JPH083461B2 - Thin film internal stress / Young's modulus measuring device - Google Patents

Thin film internal stress / Young's modulus measuring device

Info

Publication number
JPH083461B2
JPH083461B2 JP63065160A JP6516088A JPH083461B2 JP H083461 B2 JPH083461 B2 JP H083461B2 JP 63065160 A JP63065160 A JP 63065160A JP 6516088 A JP6516088 A JP 6516088A JP H083461 B2 JPH083461 B2 JP H083461B2
Authority
JP
Japan
Prior art keywords
thin film
pressure
decompression chamber
internal stress
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63065160A
Other languages
Japanese (ja)
Other versions
JPH01237430A (en
Inventor
修 田畑
賢 川畑
進 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63065160A priority Critical patent/JPH083461B2/en
Publication of JPH01237430A publication Critical patent/JPH01237430A/en
Publication of JPH083461B2 publication Critical patent/JPH083461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Micromachines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、薄膜(メンブレン)の内部応力・ヤング
率測定装置、特にその測定精度の改善に関する。
TECHNICAL FIELD The present invention relates to a thin film (membrane) internal stress / Young's modulus measuring device, and more particularly to improvement of its measuring accuracy.

[従来の技術] ICやLSI技術の進展に共う電子回路の微細化と高集積
化は、センサやアクチュエータの微細化、高機能化を促
している。
[Prior Art] The miniaturization and high integration of electronic circuits accompanying the progress of IC and LSI technologies are promoting miniaturization and high functionality of sensors and actuators.

これに応える技術として注目を浴びているのがシリコ
ンのマイクロマシーニング技術である。マイクロマシー
ニング技術によってシリコン基板上に数100μmオーダ
以下の微細な3次元部品、いわゆるマイクロメカニクス
を製作することが可能になって、センサやアクチュエー
タのマイクロ化が実現されつつ有る。
Silicon micromachining technology is drawing attention as a technology that can meet this demand. With the micromachining technology, it is possible to manufacture minute three-dimensional parts of the order of several 100 μm or less, so-called micromechanics, on a silicon substrate, and microminiaturization of sensors and actuators is being realized.

そして、このマイクロメカニクスによって薄膜は、機
能材料であると共に重要な構造材料でもある。従来、薄
膜といえば基板の上に形成し基板と共に使用するのが当
たり前であった。ところが、マイクロメカニクスにおい
ては薄膜は基板から分離された状態で使用されることが
多くなってきた。このような薄膜の使用形態の変化に伴
い、薄膜物性に求められる仕様も変化しつつ有る。そし
て、薄膜の機械的物性、なかでも内部応力とヤング率は
薄膜を構造材料として利用する上で重要な物性値となっ
た。従って、これらの物性値を制御し評価していくこと
は今後ますます重要になる。
Due to this micromechanics, the thin film is both a functional material and an important structural material. Conventionally, it has been common for thin films to be formed on a substrate and used together with the substrate. However, in micromechanics, the thin film is often used in a state of being separated from the substrate. With such changes in the usage of thin films, the specifications required for the physical properties of thin films are also changing. The mechanical properties of the thin film, especially the internal stress and Young's modulus, were important physical properties for using the thin film as a structural material. Therefore, it will become more important in the future to control and evaluate these physical properties.

ここで、薄膜の内部応力について簡単に説明する。薄
膜の内部応力とは、歪みのエネルギーが薄膜内部に蓄積
した結果生ずるものであり、一般には基板の反りや薄膜
のクラックの発生として観察される。基板が薄膜を内側
にして反ったときの応力を引張方向の内部応力、反対の
ときを圧縮方向の内部応力といい、それぞれ正、負の符
号をつけて表す。そして、内部応力の発生要因として2
つの機構が考えられている。第1は薄膜と基板との膨脹
率の差に起因する応力である。通常薄膜は、高温で基板
上に形成されるため、基板と薄膜の膨張率に差がある
と、平常時温度に戻った際には、膨張率の差に基づき内
部応力が発生する。第2は、薄膜の内部構造に起因する
応力である。形成された薄膜の内部構造が均一でなかっ
た場合に、この応力が発生する。
Here, the internal stress of the thin film will be briefly described. The internal stress of the thin film is generated as a result of strain energy being accumulated inside the thin film, and is generally observed as a warp of the substrate or a crack of the thin film. The stress when the substrate warps with the thin film inside is called the internal stress in the tensile direction, and when it is opposite, it is called the internal stress in the compressive direction, and they are represented by positive and negative signs. And as a cause of internal stress, 2
Two mechanisms are considered. The first is the stress due to the difference in expansion coefficient between the thin film and the substrate. Since a thin film is usually formed on a substrate at a high temperature, if there is a difference in expansion coefficient between the substrate and the thin film, when the temperature returns to normal temperature, internal stress is generated due to the difference in expansion coefficient. The second is the stress caused by the internal structure of the thin film. This stress occurs when the internal structure of the formed thin film is not uniform.

従来、薄膜の研究者は、薄膜の内部応力とヤング率を
同時に測定できる方法の1つとしてバルジ法を用いてい
た。これは荷重を加えた被測定薄膜のたわみを利用して
内部応力とヤング率を測定するものである。この原理を
第7図に基づいて説明する。
Conventionally, thin film researchers have used the bulge method as one of the methods capable of simultaneously measuring the internal stress and Young's modulus of a thin film. This is to measure the internal stress and Young's modulus by utilizing the deflection of the thin film to be measured under load. This principle will be described with reference to FIG.

図において、測定対象である薄膜10は、その周囲がシ
リコン基板12に固着して形成されている。そして、この
薄膜10の表裏に圧力差Pを加え、その時に生じる薄膜10
のたわみhを計測する。
In the figure, the thin film 10 to be measured is formed such that its periphery is fixed to the silicon substrate 12. Then, a pressure difference P is applied to the front and back of the thin film 10, and the thin film 10 generated at that time
Measure the deflection h of the.

ここで、加えた圧力差Pとこれにより生ずる薄膜10の
たわみhとの間には次の(1)式の関係があることが知
られている。
It is known that the applied pressure difference P and the resulting deflection h of the thin film 10 are related by the following equation (1).

