JPH0840775A - Silicon nitride sintered product and method for producing the same - Google Patents

Silicon nitride sintered product and method for producing the same

Info

Publication number
JPH0840775A
JPH0840775A JP6200079A JP20007994A JPH0840775A JP H0840775 A JPH0840775 A JP H0840775A JP 6200079 A JP6200079 A JP 6200079A JP 20007994 A JP20007994 A JP 20007994A JP H0840775 A JPH0840775 A JP H0840775A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride sintered
sintered body
producing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200079A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamada
俊行 山田
Bunkou So
文甲 曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP6200079A priority Critical patent/JPH0840775A/en
Priority to DE1995601970 priority patent/DE69501970T2/en
Priority to EP19950101096 priority patent/EP0666246B1/en
Priority to US08/384,981 priority patent/US5591687A/en
Publication of JPH0840775A publication Critical patent/JPH0840775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a silicon nitride sintered product high in mechanical strength and not containing pores and residual silicon which are the defects of a silicon nitride sintered product using silicon as a raw material. CONSTITUTION:The silicon nitride sintered product contains >=0.02wt.% of Fe. Fe compound particles having particle diameters of >=0.5mum and contained in the silicon nitride sintered product occupies an area of >=0.1% in a two-dimensional range of 200X200mum, and also occupies an area of <=15% in a cell obtained by dividing the two-dimensional area of 200X200mum into longitudinal and lateral 20 equal divisions (10mumX10mum unit, 400 cells).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は反応焼結を利用した窒化
珪素焼結体(セラミツクス)、特に機械的強度が高い窒
化珪素焼結体およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body (ceramics) utilizing reaction sintering, particularly to a silicon nitride sintered body having high mechanical strength and a method for producing the same.

【0002】[0002]

【従来の技術】特開昭56-14635号公報に開示されるよう
に、高密度窒化珪素焼結体の製造方法として、珪素粉末
にFe,Co,Ni,Mh,W,Mo,Ti,Al,M
g,Zrの内から選択される金属または酸化物の少くと
も1種の粉末を添加したうえ、温度1300〜1550
℃の窒素ガス雰囲気で焼結した仮焼体を、上記金属を含
む溶液中に浸漬し、次いで温度1350〜1550℃で
珪素含有蒸気を供給しながら再び焼結を行うものがあ
る。
2. Description of the Related Art As disclosed in Japanese Patent Laid-Open No. 56-14635, as a method for producing a high-density silicon nitride sintered body, Fe, Co, Ni, Mh, W, Mo, Ti, Al is added to silicon powder. , M
g, at least one powder of a metal or oxide selected from Zr is added, and the temperature is 1300 to 1550.
There is a method in which a calcined body sintered in a nitrogen gas atmosphere at 0 ° C. is immersed in a solution containing the above metal and then sintered again at a temperature of 1350 to 1550 ° C. while supplying silicon-containing vapor.

【0003】上述の製造方法により成形体を焼結する
と、焼結中に添加金属または添加金属の酸化物が液相ま
たは/および気相になり、得られる焼結体の内部に気
孔、膨み、割れなどが生じるので、特に肉厚品の高温焼
結には向かない。
When the molded body is sintered by the above-mentioned manufacturing method, the added metal or the oxide of the added metal becomes a liquid phase and / or a gas phase during the sintering, and pores and swelling are generated inside the obtained sintered body. Since it causes cracks, it is not suitable for high temperature sintering of thick products.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は上述の
問題に鑑み、珪素を原料とする窒化珪素焼結体の欠点で
ある気孔や残留珪素が存せず、したがつて機械的強度が
優れた、窒化珪素焼結体およびその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION In view of the above problems, the object of the present invention is to eliminate the pores and residual silicon, which are the drawbacks of silicon nitride sintered bodies made from silicon as a raw material. An object is to provide an excellent silicon nitride sintered body and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の構成は0.02wt%以上のFeを含有する
窒化珪素焼結体であつて、該窒化珪素焼結体に含まれる
粒径0.5μm以上のFe化合物粒子は、200×20
0μmの2次元的範囲に占める面積が0.1%以上であ
り、200×200μmの範囲を縦横20等分に区分し
たセル(10μm ×10μm 単位が400個)に占める
面積が15%以下であることを特徴とする。
In order to achieve the above object, the constitution of the present invention is a silicon nitride sintered body containing 0.02 wt% or more of Fe, which is included in the silicon nitride sintered body. Fe compound particles having a particle size of 0.5 μm or more are 200 × 20
The area occupied by a two-dimensional range of 0 μm is 0.1% or more, and the area occupied by a cell (400 units of 10 μm × 10 μm unit) divided into 20 horizontal and 200 μm ranges is 15% or less. It is characterized by

