluminum salt is added to the filtered water obtained in the iron salt coprecipitation step, adjusted to pH 6-8, and solid-liquid separated to obtain an aluminum salt deposit containing coprecipitated heavy metals and filtered water. The heavy metal-containing fly ash according to any one of claims 1 to 3, further comprising a sedimentation step and a COD adsorption step in which the filtered water obtained is subjected to adsorption treatment of a COD component with an adsorbent to obtain clean water. Processing method. 前記鉄塩共沈工程で得られた濾過水に、吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする請求項1〜3のいずれかに記載の重金属含有飛灰の処理方法。The filtered water obtained in the iron salt coprecipitation step has a COD adsorption step in which purified water is obtained by subjecting the COD component to adsorption treatment with an adsorbent. A method for treating heavy metal-containing fly ash. 前記重金属分離工程で得られた重金属含有殿物を、湯または水で洗浄し、洗浄殿物と洗浄濾過水を得、得られた洗浄濾過水を前記塩類溶出工程における飛灰のスラリー化用水とする洗浄工程を有することを特徴とする請求項1〜6のいずれかに記載の重金属含有飛灰の処理方法。The heavy metal-containing residue obtained in the heavy metal separation step is washed with hot water or water to obtain a wash residue and washing filtered water, and the obtained washing filtered water is used as water for slurrying fly ash in the salt elution step. The processing method of the heavy metal containing fly ash in any one of Claims 1-6 characterized by having the washing | cleaning process to perform. 亜鉛、銅、鉛の少なくとも一種と塩素とを含む飛灰の処理方法であって、前記飛灰に鉱酸を加えてスラリー化し、pHを5以下に調整して塩類を溶出させる塩類溶出工程と、該塩類溶出工程のスラリーに中和剤を添加してpHを8〜12に調整し、重金属含有殿物と塩類含有濾液とに固液分離する重金属分離工程と、該重金属分離工程で得られた前記重金属含有殿物に鉱酸を加えてリパルプすると共に、pHを4以下に調整して固液分離し、鉛を主成分とする鉛産物を得る鉛産物回収工程と、該鉛産物回収工程で得られた濾液に中和剤を添加し、pHを8以上に調整して固液分離し、銅と亜鉛を主成分とする銅・亜鉛産物を得る銅・亜鉛産物回収工程と、前記重金属分離工程で得られた塩類含有濾液に第1鉄塩を添加しpHを8以上に調整して固液分離し、共沈重金属を含む鉄塩殿物と濾過水を得る鉄塩共沈工程とからなることを特徴とする重金属含有飛灰の処理方法。A method for treating fly ash containing at least one of zinc, copper, lead and chlorine, wherein a salt elution step is performed by adding mineral acid to the fly ash to form a slurry, and adjusting the pH to 5 or less to elute the salts. Obtained by the heavy metal separation step of adjusting the pH to 8 to 12 by adding a neutralizing agent to the slurry of the salt elution step and separating the solid into a heavy metal-containing residue and a salt-containing filtrate, and the heavy metal separation step. In addition, a mineral acid is added to the heavy metal-containing porcelain for repulping, and the pH is adjusted to 4 or less to perform solid-liquid separation to obtain a lead product mainly composed of lead, and the lead product recovery step. A copper / zinc product recovery step of adding a neutralizing agent to the filtrate obtained in step 1 and adjusting the pH to 8 or higher and solid-liquid separation to obtain a copper / zinc product mainly composed of copper and zinc, and the heavy metal Ferrous salt is added to the salt-containing filtrate obtained in the separation step to adjust the pH to 8 or higher. Solid-liquid separation, the heavy metal-containing fly ash treatment method characterized by comprising the iron salt coprecipitation to obtain an iron Shiodono equivalent to the filtered water containing co 沈重 metal. 前記鉄塩共沈工程の反応温度が、30℃以上であることを特徴とする請求項8に記載の重金属含有飛灰の処理方法。The method for treating heavy metal-containing fly ash according to claim 8, wherein a reaction temperature in the iron salt coprecipitation step is 30 ° C or higher. 前記鉄塩共沈工程の反応温度が、30℃以上であり、且 つ、反応は酸化が抑制された雰囲気下で行われることを特徴とする請求項8に記載の金属含有飛灰の処理方法。The method for treating metal-containing fly ash according to claim 8, wherein a reaction temperature of the iron salt coprecipitation step is 30 ° C or higher, and the reaction is performed in an atmosphere in which oxidation is suppressed. . 前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程を有することを特徴とする請求項8〜10のいずれかに記載の重金属含有飛灰の処理方法。Aluminum salt is added to the filtered water obtained in the iron salt coprecipitation step to adjust the pH to 6 to 8 and solid-liquid separation to obtain an aluminum salt deposit containing coprecipitated heavy metals and filtered water. It has a sedimentation process, The processing method of the heavy metal containing fly ash in any one of Claims 8-10 characterized by the above-mentioned. 前記鉄塩共沈工程で得られた濾過水に、アルミニウム塩を添加しpHを6〜8に調整して固液分離し、共沈重金属を含むアルミニウム塩殿物と濾過水を得るアルミ塩共沈工程と、得られた濾過水に吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする請求項8〜10のいずれかに記載の重金属含有飛灰の処理方法。Aluminum salt is added to the filtered water obtained in the iron salt coprecipitation step, adjusted to pH 6-8, and solid-liquid separated to obtain an aluminum salt deposit containing coprecipitated heavy metals and filtered water. The heavy metal-containing fly ash according to any one of claims 8 to 10, further comprising a sedimentation step and a COD adsorption step in which purified water is obtained by subjecting the obtained filtered water to adsorption treatment of a COD component with an adsorbent. Processing method. 前記鉄塩共沈工程で得られた濾過水に、吸着剤によるCOD成分の吸着処理を施して清浄水を得るCOD吸着工程を有することを特徴とする請求項8〜10のいずれかに記載の重金属含有飛灰の処理方法。The filtered water obtained in the iron salt coprecipitation step has a COD adsorption step in which purified water is obtained by performing adsorption treatment of a COD component with an adsorbent. A method for treating heavy metal-containing fly ash. 前記重金属分離工程で得られた重金属含有殿物を湯または水で洗浄し、洗浄殿物と洗浄濾過水を得る洗浄工程を有し、該洗浄濾過水を、前記銅・亜鉛産物回収工程からの濾過水と共に、前記塩類溶出工程の飛灰のスラリー化用水とすることを特徴とする請求項8〜13のいずれかに記載の重金属含有飛灰の処理方法。The heavy metal-containing porcelain obtained in the heavy metal separation step is washed with hot water or water to obtain a washing porridge and washing filtered water, and the washing filtered water is recovered from the copper / zinc product recovery step. The method for treating heavy metal-containing fly ash according to any one of claims 8 to 13, wherein the water is used for slurrying of fly ash in the salt elution step together with filtered water.
JP32400198A 1998-11-13 1998-11-13 Processing method for fly ash containing heavy metals Expired - Lifetime JP3646245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32400198A JP3646245B2 (en) 1998-11-13 1998-11-13 Processing method for fly ash containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32400198A JP3646245B2 (en) 1998-11-13 1998-11-13 Processing method for fly ash containing heavy metals

