JPH0839077A - Treatment of nonionic surfactant-containing waste solution - Google Patents

Treatment of nonionic surfactant-containing waste solution

Info

Publication number
JPH0839077A
JPH0839077A JP17543594A JP17543594A JPH0839077A JP H0839077 A JPH0839077 A JP H0839077A JP 17543594 A JP17543594 A JP 17543594A JP 17543594 A JP17543594 A JP 17543594A JP H0839077 A JPH0839077 A JP H0839077A
Authority
JP
Japan
Prior art keywords
nonionic surfactant
treatment
drainage
effluent
waste soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17543594A
Other languages
Japanese (ja)
Inventor
Kazuya Nakada
和也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP17543594A priority Critical patent/JPH0839077A/en
Publication of JPH0839077A publication Critical patent/JPH0839077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently remove a nonionic surfactant contained in a waste soln. in low cost by adjusting a waste soln. containing a nonionic surfactant to predetermined temp. and applying flocculation treatment thereto to form flock containing the nonionic surfactant. CONSTITUTION:When a waste soln. containing a nonionic surfactant is treated, at first, an oil component is removed from the waste soln. and the pH of the waste soln. is adjusted to 3 or less by sulfuric acid if necessary and, subsequently, an alkali aq. soln. such as potassium hydroxide is added to neutralize the waste soln. to adjust the pH thereof to 8-11. Next, the waste soln. is adjusted to required temp. and a flocculant (org. polymeric flocculant) is added to the waste soln. to form floc which is, in turn, sedimented to be separated. The temp. of the waste soln. after pH adjustment is adjusted to temp. equal to or higher than the cloud point of the nonionic surfactant contained in the waste soln., pref., to a temp. range of the cloud point -80 deg.C to efficiently perform flocculation treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非イオン性界面活性剤
を含有するアルカリ性、酸性及び中性排液の処理方法に
関するものである。更に詳しく述べるならば、本発明
は、特に各種非イオン性界面活性洗浄剤が混合されたよ
うな排液を処理する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating alkaline, acidic and neutral effluent containing a nonionic surfactant. More particularly, the present invention relates to a method of treating effluent, especially when mixed with various nonionic surfactant detergents.

【0002】[0002]

【従来の技術】近年、石油化学工業の発展に伴い非イオ
ン性界面活性剤の生産量が飛躍的に増大しており、その
用途も多岐にわたり、化学、繊維産業をはじめとする様
々な分野で有効利用されている。一方では、排液処理に
おいて十分に除去できなかった界面活性剤が河川に流出
し、生態系に多大な悪影響を及ぼしているという事実も
知られている。
2. Description of the Related Art In recent years, with the development of the petrochemical industry, the production amount of nonionic surfactants has dramatically increased, and its applications are wide-ranging, and in various fields including the chemical and textile industries. It is effectively used. On the other hand, it is also known that the surfactants that could not be sufficiently removed in the wastewater treatment flow out to the river and have a great adverse effect on the ecosystem.

【0003】非イオン性界面活性剤を含有する排液の水
質指標には、一般に化学的酸素要求量(以下、CODと
記す)が用いられており、このCODを低減させるため
の排液処理方法としては、 活性炭吸着法、 オゾン、過酸化水素などを用いた酸化分解法、および 微生物処理法 などが公知である。しかし、前記処理法及びについ
てはランニングコストが非常に高く、従って工業的実用
が困難であり、また、処理法に関しては、処理される
べき排液のpH、溶存酸素及び汚泥量(SV30)などを管
理することが必要となるなどの問題点がある。
Chemical oxygen demand (hereinafter referred to as COD) is generally used as a water quality indicator of a waste liquid containing a nonionic surfactant, and a waste liquid treatment method for reducing this COD is used. Known methods include an activated carbon adsorption method, an oxidative decomposition method using ozone and hydrogen peroxide, and a microbial treatment method. However, with regard to the above-mentioned treatment methods and, the running cost is very high, and therefore it is difficult to put them to practical use industrially, and regarding the treatment methods, the pH of the effluent to be treated, the amount of dissolved oxygen and the amount of sludge (SV 30 ) etc. There is a problem that it is necessary to manage.

【0004】例えば、金属表面の洗浄工程からの排液を
処理する場合には、まずオイルスキマー等を用いて、排
液から油分を除去し、次に中和、凝集処理により排液中
に溶存している金属を水酸化物あるいはカルシウム塩な
どの形で沈降させ、その後、上澄み液の中に残存してい
る界面活性剤を、上記〜のいずれかの処理方法で除
去する手法が広く利用されている。しかし、これら従来
の方法,およびでは、設備の新設及び微生物の管
理などが必要になるため、排液処理に要するコスト的な
負担が大きく、実用化が困難とされていた。
For example, when treating the drainage from the cleaning process of the metal surface, first the oil is removed from the drainage using an oil skimmer or the like, and then dissolved in the drainage by neutralization and coagulation treatment. A method is widely used in which the metal being precipitated is precipitated in the form of hydroxide or calcium salt, and then the surfactant remaining in the supernatant is removed by any one of the above treatment methods. ing. However, in these conventional methods and, since it is necessary to newly install equipment and control microorganisms, it is difficult to put them into practical use because the cost of drainage treatment is large.

【0005】従って、現状では排液中に含まれる非イオ
ン性界面活性剤を低コストでかつ効率的に除去し、しか
も排液のCODを低減させ得るような処理方法は、見い
出されていないのである。
Therefore, at present, no treatment method has been found which is capable of efficiently removing the nonionic surfactant contained in the effluent at low cost and reducing the COD of the effluent. is there.

【0006】[0006]

【発明が解決しようとする課題】本発明は、非イオン性
界面活性剤を含むアルカリ性及び酸性排液の処理方法を
提供しようとするものである。すなわち、本発明は、各
種非イオン性界面活性剤を使用する洗浄工程排液中に含
まれる非イオン性界面活性剤を除去し、排液のCODを
低減させる処理方法を提供しようとするものである。
The present invention seeks to provide a method for treating alkaline and acidic effluents containing nonionic surfactants. That is, the present invention is intended to provide a treatment method for removing the nonionic surfactant contained in the effluent of the washing process using various nonionic surfactants to reduce the COD of the effluent. is there.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するための手段について鋭意検討した結果、非イ
オン性界面活性剤含有排液の中和工程を、当該非イオン
性界面活性剤の曇点以上の温度において行うことにより
排液中の非イオン性界面活性剤を、その他の含有物とと
もに除去し、且つ、排液のCODを低減できることを新
たに見い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of extensive studies on means for solving the above-mentioned problems, the present inventors have found that the step of neutralizing a waste liquid containing a nonionic surfactant is carried out by the nonionic surfactant. It has been newly found that the nonionic surfactant in the effluent can be removed together with other contents and the COD of the effluent can be reduced by carrying out at a temperature above the cloud point of the agent, and the present invention is completed. Came to.

【0008】即ち、本発明の非イオン性界面活性剤含有
排液の処理方法は、非イオン性界面活性剤含有排液を処
理するに際し、当該非イオン性界面活性剤の曇点以上の
温度に調整し、これに凝集処理を施して、前記非イオン
性界面活性剤を含有する凝集体を形成させ、この凝集体
含有フロックを沈降させて前記排液から除去することを
特徴とするものである。
That is, the method for treating non-ionic surfactant-containing effluent of the present invention is such that, when treating the non-ionic surfactant-containing effluent, the non-ionic surfactant-containing effluent is treated at a temperature above the cloud point of the non-ionic surfactant. It is characterized in that it is prepared and subjected to a coagulation treatment to form an aggregate containing the nonionic surfactant, and the flocs containing the aggregate are allowed to settle and removed from the drainage. .

【0009】[0009]

【作用】本発明方法を適用できる排液は、それが非イオ
ン性界面活性剤を含んだ一般排液である限り、その含有
成分、濃度、pH等について何の限定もない。一般には、
Na+ ,K+ などのアルカリ金属イオン及び重金属イオ
ンなどを含むアルカリ性洗浄排液、あるいはSO4 2-
PO4 3- 及び重金属イオンなどを含む酸性洗浄排液に対
して、本発明方法を適用できる。図1に本発明方法によ
る酸性洗浄排液の処理工程の一例を示し、図2に本発明
方法によるアルカリ性洗浄排液の処理工程の一例を示
す。
The effluent to which the method of the present invention can be applied is not limited with respect to its components, concentration, pH, etc., as long as it is a general effluent containing a nonionic surfactant. Generally,
Alkaline cleaning effluent containing alkali metal ions such as Na + and K + and heavy metal ions, or SO 4 2− ,
To acidic washing drainage, including PO 4 3- and heavy metal ions, the present invention can be applied method. FIG. 1 shows an example of a treatment process of an acidic cleaning drainage by the method of the present invention, and FIG. 2 shows an example of a treatment process of an alkaline cleaning drainage by the method of the present invention.

【0010】排液処理工程および装置についても、一般
に利用されている中和、凝集沈殿法および装置を利用す
ることができ、特に制限はない。一般には、排液から油
分を除去した後、図1および図2に示されているように
この排液を、必要により硫酸等でそのpHが3以下となる
ように調整し、次いで水酸化カルシウム、水酸化ナトリ
ウム等のアルカリ水溶液を添加して排液を中和してその
pHを8〜11に調整し、次に、この排液に所要の温度調
整を施した後、これに凝集剤(有機系高分子凝集剤、無
機系凝集剤など)を添加し、形成したフロックを沈降さ
せて分離する工程を用いることが好ましい。
As for the drainage treatment step and apparatus, the commonly used neutralization, coagulation-sedimentation method and apparatus can be used without any particular limitation. Generally, after removing the oil from the drainage, the drainage is adjusted to pH 3 or less with sulfuric acid or the like, if necessary, as shown in FIGS. 1 and 2, and then calcium hydroxide is added. , An alkaline aqueous solution such as sodium hydroxide is added to neutralize the drainage.
After adjusting the pH to 8-11 and then subjecting this drainage solution to the required temperature adjustment, add flocculants (organic polymer flocculants, inorganic flocculants, etc.) to the flocs formed. It is preferable to use a step of settling and separating.

【0011】本発明方法において最も重要な点は、非イ
オン性界面活性剤を含有する排液を凝集処理する際の液
温管理である。すなわち排液を、その中に含有される非
イオン性界面活性剤の曇点以上の温度に調整し、かつこ
れに凝集処理を施す必要がある。この凝集処理温度は、
排液中に含まれる非イオン性界面活性剤の曇点以上の温
度、好ましくは当該曇点〜80℃の範囲である。
The most important point in the method of the present invention is the control of the liquid temperature when the waste liquid containing the nonionic surfactant is coagulated. That is, it is necessary to adjust the temperature of the drainage to a temperature not lower than the cloud point of the nonionic surfactant contained therein and to subject it to a coagulation treatment. This aggregation treatment temperature is
The temperature is equal to or higher than the cloud point of the nonionic surfactant contained in the drainage, preferably the cloud point to 80 ° C.

【0012】非イオン性界面活性剤の曇点は、その種
類、組成などにより異なるが、一般には15℃〜80℃
の範囲内にあるものが多い。
The cloud point of the nonionic surfactant varies depending on its type and composition, but is generally 15 ° C to 80 ° C.
Many are within the range.

【0013】本発明方法において、中和、凝集処理温度
を該排液中に含まれる非イオン性界面活性剤の曇点以上
に規定することにより、当該非イオン性界面活性剤溶質
分子が脱水和するという特異な挙動を示し、水溶性を失
って析出し、この析出した非イオン性界面活性剤が、添
加される凝集剤とともに、金属水酸化物、重金属イオ
ン、又は酸イオンなどとともにフロックを形成し、これ
を沈降させることができる。従って、曇点未満の温度で
前記排液を中和、凝集処理した場合には、フロックを形
成しにくくなるので、非イオン性界面活性剤の除去効率
が低下する。
In the method of the present invention, the neutralization and coagulation treatment temperature is defined to be equal to or higher than the cloud point of the nonionic surfactant contained in the effluent so that the nonionic surfactant solute molecule is dehydrated. Shows a peculiar behavior in that it loses water solubility and precipitates, and the precipitated nonionic surfactant forms flocs with metal hydroxide, heavy metal ions, or acid ions together with the coagulant added. It can be allowed to settle. Therefore, when the effluent is neutralized and coagulated at a temperature below the cloud point, flocs are less likely to be formed, and the removal efficiency of the nonionic surfactant decreases.

【0014】一方、中和、凝集処理温度が80℃を超え
た場合には、前記排液中の非イオン性界面活性剤の除去
は十分であるが、液温を維持するためのエネルギーコス
トが高くなるので経済的でないという問題を生ずること
がある。
On the other hand, when the neutralization / aggregation treatment temperature exceeds 80 ° C., the removal of the nonionic surfactant in the waste liquid is sufficient, but the energy cost for maintaining the liquid temperature is high. This can be problematic because it is expensive and not economical.

【0015】本発明方法に用いられる凝集処理には、当
該排液について、従来有効と認められているものを利用
すればよい。例えば、非イオン性界面活性剤含有排液
が、さらに、炭酸ナトリウム、リン酸ナトリウムなどの
アルカリビルダー、及び各種金属イオンのキレート剤な
どを含むアルカリ性液である場合には、この排液のpHを
8〜11に調整した後、これに塩化第二鉄、硫酸アルミ
ニウム、ポリ塩化アルミニウム、ポリアクリルアミド、
及びポリアクリルテステルなどから選ばれた凝集剤を用
いればよい。またそれが、硫酸、リン酸などの酸ビルダ
ー、及び各種金属イオンのキレート剤などを含む酸性液
である場合には、この排液のpHを8〜11に調整し、こ
れに前記凝集剤を添加すればよい。さらに、処理される
べき排液がpH8〜11を有する場合には、上記pH調整工
程なしで、所要の凝集剤を添加すればよい。
For the coagulation treatment used in the method of the present invention, it is sufficient to use a conventionally recognized effective drainage solution. For example, when the nonionic surfactant-containing drainage liquid is an alkaline liquid containing an alkali builder such as sodium carbonate and sodium phosphate, and a chelating agent for various metal ions, the pH of the drainage liquid is adjusted. After adjusting to 8 to 11, ferric chloride, aluminum sulfate, polyaluminum chloride, polyacrylamide,
Also, a flocculant selected from polyacrylic tester and the like may be used. When it is an acidic liquid containing an acid builder such as sulfuric acid and phosphoric acid, and a chelating agent for various metal ions, the pH of this effluent is adjusted to 8 to 11 and the aggregating agent is added thereto. It may be added. Furthermore, when the waste liquid to be treated has a pH of 8 to 11, the required coagulant may be added without the pH adjusting step.

【0016】[0016]

【実施例】下記実施例により、本発明を具体的に説明す
る。下記実施例においては、代表例として金属イオンを
含有するpH2の酸性洗浄排液、及び金属イオンを含有す
るpH10のアルカリ性洗浄排液を用いるが、本発明方法
はこれら排液処理に限定されるものではなく、中性排液
の場合、また、金属イオンを含有しない排液の場合にも
適用可能である。
The present invention will be described in detail with reference to the following examples. In the following examples, a pH 2 acidic cleaning drainage containing metal ions and a pH 10 alkaline cleaning drainage containing metal ions are used as typical examples, but the method of the present invention is limited to these drainage treatments. Instead, it is also applicable in the case of neutral drainage and also in the case of drainage containing no metal ions.

【0017】〔供試排液〕表1に示した組成を有する酸
性洗浄排液(pH2)、及び表2に示した組成を有するア
ルカリ性洗浄排液(pH10)を用いた。
[Test Drainage] An acidic cleaning drainage (pH 2) having the composition shown in Table 1 and an alkaline cleaning drainage (pH 10) having the composition shown in Table 2 were used.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】〔試験方法〕 <酸性洗浄排液を処理する場合>表1に記載の酸性洗浄
排液に、実施例1〜5及び比較例1〜2,4〜5の各々
に記載の非イオン性界面活性剤を添加し、排液の全量を
0.9リットルとした。これに、図1に示す工程で排液
処理を施し、中和、凝集沈殿後の上澄み液について、全
有機炭素量測定装置(TOC−500、島津製作所製)
を用いて、全有機炭素量(以下、TOCと記す)を測定
し、かつJIS水質試験法を用いてCODを測定した。
[Test Method] <When Treating Acid Wash Drainage> The acid wash drainage shown in Table 1 was added to the non-ionic substances described in Examples 1 to 5 and Comparative Examples 1 to 2 and 4 to 5 respectively. A reactive surfactant was added to make the total amount of drainage 0.9 liter. This is subjected to drainage treatment in the step shown in FIG. 1, and the total organic carbon content measuring device (TOC-500, manufactured by Shimadzu Corporation) is used for the supernatant liquid after neutralization and coagulation / precipitation.
Was used to measure the total amount of organic carbon (hereinafter referred to as TOC), and the COD was measured using the JIS water quality test method.

【0021】<アルカリ性洗浄排液を処理する方法>表
2に記載のアルカリ性洗浄排液に、実施例6〜7及び比
較例3,6の各々に記載の非イオン性界面活性剤を添加
し、排液の全量を0.9リットルとした。これに、図2
に示す工程で排液処理を施し、前記と同様の方法により
上澄み液のTOC及びCODを測定した。
<Method of Treating Alkaline Cleaning Effluent> To the alkaline cleaning effluent shown in Table 2, the nonionic surfactant described in each of Examples 6 to 7 and Comparative Examples 3 and 6 was added, The total amount of drainage was 0.9 liter. Figure 2
The drainage treatment was performed in the step shown in, and the TOC and COD of the supernatant were measured by the same method as described above.

【0022】実施例1 表1の酸性洗浄排液に、下記非イオン性界面活性剤
(1)を0.2g添加し、排液温度を40℃に調整し、
この温度で排液処理を施し凝集沈殿後の上澄み液につい
てTOC及びCODを測定した。非イオン性界面活性剤(1): ポリオキシエチレンポリオキシプロピレンノニルフェノ
ールエーテル(曇点35℃) 0.2g 測定結果を表3、および4に示す。
Example 1 0.2 g of the following nonionic surfactant (1) was added to the acid cleaning effluent of Table 1, and the effluent temperature was adjusted to 40 ° C.
Drainage treatment was performed at this temperature, and TOC and COD of the supernatant liquid after coagulation and sedimentation were measured. Nonionic surfactant (1): polyoxyethylene polyoxypropylene nonylphenol ether (cloud point 35 ° C.) 0.2 g The measurement results are shown in Tables 3 and 4.

【0023】実施例2 表1の酸性洗浄排液に、実施例1と同じ非イオン性界面
活性剤(1)を0.2g添加し、排液温度を60℃に調
整し、この温度で排液処理を施した。凝集沈殿後の上澄
み液についてTOC及びCODを測定した。測定結果を
表3および表4に示す。
Example 2 0.2 g of the same nonionic surfactant (1) as in Example 1 was added to the acidic cleaning drainage liquid of Table 1, the drainage temperature was adjusted to 60 ° C., and the drainage was performed at this temperature. Liquid treatment was applied. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Tables 3 and 4.

【0024】実施例3 表1の酸性洗浄排液に、下記非イオン性界面活性剤
(2)を0.2g添加し、排液温度を40℃に調整し、
これに排液処理を施した。凝集沈殿後の上澄み液につい
てTOC及びCODを測定した。 非イオン性界面活性剤(2): ポリオキシエチレンポリオキシプロピレン ノニルフェノールエーテル (曇点35℃) 0.1g ポリオキシエチレンポリオキシプロピレン ノニルアルコールエーテル (曇点17℃) 0.1g ───────────── 曇点26℃ 0.2g 測定結果を表3および表4に示す。
Example 3 0.2 g of the following nonionic surfactant (2) was added to the acidic cleaning drainage liquid of Table 1 and the drainage temperature was adjusted to 40 ° C.
This was subjected to drainage treatment. The TOC and COD of the supernatant after coagulation and precipitation were measured. Nonionic surfactant (2): polyoxyethylene polyoxypropylene nonylphenol ether (clouding point 35 ° C.) 0.1 g polyoxyethylene polyoxypropylene nonyl alcohol ether (clouding point 17 ° C.) 0.1 g ───── ──────── Cloud point 26 ℃ 0.2g Table 3 and Table 4 show the measurement results.

【0025】実施例4 表1の酸性洗浄排液に、実施例3と同一の非イオン性界
面活性剤(2)を0.2g添加し、排液温度を60℃に
調整してこれに排液処理を施した。凝集沈殿後の上澄み
液についてTOC及びCODを測定した。測定結果を表
3および表4に示す。
Example 4 0.2 g of the same nonionic surfactant (2) as in Example 3 was added to the acid cleaning drainage liquid of Table 1 and the drainage temperature was adjusted to 60 ° C. Liquid treatment was applied. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Tables 3 and 4.

【0026】実施例5 表1の酸性洗浄排液に、実施例3と同一の非イオン性界
面活性剤2を0.2g添加し、排液温度を80℃に調整
し、これに排液処理を施した。凝集沈殿後の上澄み液に
ついてTOC及びCODを測定した。測定結果を表3お
よび表4に示す。
Example 5 0.2 g of the same nonionic surfactant 2 as in Example 3 was added to the acid cleaning drainage liquid of Table 1, the drainage temperature was adjusted to 80 ° C., and the drainage treatment was performed. Was applied. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Tables 3 and 4.

【0027】実施例6 表2のアルカリ性洗浄排液に、下記非イオン性界面活性
剤(3)を0.18g添加し、排液温度を50℃に調整
し、これに排液処理を施した。凝集沈殿後の上澄み液に
ついてTOC及びCODを測定した。 非イオン性界面活性剤(3): ポリオキシエチレンノニルフェノールエーテル (曇点64℃) 0.10g ポリオキシエチレンポリオキシプロピレン モノ多価アルコールエーテル (曇点24℃) 0.08g ────────────── 曇点46℃ 0.18g 測定結果を表3および表4に示す。
Example 6 0.18 g of the following nonionic surfactant (3) was added to the alkaline cleaning effluent shown in Table 2, the effluent temperature was adjusted to 50 ° C., and the effluent treatment was performed. . The TOC and COD of the supernatant after coagulation and precipitation were measured. Nonionic surfactant (3): polyoxyethylene nonylphenol ether (cloud point 64 ° C.) 0.10 g polyoxyethylene polyoxypropylene monopolyhydric alcohol ether (cloud point 24 ° C.) 0.08 g ────── ──────── Cloud point 46 ℃ 0.18g Table 3 and Table 4 show the measurement results.

【0028】実施例7 表2のアルカリ性洗浄排液に、実施例6と同一の非イオ
ン性界面活性剤(3)を0.18g添加し、排液温度を
70℃に調整し、これに排液処理を施した。凝集沈殿後
の上澄み液についてTOC及びCODを測定した。測定
結果を表3および表4に示す。
Example 7 0.18 g of the same nonionic surfactant (3) as in Example 6 was added to the alkaline cleaning effluent shown in Table 2 and the effluent temperature was adjusted to 70 ° C. Liquid treatment was applied. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Tables 3 and 4.

【0029】比較例1 表1の酸性洗浄排液に、実施例1と同一の非イオン性界
面活性剤(1)を0.2g添加し、この排液に温度20
℃で排液処理を施した。凝集沈殿後の上澄み液について
TOC及びCODを測定した。測定結果を表3、表4に
示す。
Comparative Example 1 0.2 g of the same nonionic surfactant (1) as in Example 1 was added to the acid cleaning drainage liquid of Table 1, and the temperature of this drainage liquid was 20 ° C.
Drainage treatment was performed at ° C. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Tables 3 and 4.

【0030】比較例2 表1の酸性洗浄排液に、実施例3と同一の非イオン性界
面活性剤(2)を0.2g添加し、この排液に温度20
℃で排液処理を施した。凝集沈殿後の上澄み液について
TOC及びCODを測定した。測定結果を表3、表4に
示す。
Comparative Example 2 0.2 g of the same nonionic surfactant (2) as in Example 3 was added to the acidic cleaning drainage liquid of Table 1, and the temperature of this drainage liquid was 20 ° C.
Drainage treatment was performed at ° C. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Tables 3 and 4.

【0031】比較例3 表2のアルカリ性洗浄排液に、実施例6と同一の非イオ
ン性界面活性剤(3)を0.2g添加し、この排液に温
度35℃で排液処理を施した。凝集沈殿後の上澄み液に
ついてTOC及びCODを測定した。測定結果を表3、
表4に示す。
Comparative Example 3 To the alkaline cleaning effluent shown in Table 2, 0.2 g of the same nonionic surfactant (3) as in Example 6 was added, and the effluent was subjected to a effluent treatment at a temperature of 35 ° C. did. The TOC and COD of the supernatant after coagulation and precipitation were measured. The measurement results are shown in Table 3,
It shows in Table 4.

【0032】比較例4 表1の酸性洗浄排液に、実施例1と同一の非イオン性界
面活性剤(1)を0.2g添加し、この排液に温度20
℃で排液処理を施した。そして、凝集沈殿後の上澄み液
について、下記の条件で微生物処理を施し、処理液のT
OC及びCODを測定した。 <微生物処理条件> 微生物濃度(MLSS):3000ppm (下水処理場の
好気処理余剰汚泥) 溶存酸素濃度:1ppm 処理温度:20℃ 処理時間:24時間 測定結果を表3、表4に示す。
Comparative Example 4 0.2 g of the same nonionic surfactant (1) as in Example 1 was added to the acidic cleaning drainage liquid of Table 1, and the temperature of this drainage liquid was 20 ° C.
Drainage treatment was performed at ° C. Then, the supernatant after coagulation and sedimentation is subjected to microbial treatment under the following conditions,
OC and COD were measured. <Microorganism treatment conditions> Microorganism concentration (MLSS): 3000 ppm (aerobic treatment surplus sludge at sewage treatment plant) Dissolved oxygen concentration: 1 ppm Treatment temperature: 20 ° C Treatment time: 24 hours The measurement results are shown in Tables 3 and 4.

【0033】比較例5 表1の酸性洗浄排液に、実施例3と同一の非イオン性界
面活性剤(2)を0.2g添加し、この排液に20℃で
排液処理を施した。凝集沈殿後の上澄み液について、以
下の条件で活性炭吸着処理(バッチ式)を施し、処理液
のTOC及びCODを測定した。 <活性炭吸着処理条件> 活性炭原料:やしがら(クラレケミカル(株)製) メッシュ:10/32粒状 添加量:5000ppm 処理温度:20℃ 処理時間:30分 攪拌速度:100rpm 測定結果を表3、表4に示す。
Comparative Example 5 0.2 g of the same nonionic surfactant (2) as in Example 3 was added to the acid cleaning drainage liquid of Table 1, and this drainage liquid was subjected to drainage treatment at 20 ° C. . The supernatant after coagulation and precipitation was subjected to activated carbon adsorption treatment (batch type) under the following conditions, and the TOC and COD of the treated liquid were measured. <Activated carbon adsorption treatment conditions> Activated carbon raw material: Yashigara (manufactured by Kuraray Chemical Co., Ltd.) Mesh: 10/32 granules Addition amount: 5000 ppm Treatment temperature: 20 ° C Treatment time: 30 minutes Stirring speed: 100 rpm The measurement results are shown in Table 3, It shows in Table 4.

【0034】比較例6 表2のアルカリ性洗浄排液に、実施例6と同一の非イオ
ン性界面活性剤(3)を0.18g添加し、この排液に
35℃で排液処理を施した。凝集沈殿後の上澄み液につ
いて、比較例5と同じ条件で活性炭吸着処理(バッチ
式)を施し、処理液のTOC及びCODを測定した。測
定結果を表3、表4に示す。
Comparative Example 6 0.18 g of the same nonionic surfactant (3) as in Example 6 was added to the alkaline cleaning effluent shown in Table 2, and this effluent was subjected to drainage treatment at 35 ° C. . The supernatant after coagulation and precipitation was subjected to activated carbon adsorption treatment (batch type) under the same conditions as in Comparative Example 5, and the TOC and COD of the treated liquid were measured. The measurement results are shown in Tables 3 and 4.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】表3及び表4に示されるように、本発明の
実施例1〜7の方法で排液処理を行うことにより、従来
法による比較例4〜6と比べて、同等以上に非イオン性
界面活性剤の濃度を低減し、さらにCODの低減も達成
できた。これに対して、比較例1〜3に示すように、中
和、凝集沈殿処理の際の液温が非イオン性界面活性剤の
曇点より低く、しかも微生物処理や活性炭吸着処理を行
わない場合には、非イオン性界面活性剤を効率よく除去
できず、CODの低減も不十分であった。
As shown in Tables 3 and 4, by performing the drainage treatment according to the methods of Examples 1 to 7 of the present invention, compared to Comparative Examples 4 to 6 according to the conventional method, non-ionic equivalent to or more than non-ionic. It was possible to reduce the concentration of the cationic surfactant and further reduce COD. On the other hand, as shown in Comparative Examples 1 to 3, when the liquid temperature during the neutralization and coagulation-sedimentation treatment is lower than the cloud point of the nonionic surfactant, and the microbial treatment and the activated carbon adsorption treatment are not performed. However, the nonionic surfactant could not be removed efficiently, and the COD was not sufficiently reduced.

【0038】[0038]

【発明の効果】上記の説明から明らかなように、非イオ
ン性界面活性剤を含む排液を処理するに際し、この排液
中に含まれる非イオン性界面活性剤の曇点以上の温度で
この排液に、中和、凝集処理を施すことにより、非イオ
ン性界面活性剤を含む凝集体をフロックとして沈降、除
去させることができ、それによって低コストで排液中の
非イオン性界面活性剤の濃度を大幅に低減しかつCOD
の低減も可能となった。
As is apparent from the above description, when treating the waste liquid containing the nonionic surfactant, the waste liquid containing the nonionic surfactant is treated at a temperature higher than the cloud point of the nonionic surfactant contained in the waste liquid. By subjecting the waste liquid to neutralization and coagulation treatment, aggregates containing the nonionic surfactant can be settled and removed as flocs, which allows the nonionic surfactant in the waste liquid to be cost-effective. Significantly reduces the concentration of COD and COD
It has become possible to reduce.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、酸性洗浄排液に本発明方法を適用する
場合の工程の一例を示すブロック図。
FIG. 1 is a block diagram showing an example of steps in a case where the method of the present invention is applied to an acidic cleaning drainage liquid.

【図2】図2は、アルカリ性洗浄排液に本発明方法を適
用する場合の工程の一例を示すブロック図。
FIG. 2 is a block diagram showing an example of steps in the case of applying the method of the present invention to alkaline cleaning drainage.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非イオン性界面活性剤含有排液を、当該
非イオン性界面活性剤の曇点以上の温度に調整し、これ
に凝集処理を施して前記非イオン性界面活性剤を含有す
る凝集体を形成させ、この凝集体含有フロックを沈降さ
せて前記排液から除去することを特徴とする、非イオン
性界面活性剤含有排液の処理方法。
1. A non-ionic surfactant-containing drainage liquid is adjusted to a temperature not lower than the cloud point of the non-ionic surfactant and subjected to a coagulation treatment to contain the non-ionic surfactant. A method for treating a nonionic surfactant-containing effluent, which comprises forming an agglomerate and allowing the agglomerate-containing flocs to settle and be removed from the effluent.
【請求項2】 前記非イオン性界面活性剤含有排液の温
度を、当該非イオン性界面活性剤の曇点〜80℃の範囲
内に調整する、請求項1に記載の処理方法。
2. The processing method according to claim 1, wherein the temperature of the non-ionic surfactant-containing waste liquid is adjusted within the range of the cloud point of the non-ionic surfactant to 80 ° C.
【請求項3】 前記非イオン性界面活性剤含有排液のpH
を8.0〜11.0の範囲内に調整する、請求項1に記
載の処理方法。
3. The pH of the effluent containing the nonionic surfactant
Is adjusted within the range of 8.0 to 11.0.
JP17543594A 1994-07-27 1994-07-27 Treatment of nonionic surfactant-containing waste solution Pending JPH0839077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17543594A JPH0839077A (en) 1994-07-27 1994-07-27 Treatment of nonionic surfactant-containing waste solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17543594A JPH0839077A (en) 1994-07-27 1994-07-27 Treatment of nonionic surfactant-containing waste solution

Publications (1)

Publication Number Publication Date
JPH0839077A true JPH0839077A (en) 1996-02-13

Family

ID=15996051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17543594A Pending JPH0839077A (en) 1994-07-27 1994-07-27 Treatment of nonionic surfactant-containing waste solution

Country Status (1)

Country Link
JP (1) JPH0839077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541216A (en) * 1999-04-02 2002-12-03 ナショナル リサーチ カウンシル オブ カナダ Water-soluble composition of bioactive lipophilic compound
JP2006212472A (en) * 2005-02-01 2006-08-17 Jfe Engineering Kk Wastewater treatment method and apparatus
JP2009006214A (en) * 2007-06-26 2009-01-15 Daikin Ind Ltd Method for treating waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541216A (en) * 1999-04-02 2002-12-03 ナショナル リサーチ カウンシル オブ カナダ Water-soluble composition of bioactive lipophilic compound
JP2006212472A (en) * 2005-02-01 2006-08-17 Jfe Engineering Kk Wastewater treatment method and apparatus
JP4625894B2 (en) * 2005-02-01 2011-02-02 Jfeエンジニアリング株式会社 Wastewater treatment method and treatment apparatus
JP2009006214A (en) * 2007-06-26 2009-01-15 Daikin Ind Ltd Method for treating waste water

Similar Documents

Publication Publication Date Title
KR101278230B1 (en) The method and Appuratus of removing total nitrogen and phosphate in sewage and wastewater using precipitation-agent of rapidity for coagulation an flocculation
JP2007319792A (en) Waste water treatment method
KR101311157B1 (en) Treatment of wastewater containing high concentrations of fluoride
US9255018B2 (en) Cost-efficient treatment of fluoride waste
JP3886069B2 (en) Treatment of return water for sewage sludge intensive treatment
JP2014210232A (en) Method for processing alkaline waste water including calcium-eluting particles
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH0839077A (en) Treatment of nonionic surfactant-containing waste solution
CN1048532A (en) The treatment process of low turbidity waste sewage
KR100374148B1 (en) Treatment of wastewater generated in the paper preparation process
JP2016187790A (en) Method and device for treating inorganic carbon-containing water
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP2001334289A (en) Sludge treatment method
JP2000254660A (en) Removing method of phosphorus in industrial waste water
CN109095573B (en) Preparation method of inorganic coagulant for defluorination water treatment
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JPS6320600B2 (en)
JP2991588B2 (en) Method for dewatering sludge containing calcium compound
JPS61161191A (en) Treatment of heavy metal ion-containing solution
JP2005007246A (en) Treatment method for organic waste water
KR960011886B1 (en) Waste water treatment method
JPH10489A (en) Drainage treatment method
KR101339305B1 (en) With electrical aggregation fluoride and treatment of wastewater containing hexavalent chromium
JP4250298B2 (en) Novel flocculant and method for producing the same
JPH1076275A (en) Wastewater treatment agent