P・{r2/(t・h)} =K1・σ+K2・{E/(1−ν)}・(h/r) …(1) ここで、σは引張方向の内部応力、νはポアッソン
比、rは円形薄膜の場合は半径、正方形の薄膜の場合は
辺長の1/2、tは膜厚、K1,K2は薄膜10の形状によって定
まる定数である。尚、円形及び正方形薄膜における従来
から知られているK1,K2の値を表1に示す。
P · {r 2 / (t · h)} = K1 · σ + K2 · {E / (1-ν)} · (h / r) 2 ... (1) where, sigma is the tensile direction of the internal stress, [nu is Poisson's ratio, r is the radius in the case of a circular thin film, 1/2 of the side length in the case of a square thin film, t is the film thickness, and K1 and K2 are constants determined by the shape of the thin film 10. Table 1 shows the conventionally known values of K1 and K2 for circular and square thin films.

従って、(1)式の左辺の値を縦軸に、(h/r)
横軸にとって測定データ(P,h)をプロットすると測定
データは直線にのる。そして、K1,K2が既知であればそ
の直線の傾きからE/(1−ν)を、直線と縦軸との切片
から引張方向の内部応力σを求めることができる。
Therefore, when the measured data (P, h) is plotted with the value on the left side of the equation (1) on the vertical axis and (h / r) 2 on the horizontal axis, the measured data is a straight line. If K1 and K2 are known, E / (1-ν) can be calculated from the slope of the straight line, and the internal stress σ in the tensile direction can be calculated from the intercept between the straight line and the vertical axis.

また、圧縮方向の内部応力を持つ膜についての測定を
行う場合は、既知の引張方向の内部応力を持つ膜と測定
対象である圧縮方向の内部応力を持つ膜を層状に複合化
して引張方向の内部応力を示す複合膜を形成し、この複
合膜について測定を行う。そして、圧縮方向の内部応力
は複合膜の引張方向の内部応力の測定値と既知の薄膜の
引張方向の内部応力とから複合則に基づいた(2)式に
より求めることができる。
When measuring a film with internal stress in the compressive direction, a film with known internal stress in the tensile direction and a film with internal stress in the compressive direction, which is the measurement target, are combined in layers to form a composite film in the tensile direction. A composite film showing internal stress is formed, and measurement is performed on this composite film. Then, the internal stress in the compression direction can be obtained from the measured value of the internal stress in the tensile direction of the composite film and the known internal stress in the tensile direction of the thin film by the formula (2) based on the compound rule.

σ2=(t・σ−t1・σ1)/(t−t1) …(2) ここでσ2は内部応力未知の膜の内部応力、t1,σ1
は内部応力既知の膜の厚みと内部応力、t,σは複合膜の
厚みと内部応力である。
σ2 = (t · σ−t1 · σ1) / (t−t1) (2) where σ2 is the internal stress of the film whose internal stress is unknown, t1, σ1
Is the film thickness and internal stress of known internal stress, and t, σ is the thickness and internal stress of the composite film.

また、ヤング率も内部応力と同様の計算で複合膜の測
定値から求めることができる。
The Young's modulus can also be calculated from the measured value of the composite film by the same calculation as the internal stress.

[発明が解決しようとする課題] このような原理によって行われるバルジ法は測定試料
の作製、すなわち被測定薄膜の薄膜10の形成が難しく、
測定法としては汎用性に欠けた。このため、測定装置も
十分な検討がなされていない。
[Problems to be Solved by the Invention] In the bulge method performed by such a principle, it is difficult to prepare a measurement sample, that is, to form the thin film 10 of the thin film to be measured
It lacked versatility as a measuring method. Therefore, the measuring device has not been sufficiently studied.

また、バルジ法では、薄膜10の表裏に加えた圧力差P
とそのときに生じた薄膜10のたわみhの測定が必要であ
る。一般には圧力差Pの測定は水銀マノメータや高精度
の圧力計が利用されている。また、たわみhの測定には
触針式の変位計を用いる方法、鏡筒の上下を測定するマ
イクロメータ付きの顕微鏡を用いる方法、光の干渉を用
いる方法等が利用されている。そして、たわみhの測定
精度は光の干渉を用いる方法が優れている。
In the bulge method, the pressure difference P applied to the front and back of the thin film 10
It is necessary to measure the deflection h of the thin film 10 generated at that time. Generally, a mercury manometer or a highly accurate pressure gauge is used to measure the pressure difference P. In addition, a method using a stylus type displacement gauge, a method using a microscope with a micrometer for measuring the top and bottom of a lens barrel, a method using light interference, etc. are used to measure the deflection h. The method of using the interference of light is excellent in the accuracy of measuring the deflection h.

しかし、従来の方法はいずれも薄膜10の中心における
たわみhを測定するだけであり、薄膜10全体のたわみの
状態は観察していない。内部応力やヤング率の膜の面方
向に異方性を有していたり面内に欠陥があると、薄膜10
のたわみhと圧力差Pの関係が理論式に一致しなくなり
正しく測定結果が得られない。すなわち、一点における
たわみhを測定するだけでは異方性や欠陥の有無を判断
することができないという問題点があった。
However, each of the conventional methods only measures the deflection h at the center of the thin film 10 and does not observe the state of deflection of the entire thin film 10. If there is an anisotropy in the plane direction of the internal stress or Young's modulus or if there is a defect in the plane, the thin film 10
The relationship between the flexure h and the pressure difference P does not match the theoretical formula, and accurate measurement results cannot be obtained. That is, there is a problem in that the presence or absence of anisotropy and defects cannot be determined only by measuring the deflection h at one point.

また、従来は薄膜10の片側を大気圧とし、もう片側を
減圧するという方法で薄膜10に圧力差Pを加えていた
が、この方法では大気圧が制御不能であり比較的大きな
圧力であるため微小な圧力差Pを精度良く加えることが
できないという問題があった。
Further, conventionally, the pressure difference P is applied to the thin film 10 by setting the one side of the thin film 10 to the atmospheric pressure and depressurizing the other side, but since the atmospheric pressure is uncontrollable and is a relatively large pressure in this method. There is a problem that the minute pressure difference P cannot be applied with high precision.

更に、内部応力の発生要因は上述の通り薄膜と基板と
の膨脹率の差に起因するものと薄膜の内部構造に起因す
るものの2つがある。従来の測定においては、この2つ
の発生要因を分離して測定することができないという問
題点があった。
Furthermore, as described above, there are two factors that cause the internal stress, one of which is caused by the difference in expansion coefficient between the thin film and the substrate, and the other of which is caused by the internal structure of the thin film. In the conventional measurement, there is a problem that these two factors cannot be measured separately.