Publications (2)

Publication Number Publication Date
JP2000140795A JP2000140795A (en) 2000-05-23
JP3646245B2 true JP3646245B2 (en) 2005-05-11

Family

ID=18161027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32400198A Expired - Lifetime JP3646245B2 (en) 1998-11-13 1998-11-13 Processing method for fly ash containing heavy metals

Country Status (1)

Country Link
JP (1) JP3646245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525639A (en) * 2018-04-27 2018-09-14 福州大学 The preparation method and applications of chlorine sorbing material in a kind of waste incineration

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629851B2 (en) * 2000-10-30 2011-02-09 太平洋セメント株式会社 Wastewater treatment method
JP4219138B2 (en) * 2002-09-06 2009-02-04 株式会社クボタ Method and apparatus for adding heavy metal insolubilizer
JP4431767B2 (en) * 2003-10-27 2010-03-17 Dowaメタルマイン株式会社 Wet ash processing method
JP2005288413A (en) * 2004-04-05 2005-10-20 Mitsubishi Materials Corp Method for treating flying-ash leachate
CN100431688C (en) * 2006-12-13 2008-11-12 大连理工大学 Modified fly ash absorbent and method for processing nitrophenol polymerization inhibitor production waste water
JP2013014789A (en) * 2011-06-30 2013-01-24 Mitsubishi Materials Corp Method for treating flue cinder
JP6486877B2 (en) * 2016-09-21 2019-03-20 株式会社ダイワエクセル Waste water treatment device and waste water treatment method using the waste water treatment device
CN112570419B (en) * 2020-11-20 2023-04-18 四川科龙达环保股份有限公司 Aluminum ash recycling method, harmless aluminum ash and application of harmless aluminum ash

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525639A (en) * 2018-04-27 2018-09-14 福州大学 The preparation method and applications of chlorine sorbing material in a kind of waste incineration

Also Published As

Publication number Publication date
JP2000140795A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
KR20080063797A (en) Method for removing metals from waste water and apparatus for removing metals from waste water
US5089242A (en) Method for selectively separating a non-ferrous metal
JP2009106853A (en) Wastewater treatment method
JP3625270B2 (en) Waste disposal method
JP3911538B2 (en) Heavy metal recovery from fly ash
JP3646245B2 (en) Processing method for fly ash containing heavy metals
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
JP2002018394A (en) Treating method for waste
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP3813052B2 (en) Method for processing fly ash containing heavy metals
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
JP2006346618A (en) Selenium-containing wastewater treatment method
JP2006102559A (en) Treatment method of selenium-containing wastewater
JP3794260B2 (en) Waste disposal method
JP2002011429A (en) Treatment process of heavy metal in waste
JP3896442B2 (en) Method for treating fly ash containing heavy metals
JP3536901B2 (en) Method of recovering valuable metals from fly ash
JP4039820B2 (en) Wastewater treatment method
JP2972524B2 (en) Separation and recovery of lead and zinc from incinerated ash
JP3646244B2 (en) Method for treating fly ash containing heavy metals
JP3733452B2 (en) Waste disposal method
JP2005177757A (en) Calcium-and heavy metal-containing matter treatment method
JP4629851B2 (en) Wastewater treatment method
JP2006255494A (en) Treatment method for flying ash

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term