JPH0837126A - Multilayer capacitor - Google Patents

Multilayer capacitor

Info

Publication number
JPH0837126A
JPH0837126A JP19219694A JP19219694A JPH0837126A JP H0837126 A JPH0837126 A JP H0837126A JP 19219694 A JP19219694 A JP 19219694A JP 19219694 A JP19219694 A JP 19219694A JP H0837126 A JPH0837126 A JP H0837126A
Authority
JP
Japan
Prior art keywords
internal electrode
multilayer capacitor
electrodes
series
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19219694A
Other languages
Japanese (ja)
Inventor
Fumiyasu Takahashi
文康 高橋
Yukio Honda
幸雄 本田
Yoshihito Miyamoto
義仁 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19219694A priority Critical patent/JPH0837126A/en
Publication of JPH0837126A publication Critical patent/JPH0837126A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide a compact multilayer capacitor with excellent withstand voltage performance and a large capacity. CONSTITUTION:The title capacitor is provided on the same plane with a first internal electrode group 2 where a first interal electrode 2a connecting with one external terminal 4a, a second interal electrode 2b connecting with the other external terminal 4b and a floating internal electrode 2c between the electrodes 2a and 2b are prepared, and a second internal group 12 consisting of a plurality of floating internal electrodes 12a that is prepared on one surface opposing to the group 2 with a dielectric 1 in between and excludes the internal electrodes connecting with the terminals 4a and 4b, and the groups 2 and 12 are alternatively prepared therein. Therefore, at least serially connected four capacitor parts 5 can be formed between the electrodes 2c and 12a in the groups 2 and 12 between the electrodes 2a and 2b connecting respectively with different external terminals (4a or 4b).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層コンデンサに関
し、詳しくは、高耐圧、高容量の積層コンデンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer capacitor, and more particularly to a high voltage and high capacity multilayer capacitor.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】積層コ
ンデンサには、例えば、図5に示すように、誘電体
(層)51と内部電極52a,52bが交互に積層され
た素子(チップ)53の両端側に、一層おきに逆側の端
面に引き出された内部電極52a,52bと導通する外
部端子54a,54bが配設された構造(ノーマル構
造)を有するものや、図6に示すように、素子(チッ
プ)53を構成する誘電体51を介して対向するように
配設された、異なる外部端子54a,54bに接続され
る内部電極52a,52bの間に、直列接続の2つのコ
ンデンサ部55が形成されるように、外部端子54a,
54bに接続されない浮遊内部電極62が配設された構
造(2連シリーズ構造)を有するものなどがある。
2. Description of the Related Art In a multilayer capacitor, for example, as shown in FIG. 5, an element (chip) 53 in which a dielectric (layer) 51 and internal electrodes 52a and 52b are alternately laminated is provided. 6 has a structure (normal structure) in which external terminals 54a and 54b, which are electrically connected to the internal electrodes 52a and 52b, which are drawn out to the opposite end face every other layer, are arranged on both end sides of the layer, as shown in FIG. , Two capacitor parts connected in series between internal electrodes 52a and 52b connected to different external terminals 54a and 54b, which are arranged so as to face each other with a dielectric 51 forming an element (chip) 53 interposed therebetween. External terminals 54a,
Some have a structure in which the floating internal electrodes 62 that are not connected to 54b are arranged (two-series structure).

【0003】ところで、一般に、内部電極によりはさま
れた誘電体の厚み(素子厚)tと破壊電圧値(BDV)
の関係は線形ではなく、次式で近似されるような曲線と
なる。 破壊電圧値(BDV)=A・tn (但し、A,nは、材料によって定まる定数で、nは通
常0.5前後)
By the way, generally, the thickness (element thickness) t of the dielectric material sandwiched by the internal electrodes and the breakdown voltage value (BDV).
The relation of is not linear but a curve approximated by the following equation. Breakdown voltage (BDV) = A · t n ( where, A, n represents, at constant determined by the material, n represents normal around 0.5)

【0004】誘電率が約1×104の高誘電体材料を例
にとると、素子厚と破壊電圧値の関係は、図7に示すよ
うな関係になり、また、素子厚とその単位厚み当りの破
壊電圧値の関係は、図8に示すような関係になる。
Taking a high dielectric material having a dielectric constant of about 1 × 10 4 as an example, the relationship between the element thickness and the breakdown voltage value is as shown in FIG. 7, and the element thickness and its unit thickness The relationship of the breakdown voltage value per hit is as shown in FIG.

【0005】すなわち、図7、図8に示すように、素子
厚が小さいほど単位厚み当りの破壊電圧値が高くなる傾
向がある。
That is, as shown in FIGS. 7 and 8, the smaller the element thickness, the higher the breakdown voltage value per unit thickness tends to be.

【0006】したがって、このような傾向のある材料を
用いて高耐圧の積層コンデンサを設計する場合、図5,
図6に示すような構造では、素子厚を大幅に増大させる
ことが必要になる。すなわち、図7を参照しつつ説明す
ると、例えば、破壊電圧値が1kVであれば、必要な素
子厚は75μmとなるが、破壊電圧値が2kVになる
と、必要な素子厚は250μmとなる。
Therefore, when designing a high breakdown voltage multilayer capacitor using a material having such a tendency, as shown in FIG.
In the structure as shown in FIG. 6, it is necessary to greatly increase the element thickness. That is, referring to FIG. 7, for example, if the breakdown voltage value is 1 kV, the required element thickness is 75 μm, but if the breakdown voltage value is 2 kV, the required element thickness is 250 μm.

【0007】このように、図5及び図6に示すような構
造の積層コンデンサの場合、高耐圧のコンデンサを設計
しようとすると、素子厚を大幅に増大させることが必要
になるため、素子厚の単位厚み当りの破壊電圧値が低く
なるばかりではなく、素子厚が厚くなる分だけ、取得で
きる静電容量が小さくなるという問題点があり、誘電体
の性能を十分に発揮させることができないという問題点
がある。
As described above, in the case of the multilayer capacitor having the structure shown in FIGS. 5 and 6, it is necessary to significantly increase the element thickness when designing a high breakdown voltage capacitor. Not only the breakdown voltage value per unit thickness becomes lower, but also the capacitance that can be acquired becomes smaller as the element thickness becomes thicker, and the problem that the performance of the dielectric cannot be fully exhibited. There is a point.

【0008】本発明は、上記問題点を解決するものであ
り、耐電圧性能に優れ、しかも小型大容量の積層コンデ
ンサを提供することを目的とする。
An object of the present invention is to solve the above problems, and to provide a small-sized and large-capacity multilayer capacitor having excellent withstand voltage performance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、発明者等は、破壊電圧値及び取得できる静電容量の
両面で有利な、素子厚のできるだけ小さい領域を利用す
ることを可能にするため、種々の実験、検討を行い、同
一平面に、一方の外部端子と接続する内部電極と、他方
の外部端子と接続する内部電極と、その間に配設された
浮遊内部電極を備えてなる内部電極群と、誘電体を介し
て該内部電極群と対向する一つの面に配設された、外部
端子に接続される内部電極を含まない複数の浮遊内部電
極とを交互に配設して、異なる外部端子に接続される内
部電極の間に、直列接続のコンデンサ部を多数形成する
(すなわち、多連シリーズ構造とする)ことにより所望
の容量を得るようにした場合に、耐電圧性能に優れ、し
かも小型大容量の積層コンデンサが得られることを知
り、さらに実験、検討を重ねて本発明を完成した。
In order to achieve the above object, the inventors have made it possible to utilize a region having the smallest possible element thickness, which is advantageous in both the breakdown voltage value and the obtainable capacitance. In order to do so, various experiments and studies were conducted, and on the same plane, an internal electrode connected to one external terminal, an internal electrode connected to the other external terminal, and a floating internal electrode arranged between them were provided. An internal electrode group and a plurality of floating internal electrodes, which do not include an internal electrode connected to an external terminal, are disposed alternately on one surface facing the internal electrode group via a dielectric. , If a desired capacitance is obtained by forming a large number of series-connected capacitor sections between internal electrodes connected to different external terminals (that is, a multiple series structure), the withstand voltage performance is improved. Excellent, small size and large capacity We know that the layer capacitor obtained, further experiments, the present invention has been completed by extensive studies.

【0010】すなわち、本発明の積層コンデンサは、誘
電体中に、外部端子に接続される内部電極と接続されな
い内部電極が配設され、誘電体と内部電極が多層構造を
形成している積層コンデンサであって、同一平面に、一
方の外部端子と接続する第1の接続内部電極、他方の外
部端子と接続する第2の接続内部電極、及び前記第1及
び第2の接続内部電極の間に位置する浮遊内部電極を配
設してなる第1の内部電極群と、誘電体を介して前記第
1の内部電極群と対向する一つの面に配設された、外部
端子に接続される内部電極を含まない複数の浮遊内部電
極からなる第2の内部電極群とを交互に配設するととも
に、第1及び第2の内部電極群中の浮遊内部電極を、異
なる外部端子に接続される第1及び第2の接続内部電極
の間に直列接続のコンデンサ部が4つ以上形成されるよ
うに構成したことを特徴としている。
That is, the multilayer capacitor of the present invention is a multilayer capacitor in which an internal electrode connected to an external terminal and an internal electrode not connected are arranged in a dielectric, and the dielectric and the internal electrode form a multilayer structure. Between the first connection internal electrode connected to one external terminal, the second connection internal electrode connected to the other external terminal, and the first and second connection internal electrodes on the same plane. A first internal electrode group having a floating internal electrode located therein, and an internal connected to an external terminal provided on one surface facing the first internal electrode group via a dielectric. Second internal electrode groups each including a plurality of floating internal electrodes not including electrodes are alternately arranged, and the floating internal electrodes in the first and second internal electrode groups are connected to different external terminals. A series connection between the first and second connection inner electrodes Capacitor unit is characterized by being configured so as to form four or more.

【0011】また、内部電極間に介在する誘電体の厚み
(素子厚)が100μm以下であることを特徴としてい
る。
Further, it is characterized in that the thickness of the dielectric (element thickness) interposed between the internal electrodes is 100 μm or less.

【0012】[0012]

【作用】多連シリーズ構造とすることにより、素子厚
(単位厚み)当りの破壊電圧値が大きくなり、素子厚の
小さい誘電体を用いることが可能になるとともに、素子
厚が小さい誘電体を用いることが可能になることから、
その積層数を多くすることが可能になる。したがって、
小型で、耐電圧性能に優れ、しかも大容量の積層コンデ
ンサを得ることが可能になる。
[Function] By adopting the multi-series structure, the breakdown voltage value per element thickness (unit thickness) becomes large, and it becomes possible to use a dielectric material having a small element thickness and also a dielectric material having a small element thickness. Because it will be possible
It is possible to increase the number of layers. Therefore,
It is possible to obtain a multilayer capacitor that is small in size, has excellent withstand voltage performance, and has a large capacity.

【0013】なお、内部電極間に介在する誘電体の厚み
(素子厚)が100μm以下であるような場合には、破
壊電圧値が問題になる場合が多いが、本発明によれば、
そのような場合(例えば、素子厚が10〜100μmの
範囲にあるような場合)にも、十分な耐電圧性能を得る
ことが可能になり特に有意義である。
When the thickness of the dielectric (element thickness) interposed between the internal electrodes is 100 μm or less, the breakdown voltage value often becomes a problem, but according to the present invention,
Even in such a case (for example, when the element thickness is in the range of 10 to 100 μm), it is possible to obtain sufficient withstand voltage performance, which is particularly significant.

【0014】[0014]

【実施例】以下、本発明の実施例を示して、その特徴と
するところをさらに詳しく説明する。
EXAMPLES Examples of the present invention will be shown below to describe the features of the present invention in more detail.

【0015】[実施例1]図1,図2は本発明の実施例
にかかる積層コンデンサを示す断面図である。
[Embodiment 1] FIGS. 1 and 2 are sectional views showing a multilayer capacitor according to an embodiment of the present invention.

【0016】まず、図1の積層コンデンサ10について
説明する。積層コンデンサ10は、4連シリーズ構造の
積層コンデンサであり、同一平面に、一方の外部端子4
aと接続する第1の接続内部電極2a、他方の外部端子
4bと接続する第2の接続内部電極2b、及び第1及び
第2の接続内部電極2a,2bの間に位置する浮遊内部
電極2cを配設してなる第1の内部電極群2と、誘電体
(層)1を介して第1の内部電極群2と対向する面に配
設された、外部端子4a,4bに接続される内部電極を
含まない複数(ここでは2つ)の浮遊内部電極12aか
らなる第2の内部電極群12とを交互に配設することに
より形成されている。
First, the multilayer capacitor 10 shown in FIG. 1 will be described. The multilayer capacitor 10 is a multilayer capacitor having a four-series series structure, and one external terminal 4 on the same plane.
a, a first connection internal electrode 2a connected to a, a second connection internal electrode 2b connected to the other external terminal 4b, and a floating internal electrode 2c located between the first and second connection internal electrodes 2a, 2b. Is connected to a first internal electrode group 2 formed by disposing the first internal electrode group 2 and external terminals 4a and 4b arranged on a surface facing the first internal electrode group 2 via a dielectric (layer) 1. It is formed by alternately arranging a second internal electrode group 12 including a plurality of (two in this case) floating internal electrodes 12a that do not include internal electrodes.

【0017】また、第1の内部電極群2と第2の内部電
極群12は、図1に示すように、それぞれを構成する各
浮遊内部電極(2c及び12a)が、誘電体1を介して
対向する2つの電極の一部ずつに対向するように構成さ
れており、例えば、図1における最上層の第1の内部電
極群2及び第2の内部電極群12についてみると、異な
る外部端子4a,4bに接続される第1及び第2の接続
内部電極2a,2bの間に、直列接続のコンデンサ部5
が4つ(4連)形成されている。なお、この実施例の積
層コンデンサ10の寸法(サイズ)は、長さL=5.7
mm、幅W=5.0mm,厚さT=2.0mmである。
Further, as shown in FIG. 1, the first internal electrode group 2 and the second internal electrode group 12 have their respective floating internal electrodes (2c and 12a) forming a dielectric 1 therebetween. For example, the first internal electrode group 2 and the second internal electrode group 12 in the uppermost layer in FIG. 1 are different from each other in the external terminal 4a. , 4b connected between the first and second connection internal electrodes 2a, 2b, the capacitor section 5 connected in series.
Are formed (four). The dimension (size) of the multilayer capacitor 10 of this example is such that the length L = 5.7.
mm, width W = 5.0 mm, and thickness T = 2.0 mm.

【0018】また、図2の積層コンデンサ20は、10
連シリーズ構造の積層コンデンサであり、その基本的な
構造は、図1の4連シリーズ構造の積層コンデンサ10
の場合と同様である。すなわち、この積層コンデンサ2
0は、同一平面に、一方の外部端子4aと接続する第1
の接続内部電極2a、他方の外部端子4bと接続する第
2の接続内部電極2b、及び第1及び第2の接続内部電
極2a,2bの間に位置する浮遊内部電極2c(ここで
は4つ)を配設してなる第1の内部電極群2と、誘電体
1を介して第1の内部電極群2と対向する面に配設され
た、外部端子4a,4bに接続される内部電極を含まな
い複数(ここでは5つ)の浮遊内部電極12aからなる
第2の内部電極群12とを交互に配設することにより形
成されている。
The multilayer capacitor 20 shown in FIG.
It is a monolithic capacitor having a serial series structure, and its basic structure is the monolithic capacitor 10 having a 4-series structure shown in FIG.
Is the same as That is, this multilayer capacitor 2
0 is the first on the same plane, which is connected to one of the external terminals 4a.
Connection internal electrode 2a, second connection internal electrode 2b connected to the other external terminal 4b, and floating internal electrode 2c (here four) located between the first and second connection internal electrodes 2a and 2b. A first internal electrode group 2 formed by disposing the internal electrodes and an internal electrode connected to the external terminals 4a and 4b on the surface facing the first internal electrode group 2 via the dielectric 1. It is formed by alternately arranging a plurality of (five in this case) floating internal electrodes 12a not included in the second internal electrode groups 12.

【0019】また、第1の内部電極群2と第2の内部電
極群12は、図2に示すように、それぞれを構成する各
浮遊内部電極(2c及び12a)が、誘電体1を介して
対向する2つの電極の一部ずつに対向するように構成さ
れており、例えば、図2における最上層の第1及び第2
の内部電極群2,12についてみると、異なる外部端子
4a,4bに接続される第1及び第2の接続内部電極2
a,2bの間に、直列接続のコンデンサ部5が10連形
成されている。なお、この実施例の積層コンデンサ20
の寸法は、図1の積層コンデンサ10の場合と同じく、
長さL=5.7mm、幅W=5.0mm,厚さT=2.0mm
である。
As shown in FIG. 2, the first internal electrode group 2 and the second internal electrode group 12 have their respective floating internal electrodes (2c and 12a), respectively, via the dielectric 1. It is configured so as to face a part of two electrodes that face each other, and for example, the first and second uppermost layers in FIG.
Looking at the internal electrode groups 2 and 12, the first and second connection internal electrodes 2 connected to different external terminals 4a and 4b
10 series-connected capacitor portions 5 are formed between a and 2b. Incidentally, the multilayer capacitor 20 of this embodiment
Is the same as that of the multilayer capacitor 10 of FIG.
Length L = 5.7 mm, width W = 5.0 mm, thickness T = 2.0 mm
Is.

【0020】そして、上記のように構成された積層コン
デンサ10(図1)及び積層コンデンサ20(図2)を
はじめ、同様に形成した、寸法及び破壊電圧値が同一
で、コンデンサ部のシリーズ連数の異なる積層コンデン
サ(寸法は上記積層コンデンサ10及び20と同じ)に
ついて、取得される静電容量の大きさを測定した。な
お、各積層コンデンサの破壊電圧値は、AC4kV一定
とした。なお、各積層コンデンサにより積層数が異なる
ので、素子厚も異なるが、この実施例の積層コンデンサ
(シリーズ連数4〜20)における素子厚の範囲は、1
0μm〜80μmである。また、誘電体のεは約1000
0である。
Then, the multilayer capacitor 10 (FIG. 1) and the multilayer capacitor 20 (FIG. 2) configured as described above are formed in the same manner. Of the different multilayer capacitors (the dimensions are the same as those of the multilayer capacitors 10 and 20), the magnitude of the acquired capacitance was measured. The breakdown voltage value of each multilayer capacitor was constant at AC 4 kV. Since the number of laminated layers is different for each multilayer capacitor, the element thickness is also different.
It is 0 μm to 80 μm. Also, the dielectric constant ε is about 1000.
0.

【0021】各積層コンデンサについて測定したシリー
ズ連数と取得される静電容量の関係を図3に示す。
FIG. 3 shows the relationship between the number of series measured for each multilayer capacitor and the acquired capacitance.

【0022】図3に示すように、シリーズ連数が増加す
ると静電容量が大きく増加し、4連以上の多連シリーズ
構造の場合には、ノーマル構造や2連シリーズ構造の場
合に比べて大きな静電容量を取得できることがわかる。
例えば、ノーマル構造の積層コンデンサの場合、寸法と
破壊電圧値を同じにすると、わずか3nF程度の静電容
量しか取得できないのに対し、4連〜20連の多連シリ
ーズ構造の積層コンデンサの場合には、その6〜40倍
の静電容量を取得できることがわかる。
As shown in FIG. 3, as the number of series stations increases, the electrostatic capacity greatly increases, and in the case of the multi-series series structure of four or more stations, it is larger than that in the normal structure or the two series series structure. It can be seen that the capacitance can be obtained.
For example, in the case of a normal structure multilayer capacitor, if the dimensions and the breakdown voltage value are the same, only a capacitance of about 3 nF can be obtained, whereas in the case of a multi-series capacitor structure of 4 to 20 series capacitors, It can be seen that can obtain a capacitance that is 6 to 40 times that.

【0023】これは、多連シリーズ構造とすることによ
り、素子厚(単位厚み)当りの破壊電圧値が大きくな
り、素子厚の小さい誘電体を用いることが可能になると
ともに、素子厚が小さいため積層数を多くすることが可
能になり、大きな静電容量を取得できるようになるもの
である。
This is because, by adopting the multiple series structure, the breakdown voltage value per element thickness (unit thickness) becomes large, it becomes possible to use a dielectric having a small element thickness, and the element thickness is small. It is possible to increase the number of stacked layers and obtain a large capacitance.

【0024】[実施例2]上記実施例1の積層コンデン
サと同様の材料及び構造で、寸法(サイズ)及び取得さ
れる静電容量が同一の積層コンデンサを用意し、交流電
圧を印加して破壊電圧値(BDV)を測定した。なお、
各積層コンデンサの寸法は、長さL=5.7mm、幅W=
5.0mm,厚さT=2.0mmとし、静電容量は、10n
Fとした。各積層コンデンサのシリーズ連数と破壊電圧
値(BDV)の関係を、図4に示す。
[Embodiment 2] A laminated capacitor having the same material and structure as the laminated capacitor of Embodiment 1 and having the same size (size) and acquired capacitance is prepared and destroyed by applying an AC voltage. The voltage value (BDV) was measured. In addition,
The dimensions of each multilayer capacitor are length L = 5.7 mm and width W =
5.0mm, thickness T = 2.0mm, capacitance is 10n
It was set to F. FIG. 4 shows the relationship between the series number of each multilayer capacitor and the breakdown voltage value (BDV).

【0025】図4に示すように、同一寸法、同一容量の
積層コンデンサであっても、シリーズの連数が増加する
ほど、破壊電圧値が大きくなり、4連以上の多連シリー
ズ構造の場合には、ノーマル構造や2連シリーズ構造の
場合に比べて破壊電圧値が大幅に増大していることがわ
かる。すなわち、例えば、ノーマル構造の積層コンデン
サの場合、破壊電圧値が約2.8kVであるのに対し、
4連〜20連の多連シリーズ構造の積層コンデンサの場
合には、その1.7〜2.9倍の破壊電圧値が得られる
ことがわかる。
As shown in FIG. 4, even with multilayer capacitors of the same size and the same capacity, the breakdown voltage value increases as the number of series in the series increases, and in the case of a multi-series series structure of four or more series. Indicates that the breakdown voltage value is significantly increased as compared with the case of the normal structure or the double series structure. That is, for example, in the case of a normal structure multilayer capacitor, the breakdown voltage value is about 2.8 kV, whereas
It can be seen that in the case of a multilayer capacitor having a multi-series series structure of 4 to 20 stations, a breakdown voltage value 1.7 to 2.9 times that is obtained.

【0026】上記の実施例のように、積層コンデンサを
多連シリーズ構造とすることにより、素子厚(単位厚
み)当りの破壊電圧値が大きい、素子厚の小さい領域を
使用することが可能になるため、静電容量、破壊電圧値
の両面において、従来の積層コンデンサよりも大幅に優
れた性能を得ることが可能になり、静電容量及び破壊電
圧値を同一とするとコンデンサの寸法を大幅に小型化す
ることが可能になる。
As in the above-described embodiment, the multi-layer capacitor having the multiple series structure makes it possible to use a region having a large breakdown voltage value per unit thickness (unit thickness) and a small element thickness. Therefore, it is possible to obtain significantly better performance than the conventional multilayer capacitor in terms of both capacitance and breakdown voltage value. If the capacitance and breakdown voltage value are the same, the size of the capacitor will be significantly smaller. Can be converted.

【0027】さらに、適切なシリーズ連数を選択するこ
とで、破壊電圧値、静電容量、素子寸法、積層数などに
関し、所望の特性を有する積層コンデンサを得ることが
できる。
Further, by selecting an appropriate series series number, it is possible to obtain a multilayer capacitor having desired characteristics with respect to the breakdown voltage value, the electrostatic capacitance, the element size, the number of stacked layers, and the like.

【0028】なお、シリーズ連数については、4連以上
とすることが必要であるが、図3,図4に示すように、
シリーズ連数が20近くになるとシリーズ連数を増やす
ことによる効果が小さくなるとともに、小型の積層コン
デンサの場合には、素子厚が極端に小さくなったり、内
部電極の寸法が極端に小さくなったりして製造(加工)
が困難になるため、シリーズ連数は4〜20の範囲とす
ることが好ましい。
The number of series stations needs to be four or more, but as shown in FIG. 3 and FIG.
When the number of series stations is close to 20, the effect of increasing the number of series stations becomes smaller, and in the case of a small multilayer capacitor, the element thickness becomes extremely small, and the internal electrode dimensions become extremely small. Manufacturing (processing)
Therefore, the number of series stations is preferably in the range of 4 to 20.

【0029】また、本発明は、上記実施例に限定される
ものではなく、発明の要旨の範囲内において、種々の応
用、変形を加えることが可能である。
Further, the present invention is not limited to the above-mentioned embodiments, and various applications and modifications can be added within the scope of the gist of the invention.

【0030】[0030]

【発明の効果】上述のように、本発明の積層コンデンサ
は、同一平面に、一方の外部端子と接続する第1の接続
内部電極、他方の外部端子と接続する第2の接続内部電
極、及び第1及び第2の接続内部電極の間に位置する浮
遊内部電極を配設してなる第1の内部電極群と、誘電体
を介して第1の内部電極群と対向する一つの面に配設さ
れた、外部端子に接続される内部電極を含まない複数の
浮遊内部電極からなる第2の内部電極群とを交互に配設
するとともに、第1及び第2の内部電極群中の浮遊内部
電極を、異なる外部端子に接続される第1及び第2の接
続内部電極の間に、直列接続のコンデンサ部が4つ以上
形成されるように構成しているので、素子厚(単位厚
み)当りの破壊電圧値が大きい、素子厚の小さい誘電体
を用いることが可能になるとともに、同一コンデンサ寸
法の場合には、積層数を多くすることが可能になる。
As described above, the multilayer capacitor of the present invention has the first connection internal electrode connected to one external terminal, the second connection internal electrode connected to the other external terminal, and the same on the same plane. A first internal electrode group having a floating internal electrode located between the first and second connection internal electrodes and a first internal electrode group disposed on one surface facing the first internal electrode group via a dielectric. A second internal electrode group including a plurality of floating internal electrodes that do not include an internal electrode connected to an external terminal is alternately arranged, and the floating internals in the first and second internal electrode groups are arranged. Since the electrodes are configured so that four or more capacitor parts connected in series are formed between the first and second connection internal electrodes connected to different external terminals, the element thickness (unit thickness) per It is possible to use a dielectric with a large breakdown voltage and a small element thickness. Together comprising, in the case of the same capacitor size, it is possible to increase the number of stacked layers.

【0031】したがって、小型で、耐電圧性能に優れ、
しかも大容量の積層コンデンサを得ることができる。
Therefore, it is small in size and excellent in withstand voltage performance.
Moreover, a large-capacity multilayer capacitor can be obtained.

【0032】さらに、適切なシリーズ連数を選択するこ
とで、破壊電圧値、静電容量、素子寸法、積層数などに
関し、所望の特性を有する積層コンデンサを得ることが
できる。
Further, by selecting an appropriate series number, it is possible to obtain a multilayer capacitor having desired characteristics with respect to the breakdown voltage value, the electrostatic capacitance, the element size, the number of stacked layers, and the like.

【0033】また、内部電極間に介在する誘電体の厚み
(素子厚)が100μm以下であるような場合には、破
壊電圧値が問題になる場合が多いが、本発明によれば、
素子圧を薄くして多連構造にすることにより、さらに高
い耐電圧性能を得ることが可能になり特に有意義であ
る。
Further, when the thickness of the dielectric (element thickness) interposed between the internal electrodes is 100 μm or less, the breakdown voltage value often becomes a problem, but according to the present invention,
By making the element pressure thin to form a multiple structure, it is possible to obtain higher withstand voltage performance, which is particularly significant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる積層コンデンサの構造
を示す断面図である。
FIG. 1 is a sectional view showing a structure of a multilayer capacitor according to an embodiment of the present invention.

【図2】本発明の実施例にかかる積層コンデンサの構造
を示す断面図である。
FIG. 2 is a sectional view showing a structure of a multilayer capacitor according to an example of the present invention.

【図3】本発明の実施例にかかる積層コンデンサについ
てのシリーズ連数と取得される静電容量の関係を示す図
である。
FIG. 3 is a diagram showing the relationship between the number of series stations and the acquired capacitance for a multilayer capacitor according to an example of the present invention.

【図4】本発明の実施例にかかる積層コンデンサについ
てのシリーズ連数と破壊電圧値の関係を示す図である。
FIG. 4 is a diagram showing a relationship between series series numbers and breakdown voltage values for a multilayer capacitor according to an example of the present invention.

【図5】従来のノーマル構造の積層コンデンサの構造を
示す断面図である。
FIG. 5 is a cross-sectional view showing a structure of a conventional multilayer capacitor having a normal structure.

【図6】従来の2連シリーズ構造の積層コンデンサの構
造を示す断面図である。
FIG. 6 is a sectional view showing a structure of a conventional multilayer capacitor having a double series structure.

【図7】従来の積層コンデンサの素子厚と破壊電圧値の
関係を示す図である。
FIG. 7 is a diagram showing a relationship between an element thickness and a breakdown voltage value of a conventional multilayer capacitor.

【図8】従来の積層コンデンサの素子厚とその単位厚み
当りの破壊電圧値の関係を示す図である。
FIG. 8 is a diagram showing a relationship between an element thickness of a conventional multilayer capacitor and a breakdown voltage value per unit thickness thereof.

【符号の説明】[Explanation of symbols]

1 誘電体(層) 2 第1の内部電極群 2a 第1の接続内部電極 2b 第2の接続内部電極 2c 浮遊内部電極 4a,4b 外部端子 5 コンデンサ部 10,20 積層コンデンサ 12 第2の内部電極群 12a 浮遊内部電極 1 Dielectric (Layer) 2 First Internal Electrode Group 2a First Connection Internal Electrode 2b Second Connection Internal Electrode 2c Floating Internal Electrode 4a, 4b External Terminal 5 Capacitor Section 10, 20 Multilayer Capacitor 12 Second Internal Electrode Group 12a Floating internal electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘電体中に、外部端子に接続される内部
電極と接続されない内部電極が配設され、誘電体と内部
電極が多層構造を形成している積層コンデンサであっ
て、 同一平面に、一方の外部端子と接続する第1の接続内部
電極、他方の外部端子と接続する第2の接続内部電極、
及び前記第1及び第2の接続内部電極の間に位置する浮
遊内部電極を配設してなる第1の内部電極群と、誘電体
を介して前記第1の内部電極群と対向する一つの面に配
設された、外部端子に接続される内部電極を含まない複
数の浮遊内部電極からなる第2の内部電極群とを交互に
配設するとともに、 第1及び第2の内部電極群中の浮遊内部電極を、異なる
外部端子に接続される第1及び第2の接続内部電極の間
に直列接続のコンデンサ部が4つ以上形成されるように
構成したことを特徴とする積層コンデンサ。
1. A multilayer capacitor in which an internal electrode connected to an external terminal and an internal electrode not connected to the external terminal are arranged in a dielectric, and the dielectric and the internal electrode form a multilayer structure. A first connection internal electrode connected to one external terminal, a second connection internal electrode connected to the other external terminal,
And a first internal electrode group having a floating internal electrode located between the first and second connection internal electrodes, and a first internal electrode group facing the first internal electrode group via a dielectric. A second internal electrode group, which includes a plurality of floating internal electrodes not including internal electrodes connected to external terminals, disposed alternately on the surface, and in the first and second internal electrode groups. 2. The multilayer capacitor according to claim 4, wherein the floating internal electrode is configured such that four or more capacitor portions connected in series are formed between the first and second connection internal electrodes connected to different external terminals.
【請求項2】 内部電極間に介在する誘電体の厚み(素
子厚)が100μm以下であることを特徴とする請求項
1記載の積層コンデンサ。
2. The multilayer capacitor according to claim 1, wherein the thickness of the dielectric (element thickness) interposed between the internal electrodes is 100 μm or less.
JP19219694A 1994-07-22 1994-07-22 Multilayer capacitor Withdrawn JPH0837126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19219694A JPH0837126A (en) 1994-07-22 1994-07-22 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19219694A JPH0837126A (en) 1994-07-22 1994-07-22 Multilayer capacitor