この発明は上述のような問題点を解決することを課題
としてなされたものであり、第1に薄膜の異方性や欠陥
を検出できるように薄膜全体のたわみ状態を観察しなが
ら測定を行うことにより内部応力を高精度で測定するこ
とができるとともに、微小な圧力差を精度良く薄膜に加
えることができ、第2に内部応力を発生要因毎に分離測
定することができる薄膜の内部応力・ヤング率測定装置
を提供することを目的とする。
The present invention has been made to solve the above problems, and firstly, to perform measurement while observing the deflection state of the entire thin film so that the anisotropy and defects of the thin film can be detected. Can measure the internal stress with high accuracy, and can apply a minute pressure difference to the thin film with high accuracy. Secondly, the internal stress can be separately measured for each generation factor. An object is to provide a rate measuring device.

[課題を解決するための手段] この発明に係る薄膜の内部応力・ヤング率測定装置の
構成について、第1図に基づいて説明する。
[Means for Solving the Problems] The configuration of the thin film internal stress / Young's modulus measuring device according to the present invention will be described with reference to FIG.

本発明は、 内部が減圧状態に保たれ、被測定薄膜を含む試料の一
方側の表面が気密に装着される試料装着開口を有する第
1の減圧室20と、この第1の減圧室の内部の圧力を制御
する第1の圧力制御手段22と、 第1の減圧室の内部の圧力を計測する第1の圧力計24
と、 内部が減圧状態に保たれると共に、上記第1の減圧室
に対向して配置され、上記薄膜を含む試料の他方側の表
面が気密に装着される試料装着開口を有する第2の減圧
室30と、 この第2の減圧室の内部の圧力を制御する第2の圧力
制御手段34と、 第2の減圧室の内部の圧力を計測する第2の圧力計36
と、 薄膜に実質的に単一波長の光を照射する光源と、 薄膜によって反射された反射光と参照光手段からの参
照光の干渉による干渉縞像を撮像する撮像素子26と、 撮像素子によって得た干渉縞像を表示するモニタ部
と、 を有し、 上記第1および第2の圧力制御手段によって第1およ
び第2の減圧室の圧力を制御して、被測定薄膜に印加さ
れる圧力差を変更すると共に、この圧力差の変更に伴う
モニタ部に表示される干渉縞の本数の変化から被測定薄
膜に印加される圧力差と被測定薄膜のたわみの関係を
得、得られた関係に基づいて薄膜の内部応力またはヤン
グ率を検出することを特徴とする。
The present invention relates to a first decompression chamber 20 having a sample mounting opening in which the inside is kept in a decompressed state and one surface of a sample containing a thin film to be measured is airtightly mounted, and an inside of the first decompression chamber. Pressure control means 22 for controlling the pressure of the first pressure gauge and a first pressure gauge 24 for measuring the pressure inside the first decompression chamber.
And a second decompression having a sample mounting opening that is arranged to face the first decompression chamber while the inside is kept in a decompressed state, and the other surface of the sample including the thin film is airtightly mounted. Chamber 30, second pressure control means 34 for controlling the pressure inside the second decompression chamber, and second pressure gauge 36 for measuring the pressure inside the second decompression chamber.
A light source for irradiating the thin film with light of a substantially single wavelength; an image pickup device 26 for picking up an interference fringe image due to the interference of the reflected light reflected by the thin film and the reference light from the reference light means; A monitor unit for displaying the obtained interference fringe image; and a pressure applied to the thin film to be measured by controlling the pressures of the first and second decompression chambers by the first and second pressure control means. The relationship between the difference in pressure applied to the thin film to be measured and the deflection of the thin film to be measured was obtained from the change in the number of interference fringes displayed on the monitor unit as the pressure difference was changed. The internal stress or Young's modulus of the thin film is detected based on

このように、第1発明にかかる装置は基本的には薄膜
10に圧力差Pを加えて、その時に生じた薄膜10のたわみ
を光の干渉を用いて測定し、得られた圧力差Pとたわみ
hのデータから内部応力とヤング率を求めるものであ
る。
Thus, the device according to the first invention is basically a thin film.
The pressure difference P is added to 10 and the deflection of the thin film 10 generated at that time is measured by using light interference, and the internal stress and Young's modulus are obtained from the obtained data of the pressure difference P and the deflection h.

そして、光源14に干渉縞が容易に得られるようにレー
ザ等の単一波長で可干渉性の高いものを用いている。ま
た、参照光R2は被測定薄膜10から反射した光と干渉させ
ることによって薄膜10のたわみに応じた干渉縞を作り出
すためのものである。この参照光手段28には光源14と同
一波長で可干渉性の高いものを用いると干渉縞が容易に
得られる。そこで、通常は光源14からの光R0の一部を参
照光R2として用いる。
A light source 14 having a single wavelength and high coherence is used so that interference fringes can be easily obtained. Further, the reference light R2 is for producing interference fringes according to the deflection of the thin film 10 by interfering with the light reflected from the measured thin film 10. If the reference light means 28 having the same wavelength as the light source 14 and high coherence is used, interference fringes can be easily obtained. Therefore, normally, a part of the light R0 from the light source 14 is used as the reference light R2.

撮像素子26は、この干渉縞を観察するために用いるも
のである。例えば、光源14の波長領域に感度を持つCCD
(Charge Coupled Device)やビジコン(Vidicon)等を
用いる。
The image pickup device 26 is used to observe the interference fringes. For example, a CCD with sensitivity in the wavelength range of the light source 14
(Charge Coupled Device) or vidicon (Vidicon) is used.

被測定薄膜10を有する試料18を取り付ける減圧室20
は、内部を真空にできるように十分に密閉可能なもので
あり、試料18取り付け部の周辺は試料18が密着してリー
クを起こさないように、例えば十分平坦になっている。
減圧室20に接続された圧力調整手段22は、例えば減圧室
20内を十分に排気できる能力を有する真空ポンプ及び外
気から減圧室20内に微量な空気をリークできるように、
流量の制御性が良いリークバルブから構成する。
Decompression chamber 20 for mounting sample 18 having thin film 10 to be measured
Is capable of being hermetically sealed so that the inside can be evacuated, and the periphery of the mounting portion of the sample 18 is, for example, sufficiently flat so that the sample 18 does not come into close contact and cause a leak.
The pressure adjusting means 22 connected to the decompression chamber 20 is, for example, a decompression chamber.
In order to allow a small amount of air to leak into the decompression chamber 20 from the vacuum pump and outside air that has the ability to sufficiently exhaust the inside of 20,
It is composed of a leak valve with good flow rate controllability.