【0006】[0006]

【作用】微細化された珪素に、珪素が窒化珪素(Si3
4 )になりかつ転化の際にα相窒化珪素を生成するの
に有効な原材料を添加することにより、次の理由から、
珪素を原料とする窒化珪素焼結体の欠点である気孔や残
留珪素などの問題がない、つまり残留珪素がなくFe分
が均一に分散した高強度の窒化珪素焼結体が得られる。
Function: Silicon is added to silicon nitride (Si 3
N 4 ) and by adding raw materials effective in forming α-phase silicon nitride during conversion, for the following reasons:
It is possible to obtain a high-strength silicon nitride sintered body in which there are no problems such as pores and residual silicon which are defects of the silicon nitride sintered body using silicon as a raw material, that is, there is no residual silicon and Fe content is uniformly dispersed.

【0007】(a) 成形体中の気孔の内径が小さくな
り、窒化珪素焼結体中の気孔の内径も小さくなる。
(A) The inner diameter of the pores in the compact becomes smaller, and the inner diameter of the pores in the silicon nitride sintered body also becomes smaller.

【0008】(b) 珪素の窒化が円滑であり、残留珪素
が少くなる。
(B) Nitriding of silicon is smooth, and residual silicon is small.

【0009】(c) Fe化合物粒子の粒径が小さくな
り、Fe化合物粒子が窒化珪素焼結体中に均一に分散す
る。
(C) The particle size of the Fe compound particles is reduced, and the Fe compound particles are uniformly dispersed in the silicon nitride sintered body.

【0010】(d) 成形体の原料に添加されるZnO
が、珪素が窒化珪素に転化する際に生成するα相窒化珪
素の量を増加させ、窒化珪素焼結体の強度を高める。
(D) ZnO added to the raw material of the molded body
However, it increases the amount of α-phase silicon nitride produced when silicon is converted to silicon nitride, and increases the strength of the silicon nitride sintered body.

【0011】[0011]

【実施例】本発明による窒化珪素焼結体は、0.02wt
%以上のFeを含有する珪素原料を用いることを特徴と
する。窒化珪素焼結体はSi,Al,Y,O,N,Z
n,Feの各元素を含み、各元素がSi,Si3 4
Al2 3 ,Y2 3 ,Znの酸化物として存在する重
量をそれぞれa,b,c,d,eとし、Feとして存在
する重量をfとする時、次の各式 6≦(c+d+e)100 /(1.67a+b+c+d+e+
f)≦12.0 1≦(c+d)/e 0.02≦ 100f/(1.67a+b+c+d+e+f)≦7.5 0.001 ≦ 100e/(1.67a+b+c+d+e+f)≦7.
5 を満足する組成である。上述の各式は図3に示す各資料
(資料B0を除く)から近似的に求めたものである。
EXAMPLE A silicon nitride sintered body according to the present invention has a content of 0.02 wt.
It is characterized in that a silicon raw material containing at least Fe is used. The silicon nitride sintered body is made of Si, Al, Y, O, N, Z.
Each element of n and Fe is contained, and each element is Si, Si 3 N 4 ,
When the weights existing as oxides of Al 2 O 3 , Y 2 O 3 and Zn are a, b, c, d and e, respectively, and the weights existing as Fe are f, the following equations 6 ≦ (c + d + e ) 100 / (1.67a + b + c + d + e +
f) ≦ 12.0 1 ≦ (c + d) / e 0.02 ≦ 100f / (1.67a + b + c + d + e + f) ≦ 7.5 0.001 ≦ 100e / (1.67a + b + c + d + e + f) ≦ 7.
The composition satisfies 5. The above equations are approximately obtained from the materials shown in FIG. 3 (excluding the material B0).

