JPH083529B2 - Speed detector - Google Patents

Speed detector

Info

Publication number
JPH083529B2
JPH083529B2 JP63176642A JP17664288A JPH083529B2 JP H083529 B2 JPH083529 B2 JP H083529B2 JP 63176642 A JP63176642 A JP 63176642A JP 17664288 A JP17664288 A JP 17664288A JP H083529 B2 JPH083529 B2 JP H083529B2
Authority
JP
Japan
Prior art keywords
light
signal
output
speed
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63176642A
Other languages
Japanese (ja)
Other versions
JPH0225786A (en
Inventor
一光 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63176642A priority Critical patent/JPH083529B2/en
Publication of JPH0225786A publication Critical patent/JPH0225786A/en
Publication of JPH083529B2 publication Critical patent/JPH083529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は速度検出装置に関し、特に速度が早くかつ速
度変化の大きい移動物体を対象とする速度検出装置に関
する。
Description: TECHNICAL FIELD The present invention relates to a speed detection device, and more particularly to a speed detection device for a moving object having a high speed and a large speed change.

〔従来の技術〕[Conventional technology]

従来、移動物体の速度を検出する速度検出装置は、通
常移動物体にマイクロ波を発射し、その反射波の周波数
のドップラシフト量から速度を算出していた。しかしな
がら、マイクロ波は発射後、波長と出射径に応じた回折
による拡がりを有するため、発射源から少し離れた所で
は大きく拡がってしまい、目標とする物体以外にも照射
される。従って、受信する反射波は異なる速度の物体か
らの反射の合成されたものとなり、小さな移動物体に対
しては、正確な測定が出来なくなる。近時、このような
欠点を除くため、周波数の極めて高い電磁波としての光
を用いて、回折による拡がりを少なくし、目標とする物
体のみを照射する方法が用いられている。
Conventionally, a speed detection device that detects the speed of a moving object normally emits a microwave to a moving object and calculates the speed from the Doppler shift amount of the frequency of the reflected wave. However, since the microwave has a spread due to diffraction depending on the wavelength and the emission diameter after being emitted, the microwave is widely spread at a place a little away from the emission source, and is irradiated to objects other than the target object. Therefore, the received reflected wave is a combination of reflections from objects having different speeds, and accurate measurement cannot be performed on a small moving object. Recently, in order to eliminate such a defect, a method has been used in which light as an electromagnetic wave having an extremely high frequency is used to reduce the spread due to diffraction and irradiate only a target object.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の光による速度検出装置は、マイクロ波
等を利用した装置に比べ拡がり角が少なくなり、目標の
みを照射出来るという利点を有するものの、半面以下の
欠点も有しており、速度変化の激しい物体の速度検出を
行なうことは困難であるという欠点がある。
The conventional speed detection device using light described above has an advantage that the divergence angle is smaller than that of a device using microwaves and the like and that only the target can be irradiated, but it also has a disadvantage of half or less, which causes a change in speed. There is a drawback that it is difficult to detect the speed of a violent object.

すなわち、ドップラシフトの周波数は、物体の移動速
度と波の速度(光速)との比に波の周波数を乗じたもの
であり、周波数の高い電磁波即ち光を用いるとドップラ
シフトによる周波数もそれに応じて高くなる。このよう
な高い周波数での信号処理は困難であり、低速の移動物
体用としては実用化されているものの高速移動物体の速
度検出には不適当である。
That is, the frequency of the Doppler shift is obtained by multiplying the frequency of the wave by the ratio of the moving speed of the object and the speed of the wave (speed of light). Get higher Signal processing at such a high frequency is difficult, and although it has been put to practical use for low-speed moving objects, it is unsuitable for speed detection of high-speed moving objects.