また、試料18を上方から支持する試料装着開口32を有
する第2の減圧室30は、減圧室20と同様に内部を真空で
きるように十分に密閉可能なものであり、試料18取り付
け部の周辺は試料が密着してリークを起こさないように
なっている。圧力制御手段34は、例えば真空ポンプとリ
ークバルブで構成されるが、真空ポンプは圧力制御手段
22のものを共用すると良い。また、減圧室30に接続する
リークバルブは外気から減圧室30内に微量な空気をリー
クできるように、流量の制御性が良いものを用いる。圧
力計36は、減圧室30内の圧力を測定するためのものであ
る。
Further, the second decompression chamber 30 having the sample mounting opening 32 for supporting the sample 18 from above can be hermetically sealed so that the inside can be evacuated similarly to the decompression chamber 20, and the periphery of the sample 18 attachment part. The sample adheres so that no leak occurs. The pressure control means 34 is composed of, for example, a vacuum pump and a leak valve.
It is good to share 22 things. The leak valve connected to the decompression chamber 30 has a good flow rate controllability so that a small amount of air can leak from the outside air into the decompression chamber 30. The pressure gauge 36 is for measuring the pressure in the decompression chamber 30.

第2発明は、特に減圧室にヒータ38が組み込まれ、試
料18の温度を制御できることを特徴とする。
The second invention is characterized in that the heater 38 is incorporated in the decompression chamber to control the temperature of the sample 18.

すなわち、ヒータ38は熱伝導で試料18を加熱するもの
である。
That is, the heater 38 heats the sample 18 by heat conduction.

[作用及び効果] 第1発明において、減圧室20に取り付けられた試料18
に光源14からの光R0を照射する。試料18の薄膜19から反
射した光R1と参照光R2を干渉させてできる干渉縞を撮像
素子26で観察する。そして、薄膜10上にできた干渉縞を
撮像装置で得た画像から読み取り、薄膜10の最大たわみ
量を検出する。すなわち、干渉縞の数に光源14からの光
R0の波長λの2分の1を乗じたものが薄膜10の最大たわ
み量hである。
[Operation and Effect] In the first invention, the sample 18 attached to the decompression chamber 20
The light R0 from the light source 14 is radiated to the. An interference fringe formed by causing the light R1 reflected from the thin film 19 of the sample 18 and the reference light R2 to interfere with each other is observed by the image pickup device 26. Then, the interference fringes formed on the thin film 10 are read from the image obtained by the image pickup device, and the maximum deflection amount of the thin film 10 is detected. In other words, the number of interference fringes
The maximum deflection amount h of the thin film 10 is obtained by multiplying R0 by half the wavelength λ.

そして、試料18を上下からはさむようにして取り付け
る2つの減圧室20,30は、ともに圧力制御手段22,34に接
続されている。そして、例えば真空ポンプによって減圧
室20,30内部の空気を排気すると共に、それぞれの減圧
室20,30に取り付けられたリークバルブの開閉度を調整
してそれぞれの減圧室20,30内部の圧力を独立かつ徐々
に下がるようにする。
The two decompression chambers 20 and 30 to which the sample 18 is sandwiched from above and below are both connected to the pressure control means 22 and 34. Then, for example, the air inside the decompression chambers 20 and 30 is exhausted by a vacuum pump, and the pressure inside the decompression chambers 20 and 30 is adjusted by adjusting the degree of opening and closing of the leak valve attached to each decompression chamber 20 and 30. Be independent and gradually lower.

このようにすると、干渉縞は減圧室20、30の内部の圧
力が変化するに連れて縞の数が増加、あるいは縞の数が
減少する。干渉縞の数の変化の際に減圧室20に接続した
圧力計24によって減圧室20内部の圧力を大気圧との相対
的な圧力差Pとして計測する。こうして得られた圧力差
Pとたわみhの測定データを上述の論理式である(1)
式に代入して、内部応力とヤング率を求める。
By doing so, the interference fringes increase in number or decrease in number as the pressure inside the decompression chambers 20 and 30 changes. When the number of interference fringes changes, the pressure inside the decompression chamber 20 is measured by the pressure gauge 24 connected to the decompression chamber 20 as a relative pressure difference P from the atmospheric pressure. The measured data of the pressure difference P and the deflection h thus obtained are the above-mentioned logical expressions (1).
By substituting it into the formula, the internal stress and Young's modulus are calculated.

このとき撮像素子26で観察することによって薄膜10の
欠陥や異方性の存在を示す薄膜10上の干渉縞のパターン
の歪みの有無を発見でき、測定に不適当な試料であるか
否かが判定できる。
At this time, the presence or absence of distortion of the pattern of the interference fringes on the thin film 10 showing the presence of defects or anisotropy of the thin film 10 can be found by observing with the image pickup device 26, and whether or not the sample is unsuitable for measurement. You can judge.

なお、リークバルブを閉じたまま予めある圧力まで2
つの減圧室20,30内部の圧力を減圧した後真空ポンプを
停止し、それぞれの減圧室20,30に取り付けられたリー
クバルブ開閉度を独立に調節して減圧室20,30内部の圧
力が独立にかつ徐々に上がるようにしてもよい。更に、
下方または上方の減圧室20,30のリークバルブだけを調
節して減圧室20,30内部の圧力のみを徐々に上がるよう
にしてもよい。
It should be noted that with the leak valve closed, up to a certain pressure
After reducing the pressure inside the two decompression chambers 20 and 30, the vacuum pump is stopped, and the opening and closing degree of the leak valve attached to each decompression chamber 20 and 30 is adjusted independently to make the pressure inside the decompression chambers 20 and 30 independent. It may rise gradually and gradually. Furthermore,
It is also possible to adjust only the leak valves of the lower or upper decompression chambers 20 and 30 to gradually increase only the pressure inside the decompression chambers 20 and 30.

このように、2つの減圧室20,30を所定の減圧状態に
おくことにより、2つの減圧室間に極めて微小な圧力差
Pを加えることができる。すなわち、試料18の薄膜10に
加える圧力差Pを微小な範囲で高い精度で制御できる。
これによって小さい内部応力まで測定できるようにな
る。何故なら、(1)式において薄膜10の形状と測定で
きるたわみhの最小値がきまると、左辺の値の大きさは
薄膜10に加える圧力差Pで決まり、右辺の値の大きさは
たわみ量hが微小なときは内部応力できまる。そこで、
薄膜10に加えることができる圧力差Pが微少であればあ
るほど左辺の値は小さくでき、その結果小さい内部応力
まで精度よく測定できるようになる。
In this way, by keeping the two decompression chambers 20 and 30 in a predetermined decompression state, it is possible to apply a very small pressure difference P between the two decompression chambers. That is, the pressure difference P applied to the thin film 10 of the sample 18 can be controlled with high accuracy in a minute range.
This makes it possible to measure even small internal stresses. This is because, when the shape of the thin film 10 and the minimum measurable deflection h in Eq. (1) are determined, the magnitude of the value on the left side is determined by the pressure difference P applied to the thin film 10, and the magnitude of the value on the right side is the amount of deflection. When h is very small, internal stress is generated. Therefore,
The smaller the pressure difference P that can be applied to the thin film 10, the smaller the value on the left side, and as a result, it becomes possible to accurately measure even a small internal stress.

なお、大気圧付近で0.1Torr以下の分解能で圧力を測
定する装置は非常に高価なものなってしまうが、圧力が
数Torr以下の領域では真空圧力計によって容易に測定で
きる。このため薄膜10の表側と裏側を減圧し、片側の圧
力を基準としてもう片側の圧力を制御することによって
薄膜10の微少な圧力差Pを精度良く加えることができ
る。
Although a device for measuring pressure with a resolution of 0.1 Torr or less near atmospheric pressure becomes very expensive, it can be easily measured with a vacuum pressure gauge in a region where the pressure is several Torr or less. Therefore, by depressurizing the front side and the back side of the thin film 10 and controlling the pressure of the other side with reference to the pressure of the one side, a minute pressure difference P of the thin film 10 can be accurately added.

第2発明においては、減圧室20の試料装着開口16の周
辺のヒータ38は試料18を減圧室20から熱伝導で加熱し、
室温以上の温度での測定を行うために用いる。これによ
って、内部応力やヤング率の温度依存性が測定できる。
例えば、内部応力はその発生要因として膜と基板との膨
脹率の差に起因する要因と膜の内部構造に起因する要因
がある。膜と基板との膨脹率の差に起因する内部応力
は、試料の温度を上昇させながら測定することによって
温度に比例して減少する。従って、内部応力の温度依存
性を測定すれば、2つの発生要因が内部応力に及ぼす影
響を分離することができる。
In the second invention, the heater 38 around the sample mounting opening 16 of the decompression chamber 20 heats the sample 18 from the decompression chamber 20 by heat conduction,
Used to make measurements at room temperature and above. Thereby, the temperature dependence of the internal stress and Young's modulus can be measured.
For example, the internal stress is generated by a factor due to the difference in expansion coefficient between the film and the substrate and a factor due to the internal structure of the film. The internal stress due to the difference in expansion coefficient between the film and the substrate decreases in proportion to the temperature by measuring the sample while increasing the temperature. Therefore, by measuring the temperature dependence of the internal stress, it is possible to separate the effects of the two generation factors on the internal stress.

[実施例] この発明の内容を実施例に基づいて説明する。[Example] The content of the present invention will be described based on an example.

「基本構成例」 第2図はこの発明の測定装置の基本的構成を示す概略
図である。この例は、減圧室を減圧室20の1つとして、
薄膜10に力を印加して薄膜を変形させて測定を行う装置
である。薄膜10に対する力の印加手法が異なるが、その
他においては、本発明の実施例と同一の構成、作用、効
果を有するため、ここでこの基本構成例について説明す
る。
"Basic configuration example" Fig. 2 is a schematic diagram showing the basic configuration of the measuring apparatus of the present invention. In this example, the decompression chamber is one of the decompression chambers 20,
This is an apparatus for applying a force to the thin film 10 to deform the thin film for measurement. Although the method of applying a force to the thin film 10 is different, other than that, since it has the same configuration, action, and effect as the embodiment of the present invention, this basic configuration example will be described here.

この実施例においては、光源としてHe−Neレーザ40
(λ=6328オングストローム)を用い、シングルモード
光ファイバ42によって光R0を顕微鏡44に導く。顕微鏡44
の内部では、この光R0を平行光にした後、試料18の薄膜
10に垂直に入射させる。光路の途中に設けた光学ガラス
46で光R0の一部を反射し、これを参照光R2として用い
る。薄膜10のたわみhはこの参照光R2と薄膜10の表面で
反射した光R1を干渉させてできる干渉縞による測定す
る。干渉縞の観察は、落射式の双眼実体顕微鏡44とCCD
カメラ48を用いた光学系によりTVモニタ50上で行う。
In this embodiment, the He--Ne laser 40 is used as the light source.
(Λ = 6328 Å) is used to guide the light R0 to the microscope 44 by the single mode optical fiber 42. Microscope 44
Inside this, after collimating this light R0, the thin film of sample 18
Vertically incident on 10. Optical glass provided in the middle of the optical path
A part of the light R0 is reflected at 46 and is used as the reference light R2. The deflection h of the thin film 10 is measured by an interference fringe formed by causing the reference light R2 and the light R1 reflected on the surface of the thin film 10 to interfere with each other. Interference fringes can be observed by the epi-illumination binocular stereomicroscope 44 and CCD.
This is performed on the TV monitor 50 by the optical system using the camera 48.

リークバルブ52を閉じた状態で真空ポンプ54により減
圧室20内を減圧した後、真空ポンプ54を停止しバルブ55
を閉じるとともに、リークバルブ52を徐々に設け、測定
がほぼ静的な状態で行われるように30〜50分かけて減圧
室20内の圧力を徐々に大気圧に戻す。このときTVモニタ
50で薄膜10上に現われる干渉縞を観察して、薄膜10に欠
陥や異方性がないかどうかチェックする。
After the pressure inside the decompression chamber 20 is reduced by the vacuum pump 54 with the leak valve 52 closed, the vacuum pump 54 is stopped and the valve 55 is closed.
And the leak valve 52 is gradually provided, and the pressure in the decompression chamber 20 is gradually returned to atmospheric pressure over 30 to 50 minutes so that the measurement is performed in a substantially static state. TV monitor at this time
At 50, the interference fringes appearing on the thin film 10 are observed to check the thin film 10 for defects and anisotropy.

そして、干渉縞が1つ消える毎に減圧室内の圧力を圧
力計24で計測する。1つの干渉縞はλ/2=3164オングス
トロームの薄膜10のたわみ変化Δhに相当する。減圧室
20内の圧力が大気圧になったとき、薄膜10はフラットに
なり干渉縞は消失する。なお、干渉縞の数の減少の検出
とそのときの圧力計24の測定値の読取りは計算機56で行
う。
Then, each time one interference fringe disappears, the pressure inside the decompression chamber is measured by the pressure gauge 24. One interference fringe corresponds to the deflection change Δh of the thin film 10 of λ / 2 = 3164 Å. Decompression chamber
When the pressure in 20 becomes atmospheric pressure, the thin film 10 becomes flat and the interference fringes disappear. The computer 56 detects the decrease in the number of interference fringes and reads the measured value of the pressure gauge 24 at that time.