【0012】上述した窒化珪素焼結体の組成において、
Znの代りに、Ca,Ni,Cu,Cr,Co,Mg,
Mn,Sn,Ho,Cd,Pbの内から選択される1種
または1種以上の元素を添加してもよい。
In the above composition of the silicon nitride sintered body,
Instead of Zn, Ca, Ni, Cu, Cr, Co, Mg,
One or more elements selected from Mn, Sn, Ho, Cd and Pb may be added.

【0013】窒化珪素焼結体に含まれるFe化合物粒子
は、殆どが粒径0.5μm以下のものである。詳しく
は、窒化珪素焼結体に含まれる粒径0.5μm以上のF
e化合物粒子は、200×200μmの2次元的範囲に
占める面積が0.1%以上であり、200×200μm
の範囲を縦横20等分に区分したセル(10μm ×10
μm 単位が400個)に占める面積が15%以下であ
る。
Most of the Fe compound particles contained in the silicon nitride sintered body have a particle size of 0.5 μm or less. Specifically, the F contained in the silicon nitride sintered body has a particle size of 0.5 μm or more.
The area of the e compound particles in a two-dimensional area of 200 × 200 μm is 0.1% or more, and the area of 200 × 200 μm
The cell (10μm x 10)
The area occupied by 400 μm units is 15% or less.

【0014】本発明による窒化珪素焼結体は、非常に緻
密な組織を構成する。窒化珪素焼結体の気孔率は0.5
%以下であり、気孔の平均内径は2μm以下である。窒
化珪素焼結体に含まれる窒化珪素は柱状粒子として存在
し、図4に示すように、分析結果によれば柱状粒子の全
数の80%以上が直径0.2〜1.2μm、長さ7.5
μm以下である。換言すれば、図5に示すように、柱状
粒子の長さ/直径の値は1〜20であり、柱状粒子の全
数の50%以上は長さ/直径の値が4.5〜20であ
り、詳しくは柱状粒子の全数の約50%は長さ/直径の
値が4.5〜10である。
The silicon nitride sintered body according to the present invention has a very dense structure. The porosity of the silicon nitride sintered body is 0.5.
%, And the average inner diameter of the pores is 2 μm or less. The silicon nitride contained in the silicon nitride sintered body exists as columnar particles, and as shown in FIG. 4, 80% or more of the total number of columnar particles has a diameter of 0.2 to 1.2 μm and a length of 7 according to the analysis result. .5
μm or less. In other words, as shown in FIG. 5, the columnar particles have a length / diameter value of 1 to 20, and 50% or more of the total number of columnar particles have a length / diameter value of 4.5 to 20. Specifically, about 50% of the total number of columnar particles has a length / diameter value of 4.5 to 10.

【0015】本発明による窒化珪素焼結体を製造するに
は、Si,Al,Y,O,N,Zn,Feの各元素を含
み、所定の組成比の粉末から成形体を成形し、該成形体
を窒素を含むガス雰囲気で温度1700℃以下で加熱し
てSiをSi3 4 に転化させ、次いで温度1700〜
2000℃で焼成して得る。
In order to manufacture the silicon nitride sintered body according to the present invention, a compact is compacted from a powder containing each element of Si, Al, Y, O, N, Zn and Fe and having a predetermined composition ratio. The molded body is heated in a gas atmosphere containing nitrogen at a temperature of 1700 ° C. or lower to convert Si into Si 3 N 4 , and then a temperature of 1700 to 1700.
Obtained by firing at 2000 ° C.

【0016】各元素Si,Al,Y,O,N,Zn,F
eの組成比は、各元素がSi,Si3 4 ,Al
2 3 ,Y2 3 ,Znの酸化物として存在する重量を
それぞれa,b,c,d,eとし、Feとして存在する
重量をfとする時、次の各式 6≦(c+d+e)100 /(1.67a+b+c+d+e+
f)≦12.0 20≦a/(a+b)≦90 1≦(c+d)/e 0.5≦ 100e/(a+b+c+d+e)≦7.5 1≦(c+d)/e 0.02≦ 100f/(1.67a+b+c+d+e+f)≦7.5 を満足するように、予め決定される。
Each element Si, Al, Y, O, N, Zn, F
The composition ratio of e is such that each element is Si, Si 3 N 4 , Al
When the weights existing as oxides of 2 O 3 , Y 2 O 3 and Zn are respectively a, b, c, d and e and the weights existing as Fe are f, the following respective equations 6 ≦ (c + d + e) 100 / (1.67a + b + c + d + e +
f) ≦ 12.0 20 ≦ a / (a + b) ≦ 90 1 ≦ (c + d) / e 0.5 ≦ 100e / (a + b + c + d + e) ≦ 7.5 1 ≦ (c + d) / e 0.02 ≦ 100f / (1.67a + b + c + d + e + f) ≦ 7.5 Is determined in advance.