Publications (1)

Publication Number Publication Date
JPH0837126A true JPH0837126A (en) 1996-02-06

Family

ID=16287281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19219694A Withdrawn JPH0837126A (en) 1994-07-22 1994-07-22 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JPH0837126A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866479A2 (en) * 1997-03-19 1998-09-23 Murata Manufacturing Co., Ltd. Laminated capacitor
US7027288B2 (en) 2004-08-30 2006-04-11 Tdk Corporation Multilayer ceramic condenser
JP2009054652A (en) * 2007-08-23 2009-03-12 Tdk Corp Multilayer capacitor
CN103310978A (en) * 2012-03-13 2013-09-18 三星电机株式会社 Multilayer ceramic electronic component
KR20140118416A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 Multi-layered ceramic capacitor and manufacturing method the same
JP2017135288A (en) * 2016-01-28 2017-08-03 太陽誘電株式会社 Multilayer ceramic capacitor
US10879002B2 (en) 2017-12-04 2020-12-29 Taiyo Yuden Co., Ltd. Ceramic capacitor and manufacturing method thereof
US11094470B2 (en) 2019-02-20 2021-08-17 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US11557436B2 (en) 2019-10-31 2023-01-17 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and mount structure for multilayer ceramic capacitor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866479A2 (en) * 1997-03-19 1998-09-23 Murata Manufacturing Co., Ltd. Laminated capacitor
EP0866479A3 (en) * 1997-03-19 2003-11-05 Murata Manufacturing Co., Ltd. Laminated capacitor
US7027288B2 (en) 2004-08-30 2006-04-11 Tdk Corporation Multilayer ceramic condenser
KR101105600B1 (en) * 2004-08-30 2012-01-19 티디케이가부시기가이샤 Multilayer electronic component
JP2009054652A (en) * 2007-08-23 2009-03-12 Tdk Corp Multilayer capacitor
US7995325B2 (en) 2007-08-23 2011-08-09 Tdk Corporation Multilayer capacitor
CN103310978A (en) * 2012-03-13 2013-09-18 三星电机株式会社 Multilayer ceramic electronic component
KR20140118416A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 Multi-layered ceramic capacitor and manufacturing method the same
JP2017135288A (en) * 2016-01-28 2017-08-03 太陽誘電株式会社 Multilayer ceramic capacitor
US10176922B2 (en) 2016-01-28 2019-01-08 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
US10879002B2 (en) 2017-12-04 2020-12-29 Taiyo Yuden Co., Ltd. Ceramic capacitor and manufacturing method thereof
US11094470B2 (en) 2019-02-20 2021-08-17 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
US11557436B2 (en) 2019-10-31 2023-01-17 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and mount structure for multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JPH10261546A (en) Lamination capacitor
US5835338A (en) Multilayer ceramic capacitor
JP6721150B2 (en) Multilayer capacitor, substrate on which multilayer capacitor is mounted
US5040092A (en) Multilayer capacitor
JPH09298127A (en) Multilayer capacitor
JPS59105311A (en) Elliptical double condenser package
KR20060050757A (en) Multilayer electronic component
US5815367A (en) Layered capacitors having an internal inductor element
JPH0897078A (en) Layered capacitor and production thereof
JPH07335473A (en) Laminated ceramic capacitor
JPH0837126A (en) Multilayer capacitor
JP4618348B2 (en) Multilayer capacitor
US3496434A (en) High voltage ceramic capacitor
AU777965B2 (en) A capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
JP2002237429A (en) Laminated lead-through capacitor and array thereof
JPH0955335A (en) Laminated type through capacitor
JPH08162368A (en) Composite-type multilayer capacitor
JPH09180956A (en) Multilayer ceramic capacitor
JPH10312933A (en) Laminated ceramic electronic parts
JP2003045741A (en) Multiterminal-type electronic component
JPH08273977A (en) Stacked layer capacitor
JPH07263270A (en) Laminated ceramic capacitor
JP2982335B2 (en) Multilayer ceramic capacitors
JPH04105311A (en) Multilayered capacitor
JP4039091B2 (en) Multilayer capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002