測定終了後、計算機56によって、測定した圧力差Pと
各圧力測定時における干渉縞の数にλ/2=3164オングス
トロームを乗じて求めた薄膜10のたわみhを上述の
(1)式に代入して整理し、内部応力とヤング率を求め
計算機の表示装置57に表示する。
After the measurement, the computer 56 substitutes the deflection h of the thin film 10 obtained by multiplying the measured pressure difference P and the number of interference fringes at each pressure measurement by λ / 2 = 3164 angstroms into the above equation (1). The internal stress and Young's modulus are calculated and displayed on the display device 57 of the computer.

測定例を第3図に示す。これは計算機56における演算
結果をプリンタ58に出力したものである。
FIG. 3 shows a measurement example. In this case, the calculation result of the computer 56 is output to the printer 58.

第3図(A)は薄膜10のたわみhと減圧室20内の大気
圧との圧力Pの関係を示す特性図である。なお、この測
定における薄膜10のサイズrは2000μm.材料はSi3N4、
膜厚tは0.2μmであった。そして、図のようにこれら
の薄膜10のサイズや材質を測定番号等とともに表示する
とよい。
FIG. 3A is a characteristic diagram showing the relationship between the deflection h of the thin film 10 and the pressure P of the atmospheric pressure in the decompression chamber 20. The size r of the thin film 10 in this measurement is 2000 μm. The material is Si3N4,
The film thickness t was 0.2 μm. Then, as shown in the figure, the size and material of these thin films 10 may be displayed together with the measurement numbers and the like.

第3図(B)は(1)式に基づいて、測定データを再
プロットしたものである。図において、直線データより
最小自乗法でフィッテングしたものである。この直線の
切片と傾きから求めた薄膜の内部応力σとヤング率Eが
求められ、この例では、内部応力σ=1.29×1010dyn/cm
2、ヤング率=5.28×1012dyn/cm2であった。これらの測
定結果も表示装置57,プリンタ58に出力するとよい。
FIG. 3 (B) is a re-plot of the measurement data based on the equation (1). In the figure, the straight line data is fitted by the method of least squares. The internal stress σ and Young's modulus E of the thin film obtained from the intercept and slope of this straight line are obtained. In this example, the internal stress σ = 1.29 × 1010 dyn / cm
2 , Young's modulus = 5.28 × 1012 dyn / cm 2 . These measurement results may also be output to the display device 57 and the printer 58.

なお、光学系は第4図に示すように構成することもで
きる。すなわち、参照光R2としては光源14からの光R0の
一部をハーフミラー60で分岐した後ミラー62で反射さ
せ、さらに光の強度を光減衰器64によって制御する。こ
のように光減衰器64を設ければ、被測定薄膜10の材質に
よって変化する薄膜10で反射した光R1強度に応じて参照
光の強度を制御することができ、常に明瞭な干渉縞を得
ることができる。
The optical system may be configured as shown in FIG. That is, as the reference light R2, a part of the light R0 from the light source 14 is branched by the half mirror 60 and then reflected by the mirror 62, and the intensity of the light is controlled by the optical attenuator 64. If the optical attenuator 64 is provided in this way, the intensity of the reference light can be controlled according to the intensity of the light R1 reflected by the thin film 10 that changes depending on the material of the thin film 10 to be measured, and a clear interference fringe can always be obtained. be able to.

なお、光源14にはHe/Neレーザの他、光学フィルタと
組合わせたハロゲンランプあるいは半導体レーザ等を用
いることもできる。
The light source 14 may be a He / Ne laser, a halogen lamp combined with an optical filter, a semiconductor laser, or the like.

また、光源14からの光R0は直接光学系に入れることも
可能である。さらに、干渉縞の撮像には光源14の波長領
域に感度を有するものであればCCDカメラ以外でも構わ
ない。
Further, the light R0 from the light source 14 can be directly input to the optical system. Further, an image other than the CCD camera may be used for imaging the interference fringes as long as it has sensitivity in the wavelength region of the light source 14.

なお、撮像した干渉縞の消失の検出は一般的な画像処
理装置を利用することができる。例えば、干渉縞の消失
に伴う光強度変化は撮像素子26のある特定の画素の信号
の変化から検出することも可能であるし、TVモニタ50上
のある部分の光強度変化をホトトランジスタ等の素子を
用いて検出することも可能である。
A general image processing device can be used to detect the disappearance of the imaged interference fringes. For example, a change in light intensity due to the disappearance of interference fringes can be detected from a change in a signal of a specific pixel of the image sensor 26, and a change in light intensity at a certain portion on the TV monitor 50 can be detected by a phototransistor or the like. It is also possible to detect using an element.

圧力計24には半導体の圧力計やピラニゲージを用いる
こともできる。また、圧力計24はできるだけ試料18の近
傍に取り付けることが望ましい。
A semiconductor pressure gauge or a Pirani gauge may be used as the pressure gauge 24. Further, it is desirable that the pressure gauge 24 be mounted as close to the sample 18 as possible.

「実施例」 第5図は、第2の減圧室30を設けた本発明の第1実施
例を示す該略図である。ここで、光学系及び処理装置、
表示装置は第2図と同様のものを使用する。
"Embodiment" FIG. 5 is a schematic view showing a first embodiment of the present invention in which a second decompression chamber 30 is provided. Here, the optical system and the processing device,
A display device similar to that shown in FIG. 2 is used.

試料18は、減圧室20,30の間に取り付ける。試料18の
上側の減圧室30の上部には光学ガラス70が設けられてお
り、光源14からの光R0はここを通って試料18の薄膜10に
入射する。そして、光学ガラス70表面で反射した光源14
からの光R0の一部を参照光R0として用いる。
The sample 18 is attached between the decompression chambers 20 and 30. An optical glass 70 is provided above the decompression chamber 30 on the upper side of the sample 18, and light R0 from the light source 14 is incident on the thin film 10 of the sample 18 through the optical glass 70. Then, the light source 14 reflected on the surface of the optical glass 70
A part of the light R0 from is used as the reference light R0.

2つの減圧室20,30は1つの真空ポンプ54に接続され
ており真空ポンプと各減圧室20,30との間にはバルブ72,
74を設けてある。また、2つの減圧室20,30にはそれぞ
れリークバルブ23,76と圧力計24,78が接続されている。
The two decompression chambers 20, 30 are connected to one vacuum pump 54, and a valve 72, is provided between the vacuum pump and each decompression chamber 20, 30.
74 is provided. Leak valves 23 and 76 and pressure gauges 24 and 78 are connected to the two decompression chambers 20 and 30, respectively.

測定では、まず2つの減圧室20,30のリークバルブ23,
76を閉じた状態で真空ポンプ54によって2つの減圧室2
0,30内を減圧する。その後、減圧室20,30と真空ポンプ5
4の間にあるバルブ72,74を閉じて、減圧室30のリークバ
ルブ70を開き、減圧室30内の圧力を徐々に増加させる。
このとき圧力を変化させる速度は、測定がほぼ静的な状
態で行われたと見なせるように十分遅くする。
In the measurement, first, the leak valves 23 of the two decompression chambers 20 and 30,
Two decompression chambers 2 by vacuum pump 54 with 76 closed.
Depressurize the inside of 0,30. After that, the decompression chamber 20,30 and the vacuum pump 5
The valves 72 and 74 between 4 are closed, the leak valve 70 of the decompression chamber 30 is opened, and the pressure in the decompression chamber 30 is gradually increased.
At this time, the speed of changing the pressure should be slow enough so that it can be considered that the measurement is performed in a substantially static state.

計算機等からなる処理装置は2つの圧力計24,78の出
力を取り込み、内部でこれらの出力の差を計算すること
によって薄膜10に加わった圧力差Pを求める。そして、
薄膜10のたわみによって生ずる干渉縞の観察とデータ処
理は上述の実施例と同様の手順で行う。
A processing unit such as a calculator takes in the outputs of the two pressure gauges 24 and 78 and internally calculates the difference between these outputs to obtain the pressure difference P applied to the thin film 10. And
The observation of the interference fringes generated by the deflection of the thin film 10 and the data processing are performed in the same procedure as in the above-mentioned embodiment.

第6図は、第2実施例の構成を示す概略図であり、第
5図に示した第1実施例と同一部材には同一符号を付
し、その説明を省略する。また、光学系及び処理装置、
表示装置は第2図と同様のものを使用する。減圧室20に
は、試料18取り付け用の試料装着開口16の周辺に、例え
ばニクロム線からなるヒータ38が設けられている。そし
て、試料18取り付け部の温度はCA熱電対80によって測定
され、温度コントロール部82は試料取り付け部の温度が
予め設定された温度になるようにヒータ38への供給電力
を制御する。
FIG. 6 is a schematic diagram showing the configuration of the second embodiment, the same members as those of the first embodiment shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted. Also, an optical system and a processing device,
A display device similar to that shown in FIG. 2 is used. In the decompression chamber 20, a heater 38 made of, for example, a nichrome wire is provided around the sample mounting opening 16 for mounting the sample 18. Then, the temperature of the mounting portion of the sample 18 is measured by the CA thermocouple 80, and the temperature control unit 82 controls the power supplied to the heater 38 so that the temperature of the mounting portion of the sample becomes a preset temperature.

これによって、内部応力ヤング率の温度依存性が測定
できる。そして、膜と基板との膨脹率の差に起因する内
部応力を分離測定することができる。
With this, the temperature dependence of the internal stress Young's modulus can be measured. Then, the internal stress due to the difference in expansion coefficient between the film and the substrate can be separately measured.

なお、加熱部及び温度測定部は上記記載のものに限定
する必要はなく、所定の温度に制御できれば各種のもの
が採用できる。
The heating unit and the temperature measuring unit are not limited to those described above, and various types can be used as long as they can be controlled to a predetermined temperature.

また、試料取り付け用の減圧室20,30において、試料
取り付け部からのリークを減少させるためには真空グリ
スの使用あるいは減圧室にOリング等によるシールを用
いることが有効である。
Further, in the depressurization chambers 20 and 30 for mounting the sample, it is effective to use vacuum grease or to use a seal such as an O-ring in the depressurization chamber in order to reduce the leak from the sample mounting portion.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の全体構成を示す概略図、 第2図は本発明の基本構成を示す概略図、 第3図は測定値の関係を示す特性図、 第4図は光学系の一例を示す概略図、 第5図は第1実施例の構成を示す概略図、 第6図は第2実施例の構成を示す概略図、 第7図は被測定薄膜の形状を示す断面図である。 10……薄膜 14……光源 16……試料装着開口 20,30……減圧室 22,34……圧力制御手段 24,36……圧力計 26……撮像素子 28……参照光手段 FIG. 1 is a schematic diagram showing the overall configuration of the present invention, FIG. 2 is a schematic diagram showing the basic configuration of the present invention, FIG. 3 is a characteristic diagram showing the relationship of measured values, and FIG. 4 is an example of an optical system. 5 is a schematic diagram showing the configuration of the first embodiment, FIG. 6 is a schematic diagram showing the configuration of the second embodiment, and FIG. 7 is a sectional view showing the shape of the thin film to be measured. 10 ... Thin film 14 ... Light source 16 ... Specimen mounting opening 20, 30 ... Decompression chamber 22, 34 ... Pressure control means 24, 36 ... Pressure gauge 26 ... Imaging device 28 ... Reference light means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 進 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Sugiyama 1 of 41 Yokomichi, Nagakute-cho, Aichi-gun, Aichi-gun Toyota Central Research Institute Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内部が減圧状態に保たれ、被測定薄膜を含
む試料の一方側の表面が気密に装着される試料装着開口
を有する第1の減圧室と、 この第1の減圧室の内部の圧力を制御する第1の圧力制
御手段と、 第1の減圧室の内部の圧力を計測する第1の圧力計と、 内部が減圧状態に保たれると共に、上記第1の減圧室に
対向して配置され、上記薄膜を含む試料の他方側の表面
が気密に装着される試料装着開口を有する第2の減圧室
と、 この第2の減圧室の内部の圧力を制御する第2の圧力制
御手段と、 第2の減圧室の内部の圧力を計測する第2の圧力計と、 薄膜に実質的に単一波長の光を照射する光源と、 薄膜によって反射された反射光と参照光手段からの参照
光の干渉による干渉縞像を撮像する撮像素子と、 撮像素子によって得た干渉縞像を表示するモニタ部と、 を有し、 第1および第2の圧力制御手段によって第1および第2
の減圧室の圧力を制御して、被測定薄膜に印加される圧
力差を変更すると共に、この圧力差の変更に伴うモニタ
部に表示される干渉縞の本数の変化を検出し、被測定薄
膜に印加される圧力差と被測定薄膜のたわみとの関係を
得、得られた関係に基づいて薄膜の内部応力またはヤン
グ率を検出することを特徴とする薄膜の内部応力または
ヤング率を測定することを特徴とする薄膜の内部応力・
ヤング率測定装置。
1. A first decompression chamber having a sample mounting opening, the inside of which is kept in a depressurized state, and one surface of a sample containing a thin film to be measured is hermetically mounted, and an inside of the first decompression chamber. Pressure control means for controlling the pressure of the first decompression chamber, a first pressure gauge for measuring the pressure inside the first decompression chamber, the inside of which is kept in a decompressed state, and the first decompression chamber facing the first decompression chamber. And a second decompression chamber having a sample mounting opening in which the other surface of the sample including the thin film is hermetically mounted, and a second pressure for controlling the pressure inside the second decompression chamber. Control means, a second pressure gauge for measuring the pressure inside the second decompression chamber, a light source for irradiating the thin film with light of substantially a single wavelength, a reflected light reflected by the thin film, and a reference light means The image sensor that captures the interference fringe image due to the interference of the reference light from Anda monitor unit for displaying an image, first and second by the first and second pressure control means
The pressure in the decompression chamber is controlled to change the pressure difference applied to the thin film to be measured, and the change in the number of interference fringes displayed on the monitor unit due to the change in the pressure difference is detected to detect the thin film to be measured. The internal stress or Young's modulus of a thin film is measured by obtaining the relationship between the pressure difference applied to the substrate and the deflection of the measured thin film, and detecting the internal stress or Young's modulus of the thin film based on the obtained relationship. Internal stress of thin film characterized by
Young's modulus measuring device.
【請求項2】請求項1に記載の測定装置において、 上記第1または第2の減圧室にヒータを組み込み、試料
の温度を制御することを特徴とする薄膜の内部応力・ヤ
ング率測定装置。
2. The measuring device according to claim 1, wherein a heater is incorporated in the first or second decompression chamber to control the temperature of the sample, thereby measuring the internal stress / Young's modulus of the thin film.
JP63065160A 1988-03-17 1988-03-17 Thin film internal stress / Young's modulus measuring device Expired - Fee Related JPH083461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065160A JPH083461B2 (en) 1988-03-17 1988-03-17 Thin film internal stress / Young's modulus measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065160A JPH083461B2 (en) 1988-03-17 1988-03-17 Thin film internal stress / Young's modulus measuring device