【0017】Znの代りに、Ca,Ni,Cu,Cr,
Co,Mg,Mn,Sn,Ho,Cd,Pbの内から選
択される1種または1種以上の元素を用いることができ
る。前記成形体を作製するのに用いるSi粉末には、不
純物として0.07wt%以上のFe分を含み、かつ平均
粒径が1μm(レーザー回折法による)以下のものを用
いる。また、前記成形体を作製するのに用いる各組成の
粉末には、平均粒径が1μm以下のものを用いる。
Instead of Zn, Ca, Ni, Cu, Cr,
One or more elements selected from Co, Mg, Mn, Sn, Ho, Cd, and Pb can be used. As the Si powder used for producing the molded body, one having an Fe content of 0.07 wt% or more as an impurity and an average particle size of 1 μm (by a laser diffraction method) or less is used. Further, as the powder of each composition used for producing the molded body, one having an average particle size of 1 μm or less is used.

【0018】次に、具体的実施例を説明する。Next, a concrete example will be described.

【0019】[実施例1]Fe0.28wt%を含有する
平均粒径0.3μmの珪素粉末59.2部(約60wt
%)と、平均粒径0.3μmのα相窒化珪素粉末30.
9部と、平均粒径1μmのY2 3 粉末6.49部と、
平均粒径0.7μmのAl2 3 粉末3.89部と、平
均粒径1μmのZnO粉末1.29部とを、メタノー
ル、分散剤、樹脂製ボールと一緒に樹脂製ポツトに入れ
たうえ、28時間ボールミリングを行い、平均粒径0.
5μmのスラリーを作製した。
Example 1 59.2 parts (about 60 wt.%) Of silicon powder containing 0.28 wt.% Fe and having an average particle size of 0.3 .mu.m.
%) And α-phase silicon nitride powder having an average particle size of 0.3 μm.
9 parts and 6.49 parts of Y 2 O 3 powder having an average particle size of 1 μm,
3.89 parts of Al 2 O 3 powder having an average particle size of 0.7 μm and 1.29 parts of ZnO powder having an average particle size of 1 μm were put in a resin pot together with methanol, a dispersant, and resin balls. Ball milling was performed for 28 hours to obtain an average particle size of 0.
A 5 μm slurry was prepared.

【0020】次いで、前記スラリーを乾燥・粉砕したう
え、軸プレスにて縦10mm、横80mm、厚さ5mmの板状
体に成形し、該板状体に圧力2000kgf /cm2 でCI
P処理を施し、成形体を作製した。次いで、前記成形体
を圧力9.5kgf /cm2 の窒素ガス雰囲気にて、まず温
度1400℃で10時間焼成し、続いて温度1900℃
で5時間焼成し、窒化珪素焼結体A1(図3に代表的な組
成比の例として示す)を得た。
Next, the slurry is dried and pulverized, and then formed into a plate-like body having a length of 10 mm, a width of 80 mm and a thickness of 5 mm by an axial press, and the plate-like body is subjected to CI at a pressure of 2000 kgf / cm 2 .
P treatment was performed to produce a molded body. Then, the compact is fired in a nitrogen gas atmosphere at a pressure of 9.5 kgf / cm 2 at a temperature of 1400 ° C. for 10 hours and then at a temperature of 1900 ° C.
And sintered for 5 hours to obtain a silicon nitride sintered body A1 (shown as an example of a typical composition ratio in FIG. 3).

【0021】また、比較例として、珪素原料に含まれる
不純物の量が異なる原料を用い、実施例1と同様の成形
体から、同様の方法で焼結し、多数の焼結体B1(図3に
代表例として示す)を作製した。
Further, as a comparative example, using a raw material having different amounts of impurities contained in the silicon raw material, the same compact as in Example 1 was sintered in the same manner to obtain a large number of sintered compacts B1 (see FIG. 3). Is shown as a representative example).