一方、高速移動物体の速度を検出するために、光を変
調して(ドップラシフトを考える上では光検波器出力の
周波数即ち変調周波数にて扱える)測定する方法も考え
られているが、現状では光を外部変調する周波数に上限
があり、この周波数で変調した光によるドップラシフト
量は小さくなり過ぎるため、この場合は遅い速度の物体
の速度検出が困難となり、従って、遅い速度から急激に
加速されて行く物体の時々刻々の速度検出を行なう事は
出来ない。
On the other hand, in order to detect the velocity of a high-speed moving object, a method of modulating light (which can be handled by the frequency of the photodetector output in consideration of Doppler shift, that is, the modulation frequency) is also considered, but at present, There is an upper limit to the frequency of externally modulating light, and the amount of Doppler shift due to light modulated at this frequency becomes too small.In this case, it becomes difficult to detect the speed of an object at a slow speed, and therefore the speed is rapidly accelerated from a slow speed. It is not possible to detect the speed of a moving object every moment.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の速度検出装置は、光発生源と、この光発生源
の出力光を変調信号で変調して光変調光を発生する光変
調器と、前記光変調光を移動物体に送出しその反射光を
受光する送受信光学系と、前記送受信光学系によって受
光した反射光を検波する光検波器と、前記変調信号と僅
かに周波数の異る副信号を出力する副信号発生器と、前
記光検波器の出力と前記副信号発生器の出力とを混合し
てその差周波数の信号を出力する混合器と、前記混合器
の出力のゼロクロス点間の時間を計測用クロックパルス
で計測してその計測値であるカウント値を前記ゼロクロ
ス点間ごとに出力するパルス計数器と、前記変調信号と
前記計測用クロックパルスとを出力する基準信号発生器
と、前記パルス計数器の出力する前記カウント値を前記
ゼロクロス点間ごとに記憶しつつ前記カウント値にもと
づいて前記ゼロクロス点間の時間を算出し前記移動物体
の速度ならびに速度変化を得る記憶回路とを備えて構成
される。
The speed detecting device of the present invention includes a light source, an optical modulator that modulates the output light of the light source with a modulation signal to generate light modulated light, and sends the light modulated light to a moving object and reflects it. A transmitting / receiving optical system for receiving light, an optical detector for detecting reflected light received by the transmitting / receiving optical system, a sub-signal generator for outputting a sub-signal slightly different in frequency from the modulation signal, and the optical detection A mixer that mixes the output of the mixer and the output of the sub-signal generator to output a signal of the difference frequency, and measures the time between the zero-cross points of the output of the mixer with a clock pulse for measurement A pulse counter that outputs a count value that is a value for each of the zero-cross points, a reference signal generator that outputs the modulation signal and the measurement clock pulse, and the count value that the pulse counter outputs. For each zero-cross point While storing based on said count value to calculate the time between the zero-cross point formed by a storage circuit for obtaining a rate and velocity change of the moving object.

〔実施例〕〔Example〕

次に図面を参照して本発明を詳細に説明する。 The present invention will now be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成図であり、光源とし
ての光発生源1、光発生源1の出力光を変調信号で変調
して光変調光を発生する光変調器2、前述した変調信号
を発生する基準信号発生器3、光調変光器2の出力する
光変調光を移動物体5に送出しその反射光を受光する送
受信光学系4、送受信光学系4によって受光した反射光
を検波する光検波器6、上述した変調信号と僅かに周波
数の異る副信号を出力する副信号発生器8、光検波器6
の出力と副信号発生器8の出力とを混合してその差周波
数の信号を出力する混合器7、混合器7の出力のゼロク
ロス点間の時間を上述した変調信号とともに基準信号発
生器3の出力する計測用クロックパルスで計測してその
計測値であるカウント値を上記ゼロクロス点間ごとに出
力するパルス計数器9、パルス計数器9の計数した混合
器7の出力のゼロクロス点間ごとの計測用クロックパル
スのカウント値を記憶しつつこのカウント値にもとづい
て上述したゼロクロス点間の時間を算出し移動物体5の
速度ならびに速度変化を得る記憶回路10を備えて構成さ
れる。
FIG. 1 is a configuration diagram of an embodiment of the present invention. A light generating source 1 as a light source, an optical modulator 2 that modulates output light of the light generating source 1 with a modulation signal to generate light modulated light, A reference signal generator 3 for generating a modulated signal, a transmission / reception optical system 4 for transmitting the light-modulated light output from the light modulator 2 to a moving object 5 and receiving the reflected light, and a reflection received by the transmission / reception optical system 4. Photodetector 6 for detecting light, subsignal generator 8 for outputting a subsignal whose frequency is slightly different from that of the above-mentioned modulated signal, photodetector 6
Of the reference signal generator 3 together with the above-mentioned modulation signal, and the time between the zero-cross points of the mixer 7 and the output of the mixer 7 which mixes the output of the sub-signal generator 8 with the output of the sub-signal generator 8. A pulse counter 9 that measures with the output measurement clock pulse and outputs a count value that is the measured value for each of the zero cross points, and a measurement of the output of the mixer 7 counted by the pulse counter 9 for each zero cross point The memory circuit 10 is configured to store the count value of the clock pulse for use, calculate the time between the zero-cross points based on the count value, and obtain the speed and speed change of the moving object 5.

次に、第1図の実施例の動作について説明する。 Next, the operation of the embodiment shown in FIG. 1 will be described.

光発生源1から出た光101は、基準信号発生器3から
出力する正弦波の変調出力信号102により変調され、光
変調器2から振幅変調された光変調光103として出光さ
れる。
The light 101 emitted from the light source 1 is modulated by the sine wave modulation output signal 102 output from the reference signal generator 3, and emitted from the optical modulator 2 as amplitude-modulated light 103.

振幅変調された光変調光103は送受信光学系4により
外部に出力光109として出射され、移動物体5に当たり
反射する。反射の際に移動物体5の速度に比例したドッ
プラシフトを受けて変調周波数が変化した反射光104は
送受信光学系4により受光され光検波器6に入射し、反
射光104の変調周波数に応じた検波信号105が出力され混
合器7に入力する。
The amplitude-modulated light-modulated light 103 is emitted as output light 109 by the transmission / reception optical system 4 and hits the moving object 5 to be reflected. The reflected light 104, whose modulation frequency has changed due to the Doppler shift proportional to the velocity of the moving object 5 at the time of reflection, is received by the transmission / reception optical system 4, enters the photodetector 6, and is reflected by the modulation frequency of the reflected light 104. The detection signal 105 is output and input to the mixer 7.

混合器7は、基準信号発生器3と僅に異る数KHzの周
波数差の信号106を発生する副信号発生器8からの副信
号106と検波信号105を混合し、二つの信号の差の周波数
の差周波数信号107を出力する。
The mixer 7 mixes the detection signal 105 with the sub-signal 106 from the sub-signal generator 8 which generates a signal 106 having a frequency difference of several KHz, which is slightly different from the reference signal generator 3, and calculates the difference between the two signals. The frequency difference frequency signal 107 is output.

差周波数信号107は、従って、副信号106−(変調信号
102+ドップラシフト)の周波数となる。ただし、本実
施例にあっては、副信号106の周波数を変調信号102の周
波数よりも高いものとしているが、その逆の設定でも勿
論差し支えない。
The difference frequency signal 107 is thus the sub-signal 106- (modulation signal
The frequency is 102 + Doppler shift). However, in the present embodiment, the frequency of the sub-signal 106 is set to be higher than the frequency of the modulated signal 102, but the setting may be reversed, as a matter of course.

この差周波数信号107はパルス計数器9に供給され
る。この差周波数信号はほぼ数KHzの正弦波信号であ
り、パルス計数器9は、この差周波数信号のゼロクロス
点間ごとの時間を基準信号発生器3から得られる計測用
クロックパルス108で計測し、このゼロクロス点間ごと
に得られる計測用クロックパルス108のカウント値を記
憶回路10に供給する。
This difference frequency signal 107 is supplied to the pulse counter 9. This difference frequency signal is a sine wave signal of approximately several KHz, and the pulse counter 9 measures the time for each zero cross point of this difference frequency signal with the measurement clock pulse 108 obtained from the reference signal generator 3, The count value of the measurement clock pulse 108 obtained for each zero-cross point is supplied to the memory circuit 10.

第2図(a)は第1図の実施例におけるゼロクロス点
間のパルス点間のパルス計数の説明図、第2図(b)は
第1図の実施例におけるゼロクロス点間のパルス計数の
記憶内容の説明図である。
2 (a) is an explanatory diagram of pulse counting between pulse points between zero cross points in the embodiment of FIG. 1, and FIG. 2 (b) is storage of pulse counting between zero cross points in the embodiment of FIG. It is explanatory drawing of a content.

第2図(a)に示す如く、本実施例では、ゼロクロス
点として差周波数信号107がプラスの勾配でゼロライン
を切る点tm,tnを利用しているが、これはマイナスの勾
配も含む全ゼロクロス点を利用しても勿論差し支えな
い。
As shown in FIG. 2 (a), in the present embodiment, the points t m and t n at which the difference frequency signal 107 cuts the zero line with a positive slope is used as a zero cross point, but this also applies to a negative slope. Of course, it does not matter if all the zero-cross points are used.

ゼロクロス点tmとtn間の時間は計測用クロックパルス
108のカウントから容易に知ることができる。
The time between the zero-cross points t m and t n is the measurement clock pulse.
You can easily tell from the count of 108.

記憶回路10は、パルス計数器9から提供されるゼロク
ロス点間ごとのパルス計数値(カウント値)を記憶しつ
つ、これにもとづいてゼロクロス点間ごとの時間を求め
る。このゼロクロス点間の時間は、明らかに移動物体5
の速度に従って変化し、また速度の変化に対応して変化
する。記憶回路10は、この関係を利用して、ゼロクロス
点間ごとの移動物体5の速度および速度の変化も演算す
る。
The memory circuit 10 stores the pulse count value (count value) for each zero-cross point provided from the pulse counter 9, and determines the time for each zero-cross point based on this. The time between these zero-cross points is obviously the moving object 5
Changes according to the speed of, and changes corresponding to the change in speed. The storage circuit 10 also uses this relationship to calculate the velocity of the moving object 5 and the change in velocity for each zero-cross point.

第2図(b)のn1,n2およびn3はそれぞれゼロクロス
点間t0〜t1,t1〜t2およびt2〜t3のパルス計測数を示
す。ゼロクロス点間の時間は差周波数信号107の瞬時周
波数の逆数である。光を反射した移動物体5が静止して
いればこの時間は一定であるが、移動している場合は、
例えば「移動速度の増大に応じて差周波数信号の周波数
が低く(ゼロクロス点間の時間が長く)なり、パルス計
測数nが増加する。」というように、移動速度に応じて
パルス計測数nが変化する。
In FIG. 2 (b), n1, n2 and n3 indicate the pulse measurement numbers between the zero cross points t 0 to t 1 , t 1 to t 2 and t 2 to t 3 , respectively. The time between the zero cross points is the reciprocal of the instantaneous frequency of the difference frequency signal 107. This time is constant if the moving object 5 that reflects light is stationary, but if it is moving,
For example, the frequency of the difference frequency signal becomes lower (the time between the zero cross points becomes longer as the moving speed increases, and the pulse measurement number n increases). Change.

なお第2図(b)は分かり易くするために誇張して書
いたが実際はこのように大きな変化ではない。本実施例
では、ゼロクロス点間の時間は0.1ミリ秒のオーダーで
あり、このゼロクロス点間の時間ごとの瞬間速度に対応
したデータが記憶回路10に記憶され、また速度変化の激
しい移動物体5についても時々刻々の速度計測を行うの
で、また更にデータ処理を行なって時々刻々の位置情報
を得ることも可能となる。
Although FIG. 2 (b) is exaggerated for the sake of clarity, it is not such a big change in reality. In the present embodiment, the time between the zero cross points is on the order of 0.1 millisecond, data corresponding to the instantaneous speed for each time between the zero cross points is stored in the storage circuit 10, and the moving object 5 whose speed changes drastically changes. Also, since the speed is measured every moment, it is also possible to obtain the position information every moment by further processing the data.

第3図(a)は第1図の実施例の記憶回路10における
計数パルス数の一例を示す特性図で、ゼロクロス点ごと
の移動物体の計測パルス数の一例を示している。
FIG. 3A is a characteristic diagram showing an example of the number of counting pulses in the memory circuit 10 of the embodiment of FIG. 1, and shows an example of the number of measuring pulses of a moving object at each zero-cross point.

また、第3図(b)は第3図(a)の計測パルス数に
対応して得られる移動物体の算出速度の特性図、第3図
(c)は第3図(b)の算出速度にもとづいて得られる
移動物体の位置の特性図である。
Further, FIG. 3 (b) is a characteristic diagram of the calculated speed of the moving object obtained corresponding to the number of measured pulses in FIG. 3 (a), and FIG. 3 (c) is the calculated speed of FIG. 3 (b). It is a characteristic diagram of the position of the moving object obtained based on.

次に、本実施例に関して具体的な数値例を挙げて説明
する。
Next, this embodiment will be described with reference to specific numerical examples.

いま、 基準信号発生器3の変調信号の周波数 100 MHz 副信号発生器8の副信号の周波数 100.005MHz 移動物体5の速度 1000m/S 光速度 300000Km/Sとすると 速度零の時の差周波数=100005000−100000000=5000
Hzであり、1周期の時間=200μSとなる。
Now, the frequency of the modulation signal of the reference signal generator 3 is 100 MHz, the frequency of the sub signal of the sub signal generator 8 is 100.005 MHz, the speed of the moving object 5 is 1000 m / S, and the light speed is 300000 Km / S. −100000000 = 5000
Hz, and one cycle time = 200 μS.

100MHz即ち10nSごとのクロックで20000カウントに対
し、 移動物体5の速度1000m/Sの場合、 ドップラシフト=1000m/S÷300000000m/S ×100000000Hz=333.33333Hz 速度1000m/Sの時の反射波の変調周波数は、 100000333.33333Hz 差の周波数=100005000Hz−100000333.33333Hz =4666.66666Hz 1周期の時間=214.286μS 100MHz即ち10nS毎のクロックで21428または21429カウ
ント 速度0の時のカウントとの差は1428又は1429カウント 分解能を考えると、2m/Sでは ドップラシフト=2m/S÷300000000m/S×100000000Hz =.66666Hz 速度2m/Sの時の反射波の変調周波数は、 100000000.66666Hz 差の周波数=100005000Hz−100000000.66666Hz =4999.33333Hz 1周期の時間=200.0267μS 100MHz即ち10nS毎のクロックで20002又は20003カウン
トとなり、速度0の場合と識別可能となる。即ち2m/Sの
分解能が得られる。
When the moving object 5 speed is 1000m / S, the Doppler shift = 1000m / S ÷ 300000000m / S × 100000000Hz = 333.333333Hz The reflected wave modulation frequency when the speed is 1000m / S, when the speed of the moving object 5 is 1000m / S. Is 100000333.33333Hz Difference frequency = 100005000Hz-100000333.33333Hz = 4666.666666Hz One cycle time = 214.286μS 100MHz or 21428 or 21429 counts with 10nS clocks Difference from the count at speed 0 is 1428 or 1429 counts Consider resolution And at 2m / S, Doppler shift = 2m / S ÷ 300000000m / S × 100000000Hz = .66666Hz When the speed is 2m / S, the modulation frequency of the reflected wave is 100000000.66666Hz, the difference frequency = 100005000Hz-100000000.66666Hz = 4999.33333Hz 1 cycle Time = 200.0267 μS 100 MHz, that is, 20002 or 20003 counts with a clock every 10 nS, and it can be distinguished from the case of speed 0. That is, a resolution of 2 m / S can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、移動物体からの反射に
よるドップラシフト周波数を直接計測せず、適当な周波
数差を有する副信号とドップラシフトを含む反射信号と
を利用することにより測定し易い差周波数信号を得、そ
の際、上記差周波数信号のゼロクロス点間の時間を移動
物体の速度変化に応じて最適な時間に設定し、全てのゼ
ロクロス点間の時間を基準周波数のパルスの計数値とし
て記憶することにより、高速度の移動物体の時々刻々速
度変化を正確にかつ速度変化に忠実に対応して測定を行
なうことが出来るという効果がある。
As described above, the present invention does not directly measure the Doppler shift frequency due to reflection from a moving object, but a difference frequency that is easy to measure by using a side signal having an appropriate frequency difference and a reflected signal including Doppler shift. A signal is obtained, and at that time, the time between the zero cross points of the difference frequency signal is set to an optimum time according to the speed change of the moving object, and the time between all the zero cross points is stored as the count value of the pulses of the reference frequency. By doing so, there is an effect that it is possible to measure the speed change of a high-speed moving object moment by moment, accurately and faithfully corresponding to the speed change.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の速度検出装置の一実施例の構成図、第
2図(a)は第1図の実施例のおけるゼロクロス点間の
パルス計数の説明図、第2図(b)は第1図の実施例に
おけるゼロクロス点間のパルス計数の記憶内容の説明
図、第3図(a)は第1図の実施例の記憶回路10におけ
る計数パルス数の一例を示す特性図、第3図(b)は第
3図(a)の計測パルス数に対応して得られる移動物体
の算出速度の特性図、第3図(c)は第3図(b)の算
出速度にもとづいて得られる移動物体の位置の特性図で
ある。 1……光発生源、2……光変調器、3……基準信号発生
器、4……送受信光学系、5……移動物体、6……光検
波器、7……混合器、8……副信号発生器、9……パル
ス計数器、10……記憶回路、101……光、102……変調信
号、103……光変調光、104……反射光、105……検波信
号、106……副信号、107……差周波数信号、108……計
測用クロックパルス、109……出力光。
FIG. 1 is a block diagram of an embodiment of the speed detecting device of the present invention, FIG. 2 (a) is an explanatory view of pulse counting between zero cross points in the embodiment of FIG. 1, and FIG. 2 (b) is FIG. 3 is an explanatory diagram of stored contents of pulse count between zero cross points in the embodiment of FIG. 1, FIG. 3A is a characteristic diagram showing an example of the number of counted pulses in the memory circuit 10 of the embodiment of FIG. FIG. 3 (b) is a characteristic diagram of the calculated speed of the moving object obtained corresponding to the number of measured pulses in FIG. 3 (a), and FIG. 3 (c) is obtained based on the calculated speed of FIG. 3 (b). It is a characteristic view of the position of the moving object to be generated. 1 ... Light source, 2 ... Optical modulator, 3 ... Reference signal generator, 4 ... Transmission / reception optical system, 5 ... Moving object, 6 ... Photodetector, 7 ... Mixer, 8 ... ... Sub-signal generator, 9 ... Pulse counter, 10 ... Storage circuit, 101 ... Optical, 102 ... Modulated signal, 103 ... Optically modulated light, 104 ... Reflected light, 105 ... Detection signal, 106 …… Sub signal, 107 …… Difference frequency signal, 108 …… Measuring clock pulse, 109 …… Output light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光発生源と、この光発生源の出力光を変調
信号で変調して光変調光を発生する光変調器と、前記光
変調光を移動物体に送出しその反射光を受光する送受信
光学系と、前記送受信光学系によって受光した反射光を
検波する光検波器と、前記変調信号と僅かに周波数の異
る副信号を出力する副信号発生器と、前記光検波器の出
力と前記副信号発生器の出力とを混合してその差周波数
の信号を出力する混合器と、前記混合器の出力のゼロク
ロス点間の時間を計測用クロックパルスで計測してその
計測値であるカウント値を前記ゼロクロス点間ごとに出
力するパルス計数器と、前記変調信号と前記計測用クロ
ックパルスとを出力する基準信号発生器と、前記パルス
計数器の出力する前記カウント値を前記ゼロクロス点間
ごとに記憶しつつ前記カウント値にもとづいて前記ゼロ
クロス点間の時間を算出し前記移動物体の速度ならびに
速度変化を得る記憶回路とを備えて成ることを特徴とす
る速度検出装置。
1. A light generating source, an optical modulator that modulates the output light of the light generating source with a modulation signal to generate light modulated light, and the light modulated light is sent to a moving object and the reflected light is received. A transmitting / receiving optical system, an optical detector for detecting reflected light received by the transmitting / receiving optical system, a sub-signal generator for outputting a sub-signal slightly different in frequency from the modulated signal, and an output of the photo-detector Is a measurement value obtained by measuring the time between the mixer and the output of the sub-signal generator by outputting a signal of the difference frequency and the zero-cross point of the output of the mixer with a measurement clock pulse. A pulse counter that outputs a count value for each of the zero-cross points, a reference signal generator that outputs the modulation signal and the measurement clock pulse, and the count value output by the pulse counter between the zero-cross points. Remembering each Speed detecting apparatus characterized by based on the serial count value to calculate the time between the zero crossing point comprising a storage circuit for obtaining a rate and velocity change of the moving object.
JP63176642A 1988-07-14 1988-07-14 Speed detector Expired - Lifetime JPH083529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63176642A JPH083529B2 (en) 1988-07-14 1988-07-14 Speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176642A JPH083529B2 (en) 1988-07-14 1988-07-14 Speed detector

Publications (2)

Publication Number Publication Date
JPH0225786A JPH0225786A (en) 1990-01-29
JPH083529B2 true JPH083529B2 (en) 1996-01-17

Family

ID=16017150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176642A Expired - Lifetime JPH083529B2 (en) 1988-07-14 1988-07-14 Speed detector

Country Status (1)

Country Link
JP (1) JPH083529B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877119B2 (en) * 1996-12-26 1999-03-31 日本電気株式会社 Mobile body speed measurement device
WO2004061476A1 (en) 2002-12-27 2004-07-22 Mitsubishi Denki Kabushiki Kaisha Laser radar apparatus
WO2004074867A1 (en) * 2003-02-19 2004-09-02 Mitsubishi Denki Kabushiki Kaisha Laser radar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578273A (en) * 1980-06-19 1982-01-16 Dainippon Printing Co Ltd Adhesive composition for laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578273A (en) * 1980-06-19 1982-01-16 Dainippon Printing Co Ltd Adhesive composition for laminate

Also Published As

Publication number Publication date
JPH0225786A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
KR102454659B1 (en) Method and system for using square wave digital chirp signal for optical chirped range detection
US5329467A (en) Distance measuring method and apparatus therefor
US5115242A (en) In-furnace slag level measuring apparatus
EP0640846A2 (en) Optical measuring apparatus
JP2000509485A (en) Object position detection method
US3914052A (en) Apparatus for use in equipment which measures physical quantities by sensing phased delays in electromagnetic radiation
JP2006133214A (en) Device and method for measuring time difference, and range finding device and method
CA2337026A1 (en) Laser displacement measurement system
AU723634B2 (en) Method and apparatus for distance measurement
JPH06242240A (en) Distance measuring apparatus
US3711200A (en) Multiple-sensor laser velocimeter
KR950019772A (en) Optical distance measuring device using phase change and its method
JPH083529B2 (en) Speed detector
US20060132754A1 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
US3645624A (en) Range-measuring method and apparatus
JPS6254189A (en) On-vehicle random modulation radar equipment
JP2529616B2 (en) Distance measuring device
JP2518064B2 (en) Laser distance measuring device
JPH0381687A (en) Laser distance measuring instrument
JPS5866881A (en) Surveying equipment by light wave
US7714990B2 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
KR920006257Y1 (en) Time-distance transformer of laser rangemeter
GB1246224A (en) Apparatus for measuring distances
SU1430839A1 (en) Method of locating measurement of attenuation index of dissipating media
SU734591A1 (en) Sea wave parameter measuring device