Publications (2)

Publication Number Publication Date
JPH01237430A JPH01237430A (en) 1989-09-21
JPH083461B2 true JPH083461B2 (en) 1996-01-17

Family

ID=13278852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065160A Expired - Fee Related JPH083461B2 (en) 1988-03-17 1988-03-17 Thin film internal stress / Young's modulus measuring device

Country Status (1)

Country Link
JP (1) JPH083461B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297947A (en) * 2006-04-28 2007-11-15 Kawasaki Heavy Ind Ltd Fluorescence spectroscopic internal stress inspection device
KR20210108120A (en) * 2020-02-25 2021-09-02 한국원자력연구원 Testing apparatus of measuring starting time of stress corrosion cracking and thereof method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949740A (en) 1997-06-06 1999-09-07 Litton Systems, Inc. Unbalanced fiber optic Michelson interferometer as an optical pick-off
GB0302297D0 (en) * 2003-01-31 2003-03-05 United Biscuits Ltd Flour and Dough Evaluation Apparatus
JP2012220346A (en) * 2011-04-08 2012-11-12 Institute Of National Colleges Of Technology Japan Hardness tester and imprint device
CN111006949B (en) * 2019-12-12 2020-11-17 河海大学 Defect quantitative characterization and bursting strength prediction method for defect geomembrane
CN111442981A (en) * 2020-03-18 2020-07-24 重庆大学 Method for determining elastic strain energy of circular film under uniformly distributed load
CN111442983A (en) * 2020-03-25 2020-07-24 重庆大学 Method for determining elastic strain energy of circular film under transversely uniformly distributed load

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114144A (en) * 1984-11-09 1986-05-31 Hitachi Ltd Measuring device for film strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114144A (en) * 1984-11-09 1986-05-31 Hitachi Ltd Measuring device for film strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297947A (en) * 2006-04-28 2007-11-15 Kawasaki Heavy Ind Ltd Fluorescence spectroscopic internal stress inspection device
KR20210108120A (en) * 2020-02-25 2021-09-02 한국원자력연구원 Testing apparatus of measuring starting time of stress corrosion cracking and thereof method

Also Published As

Publication number Publication date
JPH01237430A (en) 1989-09-21

Similar Documents

Publication Publication Date Title
CN107764441B (en) System and method for measuring residual pressure in F-P cavity of optical fiber MEMS pressure sensor
WO1988004126A1 (en) Optical micropressure transducer
JPH083461B2 (en) Thin film internal stress / Young's modulus measuring device
US7782467B2 (en) Method for measuring volume by an optical surface profilometer in a micromechanical device and a system for carrying out said measurement
US6091497A (en) Sensor and a method for measuring distances to, and/or physical properties of, a medium
Tien et al. Simultaneous determination of the thermal expansion coefficient and the elastic modulus of Ta2O5 thin film using phase shifting interferometry
US6466308B1 (en) Method for measuring a thermal expansion coefficient of a thin film by using phase shifting interferometry
US7543502B2 (en) Compact pressure-sensing device
US7375821B2 (en) Profilometry through dispersive medium using collimated light with compensating optics
Miiller Measurement performance of high-accuracy low-pressure transducers
Joenathan et al. Phase-measuring fiber optic electronic speckle pattern interferometer: phase step calibration and phase drift minimization
Tien et al. Determination of the mechanical properties of thin films by digital phase shifting interferometry
Montalvo et al. Linear Compressibilities of II‐VI Compound Single Crystals
Yuan et al. Fiber optic differential interferometer
JPH08313422A (en) Apparatus for evaluating characteristics of thin film
JPH0543406Y2 (en)
Jin et al. Application of nondestructive testing methods to electronic industry using computer-aided optical metrology
Tang et al. Ultra-sensitive, highly reproducible film stress characterization using flexible suspended thin silicon plates and local curvature measurements
Galas et al. Interferometric and confocal techniques for testing of silicon wafers
Gastinger et al. Multi-technique platform for dynamic and static MEMS characterisation
US3491324A (en) Electromechanical transducer
RU2744847C1 (en) Interferometer with differential measurement function
JP2620955B2 (en) Thin film internal stress measurement device
CN113358574B (en) System and method for measuring elasto-optical coefficient of optical glass
Holownia et al. Measurement of dynamic bulk modulus and phase angle using ESPI

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees