JPH0836986A - Charged particle beam device - Google Patents

Charged particle beam device

Info

Publication number
JPH0836986A
JPH0836986A JP6172768A JP17276894A JPH0836986A JP H0836986 A JPH0836986 A JP H0836986A JP 6172768 A JP6172768 A JP 6172768A JP 17276894 A JP17276894 A JP 17276894A JP H0836986 A JPH0836986 A JP H0836986A
Authority
JP
Japan
Prior art keywords
sample
focusing
charged particle
particle beam
optical microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6172768A
Other languages
Japanese (ja)
Other versions
JP3342580B2 (en
Inventor
Masaki Saito
昌樹 斉藤
Miyuki Matsutani
幸 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP17276894A priority Critical patent/JP3342580B2/en
Publication of JPH0836986A publication Critical patent/JPH0836986A/en
Application granted granted Critical
Publication of JP3342580B2 publication Critical patent/JP3342580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a charged particle beam device that safely performs automatic focusing of an optical microscope in a short time. CONSTITUTION:Excitation strength of an objective lens 3 obtained by automatic focusing of an electron beam becomes a value matching the distance (it is called working distance) between the objective lens 3 and a sample. The excitation strength signal is supplied to the computer 14, the computer 14 finds the working distance from the supplied signal, and the results are stored in a memory 22. The computer 14 which already found the working distance can efficiently perform automatic focusing of an optical microscope based on this value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料に電子ビームを照
射し、試料から発生したX線を検出して試料の元素分析
を行うようにした電子ビームマイクロアナラザなどの荷
電粒子ビーム装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus such as an electron beam microanalyzer for irradiating a sample with an electron beam and detecting X-rays generated from the sample for elemental analysis. .

【0002】[0002]

【従来の技術】電子ビームマイクロアナラザにおいて
は、電子銃からの電子ビームを試料上に細く集束して照
射し、この結果試料から発生した特性X線を波長分散型
のX線分析器などによってその波長の分析を行い、試料
の元素の同定など定性分析や定量分析を行っている。こ
のような電子ビームマイクロアナラザでは、電子ビーム
を試料の特定領域で2次元的に走査し、この走査に伴っ
て発生した2次電子を検出し、検出信号を電子ビームの
走査と同期した陰極線管に供給して試料の走査2次電子
像の表示を行うこともできる。
2. Description of the Related Art In an electron beam microanalyzer, an electron beam from an electron gun is focused on a sample and irradiated, and the characteristic X-ray generated from the sample is analyzed by a wavelength dispersive X-ray analyzer or the like. The wavelength is analyzed, and qualitative analysis and quantitative analysis such as identification of elements in the sample are performed. In such an electron beam microanalyzer, an electron beam is two-dimensionally scanned in a specific region of a sample, secondary electrons generated by this scanning are detected, and a detection signal is a cathode ray line synchronized with the scanning of the electron beam. It can also be supplied to a tube to display a scanning secondary electron image of the sample.

【0003】また、電子ビームマイクロアナラザでは、
分析を行うに際し、試料の分析位置と分光結晶とX線検
出器とをローランド円上に正確に載せる必要がある。そ
のため、分析試料の高さを電子ビームと同軸に組み込ま
れた光学顕微鏡で合わせ込むことを行っている。すなわ
ち、光学顕微鏡の位置と分光結晶やX線検出器などのX
線分光系の位置関係は機械的に正確に調整されており、
光学顕微鏡による焦点合わせを行うと、試料の高さ位置
はX線分光系にとって最適な位置となる。
Further, in the electron beam microanalyzer,
When performing analysis, it is necessary to accurately place the analysis position of the sample, the dispersive crystal, and the X-ray detector on the Rowland circle. Therefore, the height of the sample to be analyzed is adjusted by an optical microscope that is coaxial with the electron beam. That is, the position of the optical microscope and the X of the dispersive crystal or X-ray detector.
The positional relationship of the line spectroscopic system is mechanically adjusted accurately,
When focusing is performed with an optical microscope, the height position of the sample becomes an optimum position for the X-ray spectroscopic system.