【0022】図3に示すように、本発明による窒化珪素
焼結体A1と比較例の焼結体B1について、四点曲げによる
抗折強度(JISR1601)を測定したところ、本発明による
窒化珪素焼結体A1の抗折強度は、比較例の焼結体B1に比
べて、非常に優れたものであることが分つた。図1に示
すように、窒化珪素焼結体の原料に含まれるFeの量が
約0.08wt%以下では窒化珪素焼結体の抗折強度は半
減し、窒化珪素焼結体の原料に含まれるFeの量が約
0.08wt%以上、好ましくは0.1wt%を超えると窒
化珪素焼結体の抗折強度は約1000MPa という優れた
ものになる。
As shown in FIG. 3, with respect to the silicon nitride sintered body A1 of the present invention and the sintered body B1 of the comparative example, the bending strength (JISR1601) by four-point bending was measured. It was found that the bending strength of the united body A1 was extremely superior to that of the sintered body B1 of the comparative example. As shown in FIG. 1, when the amount of Fe contained in the raw material of the silicon nitride sintered body is about 0.08 wt% or less, the bending strength of the silicon nitride sintered body is halved, and it is contained in the raw material of the silicon nitride sintered body. When the amount of Fe contained is more than about 0.08 wt%, preferably more than 0.1 wt%, the bending strength of the silicon nitride sintered body becomes excellent at about 1000 MPa.

【0023】次に、Fe0.28(±0.02)wt%を
含有する珪素粉末の平均粒径が異なる原料を用い、実施
例1と同様(窒化珪素焼結体A1と組成比が同じ)の成形
体から、同様の方法で多数の窒化珪素焼結体C0を作製し
た。図2に示すように、得られた各窒化珪素焼結体C0に
ついて抗折強度を測定したところ、Fe0.28(±
0.02)wt%を含有する珪素粉末の平均粒径が約1μ
m以下では高い抗折強度を示すが、Fe0.28(±
0.02)wt%を含有する珪素粉末の平均粒径が約1μ
mを超えると従来公知のものと変らないことが分つた。
Next, using raw materials having different average particle sizes of silicon powder containing 0.28 (± 0.02) wt% of Fe, the same as in Example 1 (same composition ratio as the silicon nitride sintered body A1). A large number of silicon nitride sintered bodies C0 were manufactured from the molded body of 1. As shown in FIG. 2, the bending strength of each of the obtained silicon nitride sintered bodies C0 was measured to find that Fe0.28 (±
0.02) The average particle size of the silicon powder containing wt% is about 1μ.
High bending strength at m or less, but Fe0.28 (±
0.02) The average particle size of the silicon powder containing wt% is about 1μ.
It has been found that when it exceeds m, it is the same as the conventionally known one.

【0024】さらに、珪素と窒化珪素の混合比、Y2
3 ,Al2 3 ,ZnOの添加量が異なる原料を用い、
実施例1と同様の組成の成形体から、同様の方法で窒化
珪素焼結体D1〜D6,E1〜E3を作製した。図3に示すよう
に、各窒化珪素焼結体D1〜D6,E1〜E3の抗折強度はZn
Oの添加量に影響するところが大きく、ZnOの添加量
が0.01wt%以下でも0.06wt%以上でも、満足で
きるものではないことが分つた。
Further, the mixing ratio of silicon and silicon nitride, Y 2 O
Using raw materials with different addition amounts of 3 , Al 2 O 3 , and ZnO,
Silicon nitride sintered bodies D1 to D6 and E1 to E3 were produced from the molded body having the same composition as in Example 1 by the same method. As shown in FIG. 3, the bending strength of each of the silicon nitride sintered bodies D1 to D6 and E1 to E3 is Zn.
It was found that the amount of O added had a great influence, and that the amount of ZnO added was 0.01 wt% or less or 0.06 wt% or more was not satisfactory.

