JP2000254660A - Removing method of phosphorus in industrial waste water - Google Patents

Removing method of phosphorus in industrial waste water

Info

Publication number
JP2000254660A
JP2000254660A JP11062365A JP6236599A JP2000254660A JP 2000254660 A JP2000254660 A JP 2000254660A JP 11062365 A JP11062365 A JP 11062365A JP 6236599 A JP6236599 A JP 6236599A JP 2000254660 A JP2000254660 A JP 2000254660A
Authority
JP
Japan
Prior art keywords
phosphorus
treatment
wastewater
waste water
ferric chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11062365A
Other languages
Japanese (ja)
Inventor
Osamu Koyama
修 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP11062365A priority Critical patent/JP2000254660A/en
Publication of JP2000254660A publication Critical patent/JP2000254660A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a removing method of phosphorus in industrial waste water by which the reduction of a running cost of a waste water treating equipment is attained by executing the complete flocculating and settling removal of a phosphorus component with suitable ferric chloride addition in the dephosphorizing treatment of the org. waste water from an oil refinery etc. SOLUTION: After treating the phosphorus in the waste water discharged from the factory and having a phosphorus concn. of 100-600 mg/l when expressed by whole phosphorus content by an activated sludge process, the phosphorus is extracted out of the system as sludge by executing flocculating treatment under the condition that >=50 mg/l magnesium ion is incorporated by jointly using flocculating treatment with ferric chloride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、工場排水のリンの
除去方法に関する。
[0001] The present invention relates to a method for removing phosphorus from industrial wastewater.

【0002】[0002]

【従来の技術】湖沼や内湾等の閉鎖的な水域で主として
発生する富栄養化現象は、リンや窒素等の栄養塩類が、
これらの水域に流入・蓄積することと密接に関係してい
る。工場から出される排水中には、多量の有機性汚濁物
質(BODやCODで表されるもの)が含有されている
ため、通常、生物学的にこれらの汚濁物質を分解する活
性汚泥法によって処理されている。この時、工場排水中
に比較的多量に含まれているリン分も上記の生物学的な
処理によって除去される。しかし、活性汚泥法によって
工場排水中の多量のリンを完全に除去することは難し
く、脱リン処理が不充分となって、放流水中のリン濃度
が高くなることが生じ、富栄養化現象を引き起こす恐れ
がある。
2. Description of the Related Art Eutrophication, which occurs mainly in closed water bodies such as lakes and inner bays, is caused by nutrients such as phosphorus and nitrogen.
It is closely related to inflow and accumulation in these waters. Since wastewater discharged from factories contains a large amount of organic pollutants (represented by BOD and COD), it is usually treated by an activated sludge method that biologically decomposes these pollutants. Have been. At this time, a relatively large amount of phosphorus contained in the factory wastewater is also removed by the biological treatment. However, it is difficult to completely remove a large amount of phosphorus from factory wastewater by the activated sludge method, and the phosphorus removal treatment becomes insufficient, resulting in an increase in the concentration of phosphorus in the effluent, causing a eutrophication phenomenon. There is fear.

【0003】そこで、工場排水等の浄化処理に際して
は、排水中のリンの除去を更に充分に行なうために、物
理化学的な脱リン法である凝集沈澱法を併用することが
行なわれている。排水中のリンを除去する場合の特徴
は、リンは窒素と異なり大気中に放散される物質ではな
いので、上記したような生物学的或いは物理化学的な方
法のいずれの場合も、リンを不溶性の固体にし、系外に
取り去らなければならない点にある。換言すれば、リン
の除去処理技術は、リン濃度の高い汚泥を効率よく作り
出す技術とも言え、リンを多く含む排水は、大量の汚泥
(スラッジ)を生む。特に、凝集剤の添加量が適正でな
い場合には、凝集剤にかかる費用はもとより、大量のス
ラッジを生むこととなり、その処理に余分なコストがか
かる。従って、最適な条件下で効率のよい凝集処理を行
ない、非水中の脱リンが充分になされ、しかも、スラッ
ジの発生量を抑制することが望まれる。
[0003] Therefore, in the purification treatment of factory effluent and the like, coagulation sedimentation, which is a physicochemical dephosphorization method, has been used in combination to remove phosphorus in the effluent more sufficiently. The feature of removing phosphorus in wastewater is that phosphorus is not a substance that is released into the atmosphere unlike nitrogen, so that phosphorus is insoluble in both biological and physicochemical methods as described above. In that it must be solid and removed outside the system. In other words, the phosphorus removal treatment technology can be said to be a technology for efficiently producing sludge having a high phosphorus concentration, and wastewater containing a large amount of phosphorus produces a large amount of sludge. In particular, if the added amount of the flocculant is not appropriate, a large amount of sludge will be generated, in addition to the cost of the flocculant, and the treatment will require extra cost. Accordingly, it is desired that efficient coagulation treatment is performed under optimum conditions, that phosphorus removal in non-water is sufficiently performed, and that the amount of generated sludge is suppressed.

【0004】[0004]

【発明が解決しようとする課題】これに対し、上記した
工場排水の脱リンの際に行なう凝集沈澱法に利用されて
いる一般的な凝集剤として、塩化第2鉄があるが、本発
明者らの検討によれば、塩化第2鉄を凝集剤として使用
して脱リン処理を行なった場合に、例えば、特に、排水
中に硫酸イオンが多く存在していたり、排水の温度が高
いと、処理性が悪化することが分かった。この処理性の
悪化は、必然的に、凝集剤の添加量の増加を招き、この
結果、生成するスラッジの量も多くなり、排水処理にか
かるコストが増大するという問題があった。
On the other hand, as a general coagulant used in the coagulation sedimentation method performed at the time of dephosphorization of industrial wastewater, there is ferric chloride. According to these studies, when the dephosphorization treatment is performed using ferric chloride as a coagulant, for example, particularly when a large amount of sulfate ions is present in the wastewater or the temperature of the wastewater is high, It turned out that processability deteriorated. The deterioration of the processability inevitably leads to an increase in the amount of the coagulant added. As a result, the amount of the generated sludge increases, and there is a problem that the cost for wastewater treatment increases.

【0005】従って、本発明の目的は、製油工場等から
の有機性排水の脱リン処理を適正な塩化第2鉄の添加量
で、しかも完全なリン分の凝集沈澱除去を行なうこと
で、排水処理施設のランニングコストの低減が達成でき
る工場排水のリンの除去方法を提供することにある。
[0005] Accordingly, an object of the present invention is to remove phosphorus from organic wastewater from an oil refinery or the like by completely removing coagulation and sedimentation of phosphorus with an appropriate amount of ferric chloride added. An object of the present invention is to provide a method for removing phosphorus from factory wastewater, which can reduce the running cost of a treatment facility.

【0006】[0006]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、工場から排
出されるリン濃度が全リン成分量で表した場合に100
〜600mg/lである排水中のリンを活性汚泥法で処
理した後、塩化第2鉄による凝集処理を併用し、マグネ
シウムイオンが50mg/l以上含まれる条件下で凝集
処理を行なってリンをスラッジとして系外へと取り出す
ことを特徴とする工場排水のリンの除去方法である。
The above objects are achieved by the present invention described below. That is, the present invention provides a method in which the phosphorus concentration discharged from a factory is 100
600600 mg / l of phosphorus in the waste water is treated by the activated sludge method, followed by coagulation treatment with ferric chloride, and coagulation treatment is performed under the condition that magnesium ion is contained at 50 mg / l or more, and phosphorus is sludge treated. This is a method for removing phosphorus from factory wastewater, which is taken out of the system.

【0007】[0007]

【発明の実施の形態】以下、本発明の好ましい実施の態
様を挙げて本発明を更に詳細に説明する。本発明者ら
は、上記した従来技術の問題点を解消すべく鋭意検討の
結果、従来より行なわれている活性汚泥法に、凝集剤と
して塩化第2鉄による凝集沈澱法を併用した工場排水の
リン処理方法において、凝集処理の際にマグネシウムイ
オンが特定量存在する状態で処理すれば、排水中に比較
的多量に含まれるリンを効率よくスラッジ中へと移行さ
せることができることを知見して本発明に至った。又、
凝集剤である塩化第2鉄の量を、排水中の全リン分に対
して特定の割合になるように制御すれば、排水中に比較
的多量に含まれるリンを効率よくスラッジ中へと移行さ
せることができることも分かった。更に、凝集処理を行
なう際のpH値を最適に制御すれば、排水中に比較的多
量に含まれるリンを効率よくスラッジ中へと移行させる
ことができることも分かった。本発明の工場排水のリン
の除去方法は、特に、温度が高く、しかも硫酸イオンを
多く含む排水について、著しい効果があることを確認で
きた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of preferred embodiments of the present invention. The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, found that the activated sludge method, which has been conventionally performed, is combined with the coagulation sedimentation method using ferric chloride as a coagulant. In the phosphorus treatment method, it was found that if a specific amount of magnesium ion is present during the coagulation treatment, phosphorus contained in a relatively large amount in wastewater can be efficiently transferred to sludge. Invented the invention. or,
By controlling the amount of ferric chloride, which is a coagulant, to a specific ratio to the total phosphorus content in the wastewater, phosphorus contained in a relatively large amount in the wastewater can be efficiently transferred to the sludge. I also knew it could be done. Furthermore, it has been found that by optimally controlling the pH value at the time of performing the coagulation treatment, phosphorus contained in a relatively large amount in wastewater can be efficiently transferred into sludge. It has been confirmed that the method for removing phosphorus from factory wastewater of the present invention has a remarkable effect particularly on wastewater having a high temperature and containing a large amount of sulfate ions.

【0008】本発明者らは、100〜600mg/lの
リン分を含む排水中に対して、リン除去性能に優れる塩
化第2鉄の添加割合について検討した結果、排水中の全
リン成分量(T−P)に対する塩化第2鉄(FeC
3)の比で表した場合に、FeCl3/T−Pの値が、
3.0〜8.0の範囲、より好ましくは、4.0〜6.
5の範囲にある場合に、最適な処理が可能であることが
分かった。即ち、このようにすれば、排水中の脱リンが
充分になされ、しかも、スラッジの発生量を抑制でき、
効率のよい処理が可能となる。
The inventors of the present invention have studied the addition ratio of ferric chloride excellent in phosphorus removal performance to wastewater containing 100 to 600 mg / l of phosphorus, and found that the total amount of phosphorus in the wastewater ( Ferric chloride (FeC)
l 3 ), the value of FeCl 3 / TP is
The range of 3.0 to 8.0, more preferably 4.0 to 6.0.
It was found that the optimum processing was possible when it was in the range of 5. That is, in this way, the dephosphorization in the wastewater is sufficiently performed, and the amount of generated sludge can be suppressed,
Efficient processing becomes possible.

【0009】又、凝集処理条件について、更に詳細な検
討を行なった結果、凝集処理の際の排水を、pH値が
3.0〜7.0で、更に好ましくは、4.0〜6.0の
値となるように調整して凝集処理を行なえば、処理効率
を向上できることが分かった。更に、製油工場排水のよ
うに、水温が常温よりも高い排水、例えば、30℃以上
の排水は、凝集処理効率がよいが、更に、処理する排水
のpH値を上記のように制御することが有効であった。
Further, as a result of further detailed examination of the coagulation treatment conditions, the wastewater at the time of the coagulation treatment has a pH value of 3.0 to 7.0, and more preferably 4.0 to 6.0. It has been found that the treatment efficiency can be improved by performing the coagulation treatment while adjusting the value to be equal to the above value. Furthermore, wastewater having a water temperature higher than room temperature, such as wastewater from an oil refinery, for example, wastewater having a temperature of 30 ° C. or higher has good coagulation efficiency, but it is also possible to control the pH value of the wastewater to be treated as described above. Was effective.

【0010】更に検討を進めた結果、上記のように排水
の温度が30℃以上と高く、しかも硫酸イオンが多く含
まれている製油工場等からの排水においては、塩化第2
鉄を凝集剤に使用して処理した場合に、処理性の悪化が
著しく、効率のよい凝集処理が難しいことが分かった。
そこで、この場合に最適な凝集処理条件について種々検
討した結果、排水中に存在するマグネシウムイオンの量
を制御することによって、処理効率を格段に向上させる
ことが可能となることが分かった。即ち、排水中に存在
するマグネシウムイオンの量を50mg/l以上とした
条件下で凝集処理を行なえば、処理効率を向上させるこ
とができる。この場合に、マグネシウムイオンの量は、
排水中に50mg/l以上の濃度で含まれていればよ
く、多過ぎると経済性を損なうことになるので1,00
0mg/l以下の範囲で添加することが好ましい。マグ
ネシウムイオンを添加して凝集処理を行なう場合には、
排水中にマグネシウムイオンを含む薬剤を相当量添加し
ても勿論よいが、経済的な処理を行なう手段としては、
排水に海水を混入させ、海水中のマグネシウムイオンを
有効利用することが好ましい。薬剤としては、例えば、
塩化マグネシウム等を用いればよい。又、この際に水酸
化マグネシウムを用いれば、同時に、処理する排水のp
H調整を行なうことができる。
As a result of further study, as described above, wastewater from an oil refinery or the like where the temperature of the wastewater is as high as 30 ° C. or more and which contains a large amount of sulfate ions, has
It was found that when iron was used as a coagulant, the processability deteriorated remarkably, and efficient coagulation treatment was difficult.
Therefore, as a result of various studies on the optimum coagulation treatment conditions in this case, it was found that the treatment efficiency could be significantly improved by controlling the amount of magnesium ions present in the wastewater. That is, if the coagulation treatment is performed under the condition that the amount of magnesium ions present in the wastewater is 50 mg / l or more, the treatment efficiency can be improved. In this case, the amount of magnesium ion is
It is sufficient that the concentration is 50 mg / l or more in the wastewater. If the concentration is too high, the economic efficiency is impaired.
It is preferable to add in the range of 0 mg / l or less. When performing the coagulation treatment by adding magnesium ions,
Of course, a considerable amount of a drug containing magnesium ions may be added to the wastewater, but as a means for performing economical treatment,
It is preferable that seawater is mixed into the wastewater to make effective use of magnesium ions in the seawater. As a drug, for example,
Magnesium chloride or the like may be used. In addition, if magnesium hydroxide is used at this time, p
H adjustment can be performed.

【0011】[0011]

【実施例】以下、本発明の実施例及び比較例を挙げて本
発明を更に具体的に説明する。図1に示したフローに従
って建設した500リットル/day規模のパイロット
プラントを使用して、下記の表1に示した製油工場排水
(原水)の活性汚泥処理及び塩化第2鉄による凝集処理
をして脱リン操作を行った。先ず、表1に記載した組成
を有する原水を、BOD負荷量0.3kg/m3、HR
T3.0日の運転条件で活性汚泥処理を行った。処理後
に得られた処理水の組成を調べたところ表1に示したよ
うであり、高いリン濃度を有していた。このようにして
得られた活性泥処理水について脱リン処理を行なった。
The present invention will be described more specifically below with reference to examples and comparative examples of the present invention. Using a 500 liter / day scale pilot plant constructed according to the flow shown in FIG. 1, the activated sludge treatment and the coagulation treatment with ferric chloride are performed on the refinery factory effluent (raw water) shown in Table 1 below. A dephosphorization operation was performed. First, raw water having the composition shown in Table 1 was subjected to a BOD load of 0.3 kg / m 3 and HR
Activated sludge treatment was performed under operating conditions of T3.0 days. When the composition of the treated water obtained after the treatment was examined, it was as shown in Table 1, and it had a high phosphorus concentration. The activated mud treated water thus obtained was subjected to a dephosphorization treatment.

【0012】[0012]

【表1】表1:原水及び処理水性状(製油工場排水) [Table 1] Table 1: Raw water and treated aqueous state (oil refinery factory effluent)

【0013】実施例1 上記した活性泥処理水(170L/日)を脱リン装置に
導入し、脱リンを行った。脱リン処理装置では、生物処
理水を6リットルの混合槽に導入し、塩化第2鉄を、全
リン成分に対してFeCl3/T−P=5.0になるよ
う添加した。更に、マグネシウムイオン量が500mg
/lの割合になるように、MgCl2・6H2Oを添加し
てよく混合させた。続いて、これを18リットルの反応
槽に導入し、25%水酸化ナトリウム溶液によってpH
が6.0、排水の温度が25℃になるように調整して脱
リン処理を行った。処理後、続く18リットルの凝集槽
に導入し、ここで高分子凝集剤を約1mg/lになるよ
う添加し、フロック化を行った。その後、沈澱槽におい
て、フロック化した凝集スラッジと処理水とを重力沈澱
により分離したものを最終処理水とした。この処理水に
ついてリン濃度を測定し、その結果を表2に示した。表
2から明らかなように、処理水中のリン濃度は2.0m
g/l以下であり、充分な脱リン処理が行なわれてい
た。
Example 1 The above-mentioned treated activated mud (170 L / day) was introduced into a dephosphorizer to perform dephosphorization. In the dephosphorization treatment apparatus, biologically treated water was introduced into a 6-liter mixing tank, and ferric chloride was added so that FeCl 3 /TP=5.0 with respect to all phosphorus components. Furthermore, the amount of magnesium ions is 500mg
MgCl 2 .6H 2 O was added and mixed well so that the ratio became / l. Subsequently, this was introduced into an 18-liter reaction tank, and the pH was adjusted with a 25% sodium hydroxide solution.
Was adjusted to 6.0, and the temperature of the waste water was adjusted to 25 ° C. to perform a dephosphorization treatment. After the treatment, the mixture was introduced into a subsequent 18-liter flocculation tank, where a polymer flocculant was added so as to be about 1 mg / l, and flocculation was performed. Thereafter, in the sedimentation tank, the floculated flocculated sludge and the treated water were separated by gravity sedimentation to obtain final treated water. The phosphorus concentration of this treated water was measured, and the results are shown in Table 2. As is clear from Table 2, the phosphorus concentration in the treated water was 2.0 m
g / l or less, and sufficient dephosphorization was performed.

【0014】実施例2 脱リン処理の際の排水の温度を35℃とした以外は、実
施例1と同様にして脱リン処理を行なった。又、同様
に、処理水のリン濃度を測定した結果、表2に示したよ
うに、実施例1と同様に良好であった。
Example 2 A phosphorus removal treatment was carried out in the same manner as in Example 1 except that the temperature of the waste water during the phosphorus removal treatment was 35 ° C. Similarly, the phosphorus concentration of the treated water was measured, and as a result, as shown in Table 2, it was as good as in Example 1.

【表2】表2:実施例の処理条件及び処理水のリン濃度 [Table 2] Table 2: Treatment conditions and phosphorus concentration of treated water

【0015】比較例1〜6 表3に示した条件で脱リン処理する以外は、実施例と同
様の試験を行った。その結果、実施例の場合と比較し
て、処理水のリン濃度が高かった。実施例の場合と同様
に、処理水のリン濃度を2mg/l以下にするために
は、塩化第2鉄の添加量を増やし、FeCl3/T−P
の値が9.0以上となるまで大量に添加する必要がある
ことが分かった。
Comparative Examples 1 to 6 The same tests as in the Examples were performed except that the dephosphorization treatment was performed under the conditions shown in Table 3. As a result, the phosphorus concentration of the treated water was higher than that of the example. As in the case of the embodiment, in order to reduce the phosphorus concentration of the treated water to 2 mg / l or less, the amount of ferric chloride added was increased and FeCl 3 / TP was added.
It was found that it was necessary to add a large amount until the value became 9.0 or more.

【0016】[0016]

【表3】表3:比較例の処理条件及び処理水のリン濃度 Table 3: Treatment conditions and phosphorus concentration of treated water in Comparative Example

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
リン分を比較的多量に含む工場排水を処理した場合に、
脱リン効率に優れ、処理水を放流した場合に富栄養化現
象が生じることなく、排水処理施設のランニングコスト
の低減の達成が可能な工場排水のリンの除去方法が提供
される。更に、本発明によれば、リン分を比較的多量に
含み、しかも、排水の温度が高く、且つ、硫酸イオンの
濃度の高い排水は、塩化第2鉄によって凝集処理する場
合に処理効率が悪かったが、かかる排水についても上記
の優れた効果が得られる工場排水のリンの除去方法が提
供される。
As described above, according to the present invention,
When processing factory wastewater containing a relatively large amount of phosphorus,
Provided is a method for removing phosphorus from factory wastewater, which is excellent in dephosphorization efficiency, does not cause eutrophication when treated water is discharged, and can achieve a reduction in running cost of a wastewater treatment facility. Further, according to the present invention, wastewater containing a relatively large amount of phosphorus and having a high wastewater temperature and a high concentration of sulfate ions has poor treatment efficiency when coagulated by ferric chloride. However, a method for removing phosphorus from factory wastewater which provides the above-mentioned excellent effects also for such wastewater is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工場排水のリンの除去方法の一例の処
理フローである。
FIG. 1 is a processing flow of an example of a method for removing phosphorus from factory wastewater of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 工場から排出されるリン濃度が全リン成
分量で表した場合に100〜600mg/lである排水
中のリンを活性汚泥法で処理した後、塩化第2鉄による
凝集処理を併用し、マグネシウムイオンが50mg/l
以上含まれる条件下で凝集処理を行なってリンをスラッ
ジとして系外へと取り出すことを特徴とする工場排水の
リンの除去方法。
1. An activated sludge process for phosphorus in waste water having a phosphorus concentration of 100 to 600 mg / l in terms of the total phosphorus component amount discharged from a factory, followed by coagulation treatment with ferric chloride. Combined use, magnesium ion 50mg / l
A method for removing phosphorus from factory wastewater, comprising conducting a coagulation treatment under the above-mentioned conditions to remove phosphorus as sludge outside the system.
【請求項2】 塩化第2鉄の添加量が、塩化第2鉄量/
全リン成分量=3.0〜8.0となる条件で凝集処理を
行なう請求項1に記載の工場排水のリンの除去方法。
2. The amount of ferric chloride to be added is equal to the amount of ferric chloride /
The method for removing phosphorus from factory wastewater according to claim 1, wherein the coagulation treatment is performed under the condition that the total phosphorus component amount = 3.0 to 8.0.
【請求項3】 塩化第2鉄による凝集処理を、pH3.
0〜7.0の条件下で行なう請求項1又は請求項2に記
載の工場排水のリンの除去方法。
3. The coagulation treatment with ferric chloride is carried out at pH 3.
The method for removing phosphorus from industrial wastewater according to claim 1 or 2, wherein the method is carried out under a condition of 0 to 7.0.
JP11062365A 1999-03-09 1999-03-09 Removing method of phosphorus in industrial waste water Pending JP2000254660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11062365A JP2000254660A (en) 1999-03-09 1999-03-09 Removing method of phosphorus in industrial waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11062365A JP2000254660A (en) 1999-03-09 1999-03-09 Removing method of phosphorus in industrial waste water

Publications (1)

Publication Number Publication Date
JP2000254660A true JP2000254660A (en) 2000-09-19

Family

ID=13198031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11062365A Pending JP2000254660A (en) 1999-03-09 1999-03-09 Removing method of phosphorus in industrial waste water

Country Status (1)

Country Link
JP (1) JP2000254660A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233887A (en) * 2001-02-09 2002-08-20 Shinko Pantec Co Ltd Method for treating organic waste water and facilities therefor
WO2004106233A3 (en) * 2003-05-27 2005-02-17 Glenn Springs Holdings Inc A process for recovering phosphorus from phosphorous production sludge
JP2007260556A (en) * 2006-03-28 2007-10-11 Kurita Water Ind Ltd Phosphoric acid-containing wastewater treatment method and apparatus
CN105645546A (en) * 2016-03-30 2016-06-08 南京工业大学 Efficient coagulant special for emulsified oil waste water and preparation method of efficient coagulant
CN105645538A (en) * 2016-01-17 2016-06-08 济南大学 Method for preparing polymerized acid ion ferrous flocculant through waste warm patches
CN105668733A (en) * 2016-01-17 2016-06-15 济南大学 Polymerized ferric salt flocculating agent prepared by using waste warm pastes
CN105668734A (en) * 2016-01-17 2016-06-15 济南大学 Composite phosphorus-accumulating inorganic ferric salt flocculating agent prepared by using waste warm pastes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233887A (en) * 2001-02-09 2002-08-20 Shinko Pantec Co Ltd Method for treating organic waste water and facilities therefor
JP4714350B2 (en) * 2001-02-09 2011-06-29 株式会社神鋼環境ソリューション Organic wastewater treatment method
WO2004106233A3 (en) * 2003-05-27 2005-02-17 Glenn Springs Holdings Inc A process for recovering phosphorus from phosphorous production sludge
JP2007260556A (en) * 2006-03-28 2007-10-11 Kurita Water Ind Ltd Phosphoric acid-containing wastewater treatment method and apparatus
JP4678599B2 (en) * 2006-03-28 2011-04-27 栗田工業株式会社 Treatment method for wastewater containing phosphoric acid
CN105645538A (en) * 2016-01-17 2016-06-08 济南大学 Method for preparing polymerized acid ion ferrous flocculant through waste warm patches
CN105668733A (en) * 2016-01-17 2016-06-15 济南大学 Polymerized ferric salt flocculating agent prepared by using waste warm pastes
CN105668734A (en) * 2016-01-17 2016-06-15 济南大学 Composite phosphorus-accumulating inorganic ferric salt flocculating agent prepared by using waste warm pastes
CN105645546A (en) * 2016-03-30 2016-06-08 南京工业大学 Efficient coagulant special for emulsified oil waste water and preparation method of efficient coagulant
CN105645546B (en) * 2016-03-30 2018-11-13 南京工业大学 A kind of efficient emulsifiable oil waste water coagulant special and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH08229574A (en) Improved method for removing phosphate from waste water
JP2000254660A (en) Removing method of phosphorus in industrial waste water
JP4839645B2 (en) Method and apparatus for treating human waste sewage
JP2004033897A (en) Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith
JPH0788500A (en) Method for treating sewage countercurrent water
JP2003285078A (en) Treatment method for arsenic-containing water
KR101908090B1 (en) Method for producing inorganic flocculant for water treatment for fluorine removal
JPS60241998A (en) Treatment of sewage and other waste water
JP2003071487A (en) Method and apparatus for treating organic wastewater
JP4145406B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
JP2001179284A (en) Method for dephosphorizing excretion wastewater
JP4141554B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
JPS59228993A (en) High-degree treatment of biological treating water
JPH10489A (en) Drainage treatment method
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
JPS5845320B2 (en) How to dispose of human waste
JP2005305253A (en) Treatment method for sludge
JPH1076275A (en) Wastewater treatment agent
JPH10180298A (en) Treatment of waste water and waste water treating device
JP6490114B2 (en) Biological treatment method of organic wastewater
JPH06190396A (en) Purifying treatment of nitrogen-containing sewage
JP2874127B2 (en) How to remove nitrogen from organic wastewater
JPS63258692A (en) Treatment of organic sewage
JPS5942099A (en) Treatment of waste water containing hardly biologically decomposable material
JPH0839077A (en) Treatment of nonionic surfactant-containing waste solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918