【0004】なお、オージェ電子分析装置や2次イオン
分析装置では、電子やイオンの発生源とアナライザの位
置関係を特定するため、光学顕微鏡が利用されている。
このような光学顕微鏡を利用した装置では、オペレータ
が光学顕微鏡の像を観察しながら、この分析試料の上下
動を手動で操作していた。しかし、最近では、光学顕微
鏡の自動焦点合わせ機能の技術が進歩したことに伴い、
試料を上下動させての焦点合わせを自動的に行う装置も
開発されている。
In the Auger electron analyzer and the secondary ion analyzer, an optical microscope is used to identify the positional relationship between the electron or ion generation source and the analyzer.
In an apparatus using such an optical microscope, the operator manually operates the vertical movement of the analysis sample while observing the image of the optical microscope. However, recently, with the advancement of the technology of the automatic focusing function of the optical microscope,
A device for automatically focusing the sample by moving it up and down has also been developed.

【0005】[0005]

【発明が解決しようとする課題】上記した光学顕微鏡の
自動焦点合わせ機能を有した装置では、焦点を合わせる
にあたり、最初の分析試料の高さがどこにあるか判断が
つかないために、分析試料を試料ステージの上下に動く
範囲(数mm)で動かして合焦点位置をサーチするよう
にしている。このような方法では、試料ステージの上下
動の全範囲についてサーチが行われる可能性があるた
め、不要な時間が掛かることになる。また、挿入された
分析試料がたまたま試料ホルダーよりも上方に飛び出し
ているような場合には、上方に試料ステージが駆動され
た場合、試料が対物レンズやその周辺の部品に衝突し、
衝突部分が破損する事故が生じる。
In the above-mentioned apparatus having the automatic focusing function of the optical microscope, it is difficult to determine where the height of the first analytical sample is when focusing, so that the analytical sample is The focus position is searched by moving the sample stage up and down within a range (several mm). In such a method, since there is a possibility that the entire range of the vertical movement of the sample stage may be searched, unnecessary time is required. In addition, when the inserted analytical sample happens to jump out above the sample holder, when the sample stage is driven upward, the sample collides with the objective lens and parts around it,
An accident occurs where the collision part is damaged.

【0006】本発明は、このような点に鑑みてなされた
もので、その目的は、短時間に安全に光学顕微鏡の自動
的な焦点合わせを行うことができる荷電粒子ビーム装置
を実現するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to realize a charged particle beam apparatus capable of safely and automatically focusing an optical microscope in a short time. .

【0007】[0007]

【課題を解決するための手段】本発明に基づく荷電粒子
ビームは、試料に照射される荷電粒子ビームの焦点を連
続的に変化させ、それに伴って試料から得られた信号に
基づいて荷電粒子ビームの焦点合わせを行う荷電粒子ビ
ーム焦点合わせ手段と、試料を高さ方向に移動させ、光
学顕微鏡の焦点合わせを行う光学的焦点合わせ手段とを
備えており、荷電粒子ビーム焦点合わせ手段によって得
られた焦点合わせ信号に基づいて、光学顕微鏡の焦点合
わせ時の試料の高さ方向の移動範囲を制御する手段を有
したことを特徴としている。
The charged particle beam according to the present invention continuously changes the focus of the charged particle beam with which the sample is irradiated, and the charged particle beam is based on the signal obtained from the sample. It is equipped with a charged particle beam focusing means for performing the focusing of the sample and an optical focusing means for performing the focusing of the optical microscope by moving the sample in the height direction. It is characterized in that it has means for controlling the range of movement of the sample in the height direction during focusing of the optical microscope based on the focusing signal.

【0008】また、本発明に基づく荷電粒子ビーム装置
は、光学的焦点合わせ手段によって得られた試料の高さ
方向の信号に基づいて、荷電粒子ビーム焦点合わせ手段
による荷電粒子ビームの焦点合わせ動作を制御する手段
を有したことを特徴としている。
Further, the charged particle beam device according to the present invention performs the focusing operation of the charged particle beam focusing means by the charged particle beam focusing means based on the signal in the height direction of the sample obtained by the optical focusing means. It is characterized by having means for controlling.

【0009】更に、本発明に基づく荷電粒子ビーム装置
は、一方の焦点合わせ手段によって得られた合焦点信号
に基づいて、他方の焦点を自動的に合わせる手段を有し
たことを特徴としている。
Further, the charged particle beam system according to the present invention is characterized in that it has means for automatically focusing the other on the basis of the focusing signal obtained by the one focusing means.