【0025】[0025]

【発明の効果】本発明は上述のように、0.02wt%以
上のFeを含有する窒化珪素焼結体であつて、該窒化珪
素焼結体に含まれる粒径0.5μm以上のFe化合物粒
子は、200×200μmの2次元的範囲に占める面積
が0.1%以上であり、200×200μmの範囲を縦
横20等分に区分したセル(10μm ×10μm 単位、
400個)に占める面積が15%以下であることを特徴
とするものであり、一般に不純物と考えられているFe
を多量に含んだ安価な珪素粉末を、主原料にして高強度
の窒化珪素焼結体を得ることができる。
As described above, the present invention provides a silicon nitride sintered body containing 0.02 wt% or more of Fe, the Fe compound having a grain size of 0.5 μm or more contained in the silicon nitride sintered body. The particles occupy an area of 0.1% or more in a two-dimensional range of 200 × 200 μm, and a cell (10 μm × 10 μm unit;
The area occupied by 400) is 15% or less, and Fe is generally considered to be an impurity.
It is possible to obtain a high-strength silicon nitride sintered body by using inexpensive silicon powder containing a large amount of as a main raw material.

【0026】本発明による窒化珪素焼結体は反応焼結を
利用するので、窒化珪素焼結体の焼成による収縮量は、
窒化珪素を主原料とする焼結体の1/3から1/4にな
り、窒化珪素焼結体の仕上りに変形が少く、ニアネツト
性(組成比の微小な相違により機械的性質が敏感に変化
しない)に優れ、製造経費を低減できる。
Since the silicon nitride sintered body according to the present invention utilizes reaction sintering, the shrinkage amount of the silicon nitride sintered body due to firing is
Compared to 1/3 to 1/4 of the sintered body using silicon nitride as the main raw material, there is little deformation in the finish of the silicon nitride sintered body, and the near netting property (the mechanical properties are sensitively changed due to the minute difference in the composition ratio). No) and the manufacturing cost can be reduced.

【0027】本発明の製造方法によれば、寸法安定性と
機械的強度に優れた窒化珪素焼結体を安価に製造でき
る。
According to the manufacturing method of the present invention, a silicon nitride sintered body excellent in dimensional stability and mechanical strength can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る窒化珪素焼結体の原料に含まれる
Feの量と窒化珪素焼結体の抗折強度の関係を表す線図
である。
FIG. 1 is a diagram showing the relationship between the amount of Fe contained in the raw material of a silicon nitride sintered body according to the present invention and the bending strength of the silicon nitride sintered body.

【図2】同窒化珪素焼結体の原料であるSi粉末の粒径
と窒化珪素焼結体の抗折強度の関係を表す線図である。
FIG. 2 is a diagram showing a relationship between a grain size of Si powder as a raw material of the silicon nitride sintered body and a bending strength of the silicon nitride sintered body.

【図3】同窒化珪素焼結体の原料粉末の組成比と窒化珪
素焼結体の抗折強度を示す表図である。
FIG. 3 is a table showing the composition ratio of the raw material powder of the silicon nitride sintered body and the bending strength of the silicon nitride sintered body.

【図4】同窒化珪素焼結体に含まれる窒化珪素の物理的
組成を示す線図である。
FIG. 4 is a diagram showing a physical composition of silicon nitride contained in the same silicon nitride sintered body.

【図5】同窒化珪素焼結体に含まれる窒化珪素の物理的
組成を示す線図である。
FIG. 5 is a diagram showing a physical composition of silicon nitride contained in the same silicon nitride sintered body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/58 102 V 35/65 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C04B 35/58 102 V 35/65

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】0.02wt%以上のFeを含有する窒化珪
素焼結体であつて、該窒化珪素焼結体に含まれる粒径
0.5μm以上のFe化合物粒子は、200×200μ
mの2次元的範囲に占める面積が0.1%以上であり、
200×200μmの範囲を縦横20等分に区分したセ
ル(10μm ×10μm 単位が400個)に占める面積
が15%以下であることを特徴とする、窒化珪素焼結
体。
1. A silicon nitride sintered body containing 0.02 wt% or more of Fe, wherein the Fe compound particles having a particle size of 0.5 μm or more contained in the silicon nitride sintered body are 200 × 200 μm.
The area occupied by the two-dimensional range of m is 0.1% or more,
A silicon nitride sintered body characterized by having an area of 15% or less in a cell (400 units of 10 μm × 10 μm) in which a range of 200 × 200 μm is divided into 20 equal parts vertically and horizontally.
【請求項2】前記窒化珪素焼結体の気孔率が0.5%以
下であり、気孔の平均内径が2μm以下である、請求項
1に記載の窒化珪素焼結体。
2. The silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body has a porosity of 0.5% or less and an average inner diameter of the pores of 2 μm or less.
【請求項3】前記窒化珪素焼結体に含まれる窒化珪素の
柱状粒子は、全柱状粒子数の80%以上が直径0.2〜
1.2μm、長さ7.5μm以下であり、各柱状粒子の
長さ/直径の値が1〜20であり、全柱状粒子数の50
%以上が長さ/直径の値が4.5〜20である、請求項
1に記載の窒化珪素焼結体。
3. The columnar particles of silicon nitride contained in the silicon nitride sintered body have a diameter of 0.2 to 80% of all columnar particles.
1.2 μm, 7.5 μm or less in length, the length / diameter value of each columnar particle is 1 to 20, and the total number of columnar particles is 50.
% Or more has a length / diameter value of 4.5 to 20. The silicon nitride sintered body according to claim 1.
【請求項4】前記窒化珪素焼結体はSi,Al,Y,
O,N,Zn,Feの各元素を含み、各元素がSi,S
3 4 ,Al2 3 ,Y2 3 ,Znの酸化物として
存在する重量をそれぞれa,b,c,d,eとし、Fe
として存在する重量をfとする時、次の各式 6≦(c+d+e)100 /(1.67a+b+c+d+e+
f)≦12.0 1≦(c+d)/e 0.02≦ 100f/(1.67a+b+c+d+e+f)≦7.5 0.001 ≦ 100e/(1.67a+b+c+d+e+f)≦7.
5 を満足する組成である、請求項1に記載の窒化珪素焼結
体。
4. The silicon nitride sintered body is made of Si, Al, Y,
Each element of O, N, Zn, Fe is included, and each element is Si, S
The weights existing as oxides of i 3 N 4 , Al 2 O 3 , Y 2 O 3 , and Zn are a, b, c, d, and e, respectively, and Fe
Assuming that the existing weight is f, the following equations 6 ≦ (c + d + e) 100 / (1.67a + b + c + d + e +)
f) ≦ 12.0 1 ≦ (c + d) / e 0.02 ≦ 100f / (1.67a + b + c + d + e + f) ≦ 7.5 0.001 ≦ 100e / (1.67a + b + c + d + e + f) ≦ 7.
The silicon nitride sintered body according to claim 1, which has a composition satisfying 5.
【請求項5】前記Zn元素の代りに、Ca,Ni,C
u,Cr,Co,Mg,Mn,Sn,Ho,Cd,Pb
の内から選択される少くとも1種の元素を含む、請求項
4に記載の窒化珪素焼結体。
5. Ca, Ni, C instead of the Zn element
u, Cr, Co, Mg, Mn, Sn, Ho, Cd, Pb
The silicon nitride sintered body according to claim 4, which contains at least one element selected from the group consisting of:
【請求項6】Si,Al,Y,O,N,Zn,Feの各
元素を含み、各元素がSi,Si34 ,Al2 3
2 3 ,Znの酸化物として存在する重量をそれぞれ
a,b,c,d,eとし、Feとして存在する重量をf
とする時、次の各式 6.0 ≦(c+d+e)100 /(1.67a+b+c+d+e
+f)≦12.0 20≦a/(a+b)≦90 1≦(c+d)/e 0.5≦ 100e/(a+b+c+d+e)≦7.5 0.02≦ 100f/(1.67a+b+c+d+e+f)≦7.5 を満足する組成の粉末から成形体を成形し、該成形体を
窒素を含むガス雰囲気で温度1700℃以下で加熱して
SiをSi3 4 に転化させ、次いで温度1700〜2
000℃で焼成することを特徴とする、窒化珪素焼結体
の製造方法。
6. An element containing Si, Al, Y, O, N, Zn and Fe, each element being Si, Si 3 N 4 , Al 2 O 3 ,
Weights existing as oxides of Y 2 O 3 and Zn are a, b, c, d, and e, respectively, and weights existing as Fe are f.
Then, the following equations 6.0 ≤ (c + d + e) 100 / (1.67a + b + c + d + e)
+ F) ≦ 12.0 20 ≦ a / (a + b) ≦ 90 1 ≦ (c + d) / e 0.5 ≦ 100e / (a + b + c + d + e) ≦ 7.5 0.02 ≦ 100f / (1.67a + b + c + d + e + f) ≦ 7.5 Then, the molded body is heated at a temperature of 1700 ° C. or lower in a gas atmosphere containing nitrogen to convert Si into Si 3 N 4 , and then at a temperature of 1700 to 2
A method for producing a silicon nitride sintered body, which comprises firing at 000 ° C.
【請求項7】前記Znの代りに、Ca,Ni,Cu,C
r,Co,Mg,Mn,Sn,Ho,Cd,Pbの内か
ら選択される少くとも1種の元素を含む、請求項6に記
載の窒化珪素焼結体の製造方法。
7. Instead of Zn, Ca, Ni, Cu, C
The method for producing a silicon nitride sintered body according to claim 6, which contains at least one element selected from r, Co, Mg, Mn, Sn, Ho, Cd, and Pb.
【請求項8】前記成形体を作製するのに用いるSi粉末
は、平均粒径が1μm以下であり、不純物として0.0
7wt%以上のFe分を含む、請求項6に記載の窒化珪素
焼結体の製造方法。
8. The Si powder used for producing the molded body has an average particle size of 1 μm or less, and contains 0.0% as an impurity.
7. The method for producing a silicon nitride sintered body according to claim 6, which contains 7 wt% or more of Fe.
【請求項9】前記成形体を作製するのに用いる各元素の
粉末の平均粒径は1μm以下である、請求項6に記載の
窒化珪素焼結体の製造方法。
9. The method for producing a silicon nitride sintered body according to claim 6, wherein the average particle size of the powder of each element used for producing the molded body is 1 μm or less.
JP6200079A 1994-02-07 1994-08-02 Silicon nitride sintered product and method for producing the same Pending JPH0840775A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6200079A JPH0840775A (en) 1994-08-02 1994-08-02 Silicon nitride sintered product and method for producing the same
DE1995601970 DE69501970T2 (en) 1994-02-07 1995-01-27 Sintered product based on silicon nitride
EP19950101096 EP0666246B1 (en) 1994-02-07 1995-01-27 Silicon nitride based sintered product
US08/384,981 US5591687A (en) 1994-02-07 1995-02-07 Silicon nitride based sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200079A JPH0840775A (en) 1994-08-02 1994-08-02 Silicon nitride sintered product and method for producing the same

Publications (1)

Publication Number Publication Date
JPH0840775A true JPH0840775A (en) 1996-02-13

Family

ID=16418509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200079A Pending JPH0840775A (en) 1994-02-07 1994-08-02 Silicon nitride sintered product and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0840775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234120A (en) * 2007-03-15 2013-11-21 Toshiba Corp Silicon nitride sintered body and sliding member using the same
WO2014192149A1 (en) * 2013-05-31 2014-12-04 京セラ株式会社 Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234120A (en) * 2007-03-15 2013-11-21 Toshiba Corp Silicon nitride sintered body and sliding member using the same
WO2014192149A1 (en) * 2013-05-31 2014-12-04 京セラ株式会社 Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same
CN105246860A (en) * 2013-05-31 2016-01-13 京瓷株式会社 Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same
JPWO2014192149A1 (en) * 2013-05-31 2017-02-23 京セラ株式会社 Ceramic sintered body, corrosion resistant member, filter and antihalation member using the same

Similar Documents

Publication Publication Date Title
JPS6054976A (en) Silicon nitride sintered body and manufacture
US5126294A (en) Sintered silicon nitride and production method thereof
JPH0840775A (en) Silicon nitride sintered product and method for producing the same
US5591687A (en) Silicon nitride based sintered product
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
JP3320645B2 (en) Manufacturing method of ceramic sintered body
US5545362A (en) Production method of sintered silicon nitride
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
EP0666246B1 (en) Silicon nitride based sintered product
JPH03218974A (en) Silicon nitride sintered body and production thereof
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JP3159350B2 (en) Highly dense silicon nitride sintered body and method for producing the same
JP2890849B2 (en) Method for producing silicon nitride sintered body
JP2656709B2 (en) Method for producing silicon nitride sintered body
JP2949936B2 (en) Method for producing silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JPH08169763A (en) Silicon nitride sintered compact and its production
EP0383431B1 (en) Process for producing high density silicon carbide sintered bodies
JP3492648B2 (en) TiN-Al2O3-based sintered body
JPH03164472A (en) Production of silicon nitride sintered body
JP2692353B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH02167861A (en) Production of calcined silicon nitride body
JPH07187797A (en) Production of silicon nitride-based sintered compact