【0010】[0010]

【作用】本発明に基づく荷電粒子ビームは、荷電粒子ビ
ーム焦点合わせ手段によって得られた焦点合わせ信号に
基づいて、光学顕微鏡の焦点合わせ時の試料の高さ方向
の移動範囲を制御し、また、光学的焦点合わせ手段によ
って得られた試料の高さ方向の信号に基づいて、荷電粒
子ビーム焦点合わせ手段による荷電粒子ビームの焦点合
わせ動作を制御し、更に、荷電粒子ビーム焦点合わせ手
段と光学的焦点合わせ手段の一方の焦点合わせ手段によ
って得られた合焦点信号に基づいて、他方の焦点を自動
的に合わせる。
The charged particle beam according to the present invention controls the range of movement of the sample in the height direction during focusing of the optical microscope based on the focusing signal obtained by the charged particle beam focusing means, and The focusing operation of the charged particle beam by the charged particle beam focusing means is controlled based on the signal in the height direction of the sample obtained by the optical focusing means, and the charged particle beam focusing means and the optical focus are controlled. The other focus is automatically adjusted based on the focus signal obtained by one of the focus adjustment means.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の方法を実施するための電子
ビームマイクロアナラザーの一例を示している。図中1
は電子銃であり、電子銃1から発生し加速された電子ビ
ームは集束レンズ2、対物レンズ3によって細く集束さ
れ、試料4に照射される。試料4に照射される電子ビー
ムは、偏向コイル5によって適宜偏向され、試料4の所
望領域は電子ビームによって走査される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example of an electron beam microanalyzer for carrying out the method of the present invention. 1 in the figure
Is an electron gun, and the electron beam generated and accelerated by the electron gun 1 is finely focused by the focusing lens 2 and the objective lens 3, and is irradiated onto the sample 4. The electron beam with which the sample 4 is irradiated is appropriately deflected by the deflection coil 5, and the desired region of the sample 4 is scanned with the electron beam.

【0012】6は電子ビームの自動焦点合わせユニット
であり、このユニット6から対物レンズ3には自動焦点
合わせ時には階段状に変化する励磁電流が供給される。
また、ユニット6から偏向コイル5には対物レンズ3に
供給される階段状の励磁電流に同期した走査信号が供給
される。更に、ユニット6には電子ビームの試料4への
照射に伴って発生した2次電子を検出する検出器7から
の信号が供給される。なお、図示していないが、この試
料4の上部には試料への電子ビームの照射によって発生
したX線を分析するためのX線分光器などが配置されて
いる。
Reference numeral 6 denotes an electron beam automatic focusing unit. From this unit 6, an exciting current which changes stepwise during automatic focusing is supplied to the objective lens 3.
Further, the unit 6 supplies the deflection coil 5 with a scanning signal which is synchronized with the stepwise excitation current supplied to the objective lens 3. Further, the unit 6 is supplied with a signal from a detector 7 which detects secondary electrons generated by the irradiation of the sample 4 with the electron beam. Although not shown, an X-ray spectroscope for analyzing X-rays generated by irradiating the sample with an electron beam is arranged above the sample 4.

【0013】試料4はx,y2次元方向に移動できる水
平移動機構8の上に載せられている。また、水平移動機
構8は、z方向に移動できる垂直移動機構9の上に載せ
られている。水平移動機構8は、パルスモータ10によ
って駆動され、垂直移動機構9はパルスモータ11によ
って駆動される。12はパルスモータ10の駆動制御回
路であり、13はパルスモータ11の駆動制御回路であ
る。この2種の駆動制御回路12,13は、コンピュー
タ14によって制御される。
The sample 4 is placed on a horizontal moving mechanism 8 which can move in the two-dimensional directions of x and y. The horizontal movement mechanism 8 is mounted on the vertical movement mechanism 9 that can move in the z direction. The horizontal moving mechanism 8 is driven by the pulse motor 10, and the vertical moving mechanism 9 is driven by the pulse motor 11. Reference numeral 12 is a drive control circuit for the pulse motor 10, and 13 is a drive control circuit for the pulse motor 11. The two types of drive control circuits 12 and 13 are controlled by the computer 14.

【0014】15は光学顕微鏡の対物レンズであり、光
学対物レンズ15は光源16から発生され、レンズ1
7,半透明鏡18,反射鏡19を経た光を試料4上に集
束する。試料4から反射した光は、光学対物レンズ15
により結像され、反射鏡19、半透明鏡18およびリレ
ーレンズ20を介して撮像装置21の結像面に投影され
る。なお、光学対物レンズ15と反射鏡19は電子ビー
ムの光路上に配置されるため、電子ビームの光軸に電子
ビーム通過用の開口が穿たれている。撮像装置21によ
って得られた信号は前記コンピュータ14に供給され
る。なお、22はコンピュータ14に接続されたメモリ
ー、23は陰極線管である。このような構成の動作を次
に説明する。
Reference numeral 15 is an objective lens of an optical microscope. The optical objective lens 15 is generated from a light source 16, and the lens 1
The light that has passed through 7, the semitransparent mirror 18, and the reflecting mirror 19 is focused on the sample 4. The light reflected from the sample 4 is the optical objective lens 15
Is imaged by and is projected on the imaging surface of the image pickup device 21 via the reflecting mirror 19, the semitransparent mirror 18, and the relay lens 20. Since the optical objective lens 15 and the reflecting mirror 19 are arranged on the optical path of the electron beam, an opening for passing the electron beam is formed in the optical axis of the electron beam. The signal obtained by the image pickup device 21 is supplied to the computer 14. Reference numeral 22 is a memory connected to the computer 14, and 23 is a cathode ray tube. The operation of such a configuration will be described below.

【0015】まず、電子ビームマイクロアナラザーとし
ての通常のX線分析は、電子銃1からの電子ビームを試
料4上に細く集束し、その結果試料から発生した特性X
線を図示していないX線分光器で分光し、得られたX線
スペクトルにより行う。この電子ビームの照射の前に、
光源16からの光を試料4に照射し、撮像装置21によ
り試料の光学像を得、この光学像を陰極線管23上に表
示する。この光学像を観察し、像の焦点が合うように駆
動制御回路13を介してパルスモータ11を駆動し、垂
直移動機構9によって試料の高さ位置の調整を行う。光
学顕微鏡の位置と、X線分光系の位置関係は機械的に事
前調整されており、光学顕微鏡による焦点合わせが行わ
れると、試料の高さ位置はX線分光系にとって最適な位
置となる。
First, in the usual X-ray analysis as an electron beam microanalyzer, the electron beam from the electron gun 1 is focused finely on the sample 4 and, as a result, the characteristic X generated from the sample is obtained.
The X-ray spectrum is obtained by dispersing the rays with an X-ray spectrometer (not shown). Before this electron beam irradiation,
The sample 4 is irradiated with light from the light source 16, an optical image of the sample is obtained by the imaging device 21, and the optical image is displayed on the cathode ray tube 23. The optical image is observed, the pulse motor 11 is driven through the drive control circuit 13 so that the image is in focus, and the vertical movement mechanism 9 adjusts the height position of the sample. The positional relationship between the position of the optical microscope and the X-ray spectroscopic system is mechanically preliminarily adjusted, and when focusing is performed by the optical microscope, the height position of the sample becomes the optimum position for the X-ray spectroscopic system.

【0016】また、上記した光学顕微鏡の焦点合わせは
自動的に行うことができる。すなわち、撮像装置21に
よって得られた試料の光学像の信号は、コンピュータ1
4に送られる。コンピュータ14は像信号を微分する
が、コンピュータ14は更に垂直駆動回路13を制御し
て垂直移動機構9を一定範囲移動させ、各試料の垂直位
置における像信号の微分値を比較する。この微分値が最
も大きなときが焦点のあっている試料の垂直位置とな
る。従って、コンピュータ14は駆動制御回路13を制
御してパルスモータ11を駆動し、焦点の合う垂直位置
に試料4を位置させる。
The above-mentioned focusing of the optical microscope can be automatically performed. That is, the signal of the optical image of the sample obtained by the image pickup device 21 is stored in the computer 1
Sent to 4. The computer 14 differentiates the image signal, and the computer 14 further controls the vertical drive circuit 13 to move the vertical movement mechanism 9 within a certain range, and compares the differential values of the image signal at the vertical position of each sample. When this differential value is the largest, it is the vertical position of the focused sample. Therefore, the computer 14 controls the drive control circuit 13 to drive the pulse motor 11 to position the sample 4 at the vertical position where the focus is achieved.

【0017】次に電子ビームの焦点合わせ動作について
説明する。自動焦点合わせユニット6から対物レンズ3
には階段状に変化する励磁電流が供給され、その結果焦
点は階段状に変化する。この対物レンズ3の階段状の変
化の都度、偏向コイル5には試料上の所定領域を走査す
る走査信号が供給される。この電子ビームの走査に伴っ
て試料から発生した2次電子は、2次電子検出器7によ
って検出される。検出器7の検出信号は自動焦点合わせ
ユニット6に供給され、所定領域の走査期間の信号が積
算される。ユニット6は対物レンズ3の各励磁状態ごと
に積算された信号強度を比較し、最大の信号強度が得ら
れたときの励磁強度に対物レンズ3を設定する。このよ
うにして電子ビームの自動焦点合わせ動作が実行され
る。
Next, the focusing operation of the electron beam will be described. From the automatic focusing unit 6 to the objective lens 3
Is supplied with an exciting current that changes stepwise, and as a result, the focus changes stepwise. Each time the objective lens 3 changes stepwise, the deflection coil 5 is supplied with a scanning signal for scanning a predetermined region on the sample. Secondary electrons generated from the sample due to the scanning of the electron beam are detected by the secondary electron detector 7. The detection signal of the detector 7 is supplied to the automatic focusing unit 6, and the signals of the scanning period of the predetermined area are integrated. The unit 6 compares the signal intensities accumulated for each excitation state of the objective lens 3 and sets the objective lens 3 to the excitation intensity when the maximum signal intensity is obtained. In this way, the automatic focusing operation of the electron beam is executed.

【0018】さて、前記した電子ビームの自動焦点合わ
せによって得られた対物レンズ3の励磁強度は、対物レ
ンズ3と試料との間の距離(ワーキングディスタンスと
言う)に対応した値となる。この励磁強度信号はコンピ
ュータ14に供給されるが、コンピュータ14は供給さ
れた信号からワーキングディスタンスを求め、その結果
をメモリー23に記憶する。次にコンピュータ14はワ
ーキングディスタンスが求められているので、この値に
基づいて光学顕微鏡の自動焦点合わせを効率良く実行す
ることができる。
The excitation intensity of the objective lens 3 obtained by the above-mentioned automatic focusing of the electron beam has a value corresponding to the distance between the objective lens 3 and the sample (referred to as working distance). This excitation intensity signal is supplied to the computer 14, and the computer 14 obtains the working distance from the supplied signal and stores the result in the memory 23. Next, since the computer 14 is required to have the working distance, the automatic focusing of the optical microscope can be efficiently performed based on this value.

【0019】すなわち、コンピュータ14は光学顕微鏡
の自動焦点合わせの際には、駆動制御機構13を制御し
て試料4の高さ方向の位置を変化させるが、この変化幅
をワーキングディスタンスの値から極限られた範囲とす
る。その結果、光学顕微鏡の焦点合わせ動作を著しく短
時間に実行することができると共に、不用意に試料の高
さを変化させて、試料などが周辺の構成部材に衝突する
ことは防止される。
That is, the computer 14 changes the position of the sample 4 in the height direction by controlling the drive control mechanism 13 during the automatic focusing of the optical microscope. The specified range. As a result, the focusing operation of the optical microscope can be executed in a remarkably short time, and the height of the sample is inadvertently changed to prevent the sample and the like from colliding with the peripheral components.

【0020】なお、光学顕微鏡の焦点合わせの際の試料
の高さ方向の変化幅は、電子ビームによる走査像の焦点
深度(例えば観察倍率1000倍で±20μm)をカバ
ーする程度の狭い範囲で充分となる。ただし、このサー
チ範囲は任意に設定することができる。
It should be noted that the variation width in the height direction of the sample at the time of focusing of the optical microscope is sufficiently narrow as long as it covers the depth of focus of the scanning image by the electron beam (for example, ± 20 μm at an observation magnification of 1000 times). Becomes However, this search range can be set arbitrarily.

【0021】上記した実施例では、電子ビームの自動焦
点合わせの情報に基づいて光学顕微鏡の焦点合わせを実
行した。この方式以外にも図1のシステムを用いて他の
制御を行うことができる。例えば、走査電子顕微鏡など
の荷電粒子ビーム装置の荷電粒子ビームのプローブ電流
やプローブの開き角(試料への入射角度)、観察倍率な
どが決まれば、荷電粒子ビームの走査像の焦点深度が決
定される。したがって、荷電粒子ビーム像の観察条件の
設定値から、この焦点深度をカバーするサーチ範囲(例
えば焦点深度の2倍)を算出して、光学顕微鏡の自動焦
点合わせ装置にサーチ範囲を設定することもできる。
In the above-mentioned embodiment, the focusing of the optical microscope is executed based on the information of the automatic focusing of the electron beam. In addition to this method, other control can be performed using the system of FIG. For example, if the probe current of the charged particle beam of a charged particle beam device such as a scanning electron microscope, the opening angle of the probe (incident angle to the sample), and the observation magnification are determined, the focal depth of the scanned image of the charged particle beam is determined. It Therefore, it is also possible to calculate a search range that covers this depth of focus (for example, twice the depth of focus) from the set values of the observation conditions of the charged particle beam image, and set the search range in the automatic focusing device of the optical microscope. it can.

【0022】また、荷電粒子ビーム像の手動合焦点操作
または自動合焦点操作の後、ボタン操作や自動連続動作
によって光学顕微鏡の自動焦点合わせを行った後は、試
料ステージが移動したことによる荷電粒子ビーム像のフ
ォーカス状態のズレを補正するため、連続して再度前記
の荷電粒子ビーム像の自動合焦点動作によって自動的に
修正することもできる。更に、光学顕微鏡が認識する作
動距離を対物レンズの設定値(焦点距離あるいは励磁の
コードなど)に逆変換して荷電粒子ビーム装置の対物レ
ンズに設定したり、この設定値を中心に荷電粒子ビーム
装置の自動合焦点機能のサーチ範囲を設定することもで
きる。このサーチ範囲が狭ければ、荷電粒子ビーム装置
の対物レンズが電磁式の場合には磁気回路のヒステリシ
スの影響やインダクタンスの影響を小さくでき、合焦点
精度が向上する。
Further, after the manual focusing operation or the automatic focusing operation of the charged particle beam image and the automatic focusing of the optical microscope by the button operation or the automatic continuous operation, the charged particles due to the movement of the sample stage In order to correct the deviation of the focus state of the beam image, it is possible to continuously and automatically correct the charged particle beam image again by the automatic focusing operation. Further, the working distance recognized by the optical microscope is converted back to the objective lens setting value (focal length or excitation code, etc.) and set in the objective lens of the charged particle beam device, or the charged particle beam is centered around this setting value. It is also possible to set the search range of the automatic focusing function of the device. If the search range is narrow, when the objective lens of the charged particle beam apparatus is an electromagnetic type, the influence of hysteresis and the influence of inductance of the magnetic circuit can be reduced, and the focusing accuracy is improved.

【0023】更にまた、荷電粒子ビーム像または光学顕
微鏡のフォーカス合わせを行う場合、どちらか一方のフ
ォーカス合わせを行うと、自動的に現在の作動距離を認
識し、他方のフォーカス合わせ機構にこの情報を伝え、
最終的に両方のフォーカスを自動的に合わせ込むことも
できる。
Furthermore, when focusing the charged particle beam image or the optical microscope, if either one of the focusing is performed, the current working distance is automatically recognized and this information is provided to the other focusing mechanism. Tell
Finally, it is possible to automatically set both focus points.

【0024】以上本発明の実施例を説明したが、本発明
はこの実施例に限定されない。例えば、図1の実施例で
は電子ビームマイクロアナライザを例に説明したが、イ
オンビーム装置など、光学顕微鏡を備えた他の荷電粒子
ビーム装置にも本発明を適用することができる。
Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment. For example, although the electron beam microanalyzer has been described as an example in the embodiment of FIG. 1, the present invention can be applied to other charged particle beam devices including an optical microscope such as an ion beam device.

【0025】[0025]

【発明の効果】以上説明したように、本発明に基づく荷
電粒子ビームは、荷電粒子ビーム焦点合わせ手段によっ
て得られた焦点合わせ信号に基づいて、光学顕微鏡の焦
点合わせ時の試料の高さ方向の移動範囲を制御し、ま
た、光学的焦点合わせ手段によって得られた試料の高さ
方向の信号に基づいて、荷電粒子ビーム焦点合わせ手段
による荷電粒子ビームの焦点合わせ動作を制御し、更
に、荷電粒子ビーム焦点合わせ手段と光学的焦点合わせ
手段の一方の焦点合わせ手段によって得られた合焦点信
号に基づいて、他方の焦点を自動的に合わせるように構
成した。
As described above, the charged particle beam according to the present invention is based on the focusing signal obtained by the charged particle beam focusing means to determine the height direction of the sample at the time of focusing by the optical microscope. The moving range is controlled, and the focusing operation of the charged particle beam by the charged particle beam focusing means is controlled based on the signal in the height direction of the sample obtained by the optical focusing means. The other focus is automatically adjusted based on the focusing signal obtained by one of the beam focusing means and the optical focusing means.

【0026】この結果、光学顕微鏡の自動焦点合わせ機
能のサーチのスタート時点で、対物レンズの励磁電流か
ら換算される作動距離値を設定できるため、広い範囲で
試料を上下動させる必要がなくなり、狭い範囲の試料の
上下動により自動焦点合わせのサーチを行うことがで
き、サーチ時間(焦点合わせ時間)を短縮することがで
きる。また、作動距離を参照していることから、試料の
上下動の範囲を予め認識することができ、このため、サ
ーチ範囲の適正化やサーチの中止などを行うことがで
き、試料が対物レンズなどに衝突する事故を未然に防止
することができる。
As a result, since the working distance value converted from the excitation current of the objective lens can be set at the start of the search of the automatic focusing function of the optical microscope, it is not necessary to move the sample up and down in a wide range, and the sample is narrow. A search for automatic focusing can be performed by vertically moving the sample in the range, and the search time (focusing time) can be shortened. Further, since the working distance is referenced, the range of vertical movement of the sample can be recognized in advance. Therefore, the search range can be optimized and the search can be stopped. It is possible to prevent an accident that collides with the vehicle.

【0027】更に、本発明では、光学顕微鏡の合焦点状
態から作動距離を認識し、荷電粒子ビーム装置の対物レ
ンズに適正な値を設定でき、また、荷電粒子ビームの自
動焦点合わせ装置のサーチ開始位置やサーチ範囲を決め
ることができることから、荷電粒子ビーム像および光学
顕微鏡像のフォーカスを自動的かつ効率的に合わせられ
るようになる。
Further, in the present invention, the working distance can be recognized from the focused state of the optical microscope, an appropriate value can be set in the objective lens of the charged particle beam apparatus, and the search of the automatic focusing apparatus for the charged particle beam can be started. Since the position and the search range can be determined, the charged particle beam image and the optical microscope image can be automatically and efficiently focused.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく方法を実施するためのシステム
の一例を示す図である。
FIG. 1 shows an example of a system for implementing the method according to the invention.

【符号の説明】[Explanation of symbols]

1 電子銃 2 集束レンズ 3 対物レンズ 4 試料 5 偏向コイル 6 自動焦点合わせユニット 7 2次電子検出器 8 水平移動機構 9 垂直移動機構 10,11 パルスモータ 12,13 駆動制御回路 14 コンピュータ 15 光学対物レンズ 16 光源 17 集光レンズ 18 半透明鏡 19 反射鏡 20 リレーレンズ 21 撮像装置 22 メモリー 23 陰極線管 DESCRIPTION OF SYMBOLS 1 Electron gun 2 Focusing lens 3 Objective lens 4 Sample 5 Deflection coil 6 Automatic focusing unit 7 Secondary electron detector 8 Horizontal movement mechanism 9 Vertical movement mechanism 10, 11 Pulse motor 12, 13 Drive control circuit 14 Computer 15 Optical objective lens 16 light source 17 condensing lens 18 semi-transparent mirror 19 reflecting mirror 20 relay lens 21 imaging device 22 memory 23 cathode ray tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料に照射される荷電粒子ビームの焦点
を連続的に変化させ、それに伴って試料から得られた信
号に基づいて荷電粒子ビームの焦点合わせを行う荷電粒
子ビーム焦点合わせ手段と、試料を高さ方向に移動さ
せ、光学顕微鏡の焦点合わせを行う光学的焦点合わせ手
段とを備えており、荷電粒子ビーム焦点合わせ手段によ
って得られた焦点合わせ信号に基づいて、光学顕微鏡の
焦点合わせ時の試料の高さ方向の移動範囲を制御する手
段を有した荷電粒子ビーム装置。
1. A charged particle beam focusing means for continuously changing the focus of a charged particle beam with which a sample is irradiated, and focusing the charged particle beam based on a signal obtained from the sample accordingly. It is equipped with an optical focusing means for moving the sample in the height direction and focusing the optical microscope, and when focusing the optical microscope based on the focusing signal obtained by the charged particle beam focusing means. Charged particle beam device having means for controlling the moving range of the sample in the height direction.
【請求項2】 試料に照射される荷電粒子ビームの焦点
を連続的に変化させ、それに伴って試料から得られた信
号に基づいて荷電粒子ビームの焦点合わせを行う荷電粒
子ビーム焦点合わせ手段と、試料を高さ方向に移動さ
せ、光学顕微鏡の焦点合わせを行う光学的焦点合わせ手
段とを備えており、光学的焦点合わせ手段によって得ら
れた試料の高さ方向の信号に基づいて、荷電粒子ビーム
焦点合わせ手段による荷電粒子ビームの焦点合わせ動作
を制御する手段を有した荷電粒子ビーム装置。
2. A charged particle beam focusing means for continuously changing the focal point of the charged particle beam with which the sample is irradiated, and focusing the charged particle beam based on the signal obtained from the sample accordingly. A charged particle beam is provided based on a signal in the height direction of the sample obtained by the optical focusing means, which is provided with an optical focusing means for moving the sample in the height direction and focusing the optical microscope. A charged particle beam device having means for controlling the focusing operation of the charged particle beam by the focusing means.
【請求項3】 試料に照射される荷電粒子ビームの焦点
を連続的に変化させ、それに伴って試料から得られた信
号に基づいて荷電粒子ビームの焦点合わせを行う荷電粒
子ビーム焦点合わせ手段と、試料を高さ方向に移動さ
せ、光学顕微鏡の焦点合わせを行う光学的焦点合わせ手
段とを備えており、一方の焦点合わせ手段によって得ら
れた合焦点信号に基づいて、他方の焦点を自動的に合わ
せる手段を有した荷電粒子ビーム装置。
3. A charged particle beam focusing means for continuously changing the focal point of the charged particle beam with which the sample is irradiated, and focusing the charged particle beam based on the signal obtained from the sample accordingly. It is equipped with an optical focusing means that moves the sample in the height direction and focuses the optical microscope.Based on the focus signal obtained by one focusing means, the other focus is automatically adjusted. A charged particle beam device having a matching means.
JP17276894A 1994-07-25 1994-07-25 Charged particle beam equipment Expired - Fee Related JP3342580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17276894A JP3342580B2 (en) 1994-07-25 1994-07-25 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17276894A JP3342580B2 (en) 1994-07-25 1994-07-25 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH0836986A true JPH0836986A (en) 1996-02-06
JP3342580B2 JP3342580B2 (en) 2002-11-11

Family

ID=15947981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17276894A Expired - Fee Related JP3342580B2 (en) 1994-07-25 1994-07-25 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3342580B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007243A (en) * 2001-06-19 2003-01-10 Seiko Instruments Inc Automatic focusing method for scanning electron microscope having laser defect detection function
JP2005175465A (en) * 2003-12-12 2005-06-30 Samsung Electronics Co Ltd Automatic focusing method and automatic focusing device
JP2008251557A (en) * 2008-07-22 2008-10-16 Hitachi Ltd Ion beam processing device
JP2021068707A (en) * 2019-10-23 2021-04-30 ガタン インコーポレイテッドGatan,Inc. System and method for alignment of cathodoluminescence optics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007243A (en) * 2001-06-19 2003-01-10 Seiko Instruments Inc Automatic focusing method for scanning electron microscope having laser defect detection function
JP4610798B2 (en) * 2001-06-19 2011-01-12 エスアイアイ・ナノテクノロジー株式会社 Scanning electron microscope with laser defect detection function and its autofocus method
JP2005175465A (en) * 2003-12-12 2005-06-30 Samsung Electronics Co Ltd Automatic focusing method and automatic focusing device
JP2008251557A (en) * 2008-07-22 2008-10-16 Hitachi Ltd Ion beam processing device
JP2021068707A (en) * 2019-10-23 2021-04-30 ガタン インコーポレイテッドGatan,Inc. System and method for alignment of cathodoluminescence optics

Also Published As

Publication number Publication date
JP3342580B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
US6570156B1 (en) Autoadjusting electron microscope
EP1306878B1 (en) Method and device for aligning a charged particle beam column
JP3888980B2 (en) Material identification system
CN114355602A (en) Microscope
EP1622186B1 (en) Electron microscope
JP3342580B2 (en) Charged particle beam equipment
JPH05113418A (en) Surface analyzing apparatus
JP3210227B2 (en) Laser ablation analyzer
US4880977A (en) Analytical electron microscope
JPH05332934A (en) Spectroscope
JP2004171801A (en) Electron microscope
JP3270627B2 (en) Display method of sample height in electron beam microanalyzer
JPH01213944A (en) Analyzing device with electron beam irradiation
JP2000304712A (en) Electron beam analyzing and observing apparatus and electron beam microanalyzer
JPS60189856A (en) X-ray microanalyzer and similar device
JP4413887B2 (en) Material identification system
JP2000323083A (en) Projection type ion beam machining device
JP2002352759A (en) Electron beam device provided with field emission type electron gun
JPH07296757A (en) Scanning electron microscope, and similar device thereto
JP2816388B2 (en) Electron beam equipment
JP2003207469A (en) Electron probe microanalyzer
CN114945822A (en) Device and method for projecting an array of a plurality of charged particle beamlets onto a sample
JP2007225407A (en) Electronic spectroscopic device
JPH1196958A (en) Analytical electron microscope
JPS6342460Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees