JPH0834315B2 - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH0834315B2
JPH0834315B2 JP18950088A JP18950088A JPH0834315B2 JP H0834315 B2 JPH0834315 B2 JP H0834315B2 JP 18950088 A JP18950088 A JP 18950088A JP 18950088 A JP18950088 A JP 18950088A JP H0834315 B2 JPH0834315 B2 JP H0834315B2
Authority
JP
Japan
Prior art keywords
diffusion
resistance
pressure sensor
diaphragm
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18950088A
Other languages
Japanese (ja)
Other versions
JPH0239474A (en
Inventor
直行 津田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP18950088A priority Critical patent/JPH0834315B2/en
Publication of JPH0239474A publication Critical patent/JPH0239474A/en
Publication of JPH0834315B2 publication Critical patent/JPH0834315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえば、自動車のエンジンコントロール
用空気吸気圧や高地補正用大気圧などの圧力変化を電圧
変化に変換する際に利用することができる半導体圧力セ
ンサー、中でもシリコンダイヤフラム拡散抵抗形のもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor that can be used when converting a pressure change such as an air intake pressure for engine control of an automobile or an atmospheric pressure for high altitude correction into a voltage change. The present invention relates to a pressure sensor, especially a silicon diaphragm diffusion resistance type.

従来の技術 一般に半導体圧力センサーは、ゲージ抵抗と称する4
個の抵抗素子をブリッジ結合して用いるが、個々の抵抗
素子の諸特性では、圧力−出力特性の直線性の絶対値を
良くし、かつ、そのセンサー内の各々の抵抗素子間の抵
抗値のばらつきをなくす必要がある。これまで、個々の
抵抗素子の特性で、直線性の絶対値としては100±0.3%
の範囲に入っているが、各々の抵抗素子間の抵抗値のば
らつきの程度は未だ十分とは言えない。シリコン結晶方
向によるピエゾ抵抗係数の応力感度の分布を第3図,第
4図に示したが、従来、ダイヤフラムにシリコン単結晶
基板を用いた半導体圧力センサーでは、同図におけるピ
エゾ抵抗係数πlの感度の高い方向にゲージ抵抗を
配し、他方、かかる感度のない方向を考慮し、隣りあう
ゲージ抵抗をブリッジにつなぐための、いわゆる、導体
役割の拡散抵抗は、ピエゾ抵抗係数πlの感度のな
い位置にただ配置すれば良いとするものであった。すな
わち、第3図の(100)面においては〈001〉方向が、ま
た、第4図の(110)面においては〈001〉方向が、それ
ぞれ、ピエゾ抵抗係数πlの応力感度がゼロの方向
である。
2. Description of the Related Art Generally, a semiconductor pressure sensor is called a gauge resistance.
Although the individual resistance elements are used in a bridge connection, the characteristics of the individual resistance elements improve the absolute value of the linearity of the pressure-output characteristics, and the resistance value between the resistance elements in the sensor is improved. It is necessary to eliminate variations. Up to now, the absolute value of the linearity is 100 ± 0.3% in the characteristic of each resistance element.
However, the degree of variation in the resistance value between the resistance elements is not yet sufficient. The stress sensitivity distribution of the piezoresistive coefficient depending on the silicon crystal direction is shown in FIGS. 3 and 4, but in the conventional semiconductor pressure sensor using a silicon single crystal substrate for the diaphragm, the piezoresistive coefficient π l , The so-called diffusion resistance in the role of a conductor for connecting a gauge resistance to a bridge while arranging the gauge resistance in a highly sensitive direction of π t and considering such a non-sensitive direction is a piezo resistance coefficient π l Therefore, it is only necessary to dispose at a position where there is no sensitivity of π t . That is, in the (100) plane of FIG. 3 is <001> direction, and in the (110) plane of FIG. 4 is <001> direction, respectively, piezo-resistance coefficient [pi l, stress sensitivity of [pi t is It is the direction of zero.

なお、(100)面シリコンのダイヤフラムでは、高感
度特性実現のため、4個のゲージ抵抗の長手方向を同じ
〈110〉方向に配置するとともに、各ゲージ抵抗がすべ
てダイヤフラムの周辺領域に配置される。また、(11
0)面シリコンを用いるダイヤフラムでは、4個のゲー
ジ抵抗の長手方向をすべて〈001〉方向と直角な〈110〉
方向に配置するとともに、ゲージ抵抗の2個がダイヤフ
ラム中央領域に、他の2個がダイヤフラム周辺領域に、
それぞれ配置される。
In the case of a (100) plane silicon diaphragm, in order to realize high sensitivity characteristics, the four gauge resistors are arranged in the same <110> direction in the longitudinal direction, and all the gauge resistors are arranged in the peripheral region of the diaphragm. . Also, (11
With a diaphragm using 0) plane silicon, the longitudinal directions of the four gauge resistors are all <110> perpendicular to the <001> direction.
2 of the gauge resistors are in the central area of the diaphragm, and the other 2 are in the peripheral area of the diaphragm.
Placed respectively.

発明が解決しようとする課題 ところで、上記の導体役割の拡散抵抗の配置は、半導
体圧力センサー内の個々のゲージ抵抗、すなわち抵抗素
子間のばらつきを低減するためにも、その位置を設定す
る条件が重要である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By the way, the arrangement of the diffusion resistors having the conductor role described above requires that the conditions for setting the positions thereof are set in order to reduce the variation between individual gauge resistors in the semiconductor pressure sensor, that is, the resistance elements. is important.

課題を解決するための手段 本発明は、半導体基板表面に配置された4個のゲージ
抵抗を互いにブリッジ接続するとともに、出力を引き出
すために相隣る2個の前記ゲージ抵抗と接続された矩形
の第1の拡散導電領域を、これに隣接並置された第2の
拡散導電領域と細幅の第3の拡散導電領域で連結してな
り、かつ、前記第3の拡散導電領域の配設位置を、前記
第1の拡散導電領域の矩形の一辺に対し、辺長をd1対d2
(d1=1.2〜6,d2=1)の割合の長さに按分した位置
に、設定した構造の半導体圧力センサーである。
Means for Solving the Problems According to the present invention, four gauge resistors arranged on the surface of a semiconductor substrate are bridge-connected to each other, and a rectangular shape connected to two adjacent gauge resistors for extracting an output. The first diffusion conductive region is connected to the second diffusion conductive region adjacent to the first diffusion conductive region by a third diffusion conductive region having a narrow width, and the arrangement position of the third diffusion conductive region is set. , The side length of one side of the rectangle of the first diffusion conductive region is d 1 to d 2
It is a semiconductor pressure sensor having a structure that is set at positions proportional to the length of (d 1 = 1.2 to 6, d 2 = 1).

作用 本発明によると、ブリッジから出力を引き出すため
の、導体役割をなす矩形の拡散領域(前記第1の拡散領
域)の一辺が、これより外部へ出力するための電極領域
(第2の拡散領域)と連結するための細幅の導電領域ま
での長さの按分をd1対d2比で、1.2〜6対1)の範囲の
適値に設定することにより、導体役割をなす前記第1の
拡散領域自体の抵抗の応力変化を、センサーの感応性と
して、外部へ出力される、いわゆる出力抵抗変化への関
与の度合で、最小にすることができる。
Effect According to the present invention, one side of the rectangular diffusion region (the first diffusion region) that plays the role of a conductor for extracting the output from the bridge has an electrode region (the second diffusion region) for outputting to the outside. ), And the proportion of the length up to the narrow conductive area is set to a suitable value in the range of 1.2 to 6: 1 with a ratio of d 1 to d 2 of the first conductor. The stress change in the resistance of the diffusion region itself can be minimized by the degree of involvement in the so-called output resistance change that is output to the outside as the sensitivity of the sensor.

実施例 本発明を、第1図,第2図の実施例各装置の平面図に
より詳しくのべる。(100)面N形シリコン単結晶基板
(薄板)を素材とし、これを、後述のダイヤフラム1に
加工するが、まずこの基板内に、シリコン酸化膜を形成
後、その表面側にP形拡散領域によるゲージ抵抗2を選
択拡散により形成した。ゲージ抵抗2の寸法は幅15μ,1
本の長さ250μで、これらを5本、互いに直列に接続し
て、1個のゲージ抵抗を形成する。ダイヤフラム1の周
辺領域となるところに4個のゲージ抵抗2を、それらの
すべて、その長手方向が〈01〉方向になるように配置
した。これらゲージ抵抗2と全く同時に、導体役割の拡
散領域、いわゆるつなぎ拡散抵抗3〜8と、出力を取り
出すための電極領域、いわゆる引出し拡散領域9,10を形
成した。ここで、第1図に示した細幅の導電領域、いわ
ゆる連結部11,12の位置を決める、上記つなぎ拡散抵抗
3の一辺の長さの各按分長d1,d2の寸法比d1/d2の一例と
して6.5/3.5となるようなフォトマスクを使用した。そ
の後、このシリコン基板を、裏面側からエッチングし
て、所定のダイヤフラム1に形成した。ダイヤフラム1
の厚さは25μであった。ついでシリコン基板裏面側に熱
膨張係数のほぼ等しいガラス台座を直接接合して、加工
工程での取扱いに便なものとした。アルミニウム電極を
シリコン基板表面側に形成した後に、その基板をダイシ
ングしてから、各チップに分離した。各チップをパイプ
付きのメタルパッケージに組立てた。この際、キャップ
の内部は真空にして絶対圧ゲージ用圧力センサーとし
た。
Embodiments The present invention will be described in more detail with reference to plan views of respective devices of the embodiments shown in FIGS. A (100) plane N-type silicon single crystal substrate (thin plate) is used as a material and is processed into a diaphragm 1 described later. First, a silicon oxide film is formed in this substrate, and then a P-type diffusion region is formed on the surface side. The gauge resistance 2 was formed by selective diffusion. The gauge resistance 2 has a width of 15μ, 1
With a length of 250 μm, five of these are connected in series with each other to form one gauge resistor. Four gauge resistors 2 were arranged in the peripheral region of the diaphragm 1 so that their longitudinal directions were the <01> directions. At the same time as these gauge resistors 2, diffusion regions serving as conductors, so-called connecting diffusion resistors 3 to 8 and electrode regions for taking out an output, so-called extraction diffusion regions 9 and 10 were formed. Here, the dimensional ratio d 1 of the proportional distribution lengths d 1 and d 2 of the length of one side of the connection diffusion resistance 3 for determining the positions of the narrow conductive regions, so-called connecting portions 11 and 12 shown in FIG. A photomask having a ratio of 6.5 / 3.5 was used as an example of / d 2 . Then, this silicon substrate was etched from the back surface side to form a predetermined diaphragm 1. Diaphragm 1
Had a thickness of 25μ. Then, a glass pedestal having substantially the same coefficient of thermal expansion was directly bonded to the back side of the silicon substrate to make it convenient to handle in the processing step. After the aluminum electrode was formed on the surface side of the silicon substrate, the substrate was diced and then separated into chips. Each chip was assembled in a metal package with a pipe. At this time, the inside of the cap was evacuated to form a pressure sensor for an absolute pressure gauge.

発明の効果 本発明によると、連結部11,12を矩形状つなぎ拡散抵
抗3,4の一辺の中央に設けた場合に、直線性が100±0.3
%であったのに対し、比d1対d2を1.2〜6対1の範囲の
適値とした場合には直線性が100±0.1%となり、そのセ
ンサー素子間のばらつきが著しく改善された。この結果
は、ダイヤフラムの応力分布解析を実施するとともに、
第2図におけるピエゾ抵抗係数πlの応力感度ゼロ
の方向と、つなぎ抵抗の具体的なパターンを考慮して、
連結部を決める比d1/d2を最適化したおかげである。
EFFECTS OF THE INVENTION According to the present invention, when the connecting portions 11 and 12 are provided in the center of one side of the rectangular connecting diffusion resistors 3 and 4, the linearity is 100 ± 0.3.
%, On the other hand, when the ratio d 1 to d 2 was set to an appropriate value in the range of 1.2 to 6 to 1, the linearity was 100 ± 0.1%, and the variation among the sensor elements was remarkably improved. . This result is obtained by conducting a stress distribution analysis of the diaphragm.
Considering the direction of zero stress sensitivity of the piezoresistive coefficients π l and π t in FIG. 2 and the specific pattern of the connecting resistance,
This is due to the optimization of the ratio d 1 / d 2 that determines the connection.

【図面の簡単な説明】[Brief description of drawings]

第1図は(100)面単結晶シリコンダイヤフラムと各拡
散抵抗パターンを示す平面図、第2図は〈110〉面ダイ
ヤフラムの場合のパターンを示す平面図、第3図,第4
図は単結晶シリコンのピエゾ抵抗係数πlの応力感
度を示す(100)面(110)面結晶方向依存性分布図であ
る。 1……ダイヤフラム領域、2,Ra〜Rd……ゲージ抵抗、3
〜8……つなぎ拡散抵抗、9,10……引出し拡散領域、1
1,12……連結部。
FIG. 1 is a plan view showing a (100) plane single crystal silicon diaphragm and each diffusion resistance pattern, and FIG. 2 is a plan view showing a pattern in the case of a <110> plane diaphragm, FIGS.
The figure is a (100) plane (110) plane crystal orientation dependence distribution diagram showing the stress sensitivity of the piezoresistance coefficients π l and π t of single crystal silicon. 1 ...... diaphragm region, 2, R a to R d ...... gauge resistors, 3
~ 8 …… Connecting diffusion resistance, 9,10 …… Drawing diffusion area, 1
1,12 …… Connecting part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板表面に配置された4個のゲージ
抵抗を互いにブリッジ接続するとともに、出力を引き出
すために相隣る2個の前記ゲージ抵抗と接続された矩形
の第1の拡散導電領域を、これに隣接並置された第2の
拡散導電領域と細幅の第3の拡散導電領域で連結してな
り、かつ、前記第3の拡散導電領域の配設位置を、前記
第1の拡散導電領域の矩形の一辺に対し、辺長をd1対d2
(d1=1.2〜6,d2=1)の割合の長さに按分した位置
に、設定したことを特徴とする半導体圧力センサー。
1. A rectangular first diffusion conductive region connected to two gauge resistors arranged on the surface of a semiconductor substrate so as to bridge-connect each other and to connect two adjacent gauge resistors for extracting an output. Is connected to a second diffusion conductive region adjacent to this by a third diffusion conductive region having a narrow width, and the arrangement position of the third diffusion conductive region is set to the first diffusion region. For one side of the rectangle of the conductive area, the side length is d 1 vs. d 2
A semiconductor pressure sensor characterized in that the pressure is set at a position proportional to the length of (d 1 = 1.2 to 6, d 2 = 1).
JP18950088A 1988-07-28 1988-07-28 Semiconductor pressure sensor Expired - Lifetime JPH0834315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18950088A JPH0834315B2 (en) 1988-07-28 1988-07-28 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18950088A JPH0834315B2 (en) 1988-07-28 1988-07-28 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH0239474A JPH0239474A (en) 1990-02-08
JPH0834315B2 true JPH0834315B2 (en) 1996-03-29

Family

ID=16242313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18950088A Expired - Lifetime JPH0834315B2 (en) 1988-07-28 1988-07-28 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH0834315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210583A (en) * 2008-02-29 2009-09-17 Robert Bosch Gmbh Circuitry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145462A (en) 2004-11-24 2006-06-08 Ngk Spark Plug Co Ltd Pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210583A (en) * 2008-02-29 2009-09-17 Robert Bosch Gmbh Circuitry

Also Published As

Publication number Publication date
JPH0239474A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
US5289721A (en) Semiconductor pressure sensor
US4522072A (en) Electromechanical transducer strain sensor arrangement and construction
JPS60128673A (en) Semiconductor pressure-sensing device
US4320664A (en) Thermally compensated silicon pressure sensor
JPS59136977A (en) Pressure sensitive semiconductor device and manufacture thereof
US20040183150A1 (en) Silicon pressure sensor and the manufacturing method thereof
JPH0834315B2 (en) Semiconductor pressure sensor
GB2034970A (en) Semiconductor pressure transducer
JPH0779167B2 (en) Integrated semiconductor pressure sensor
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH06163939A (en) Semiconductor pressure sensor and fabrication thereof
JPS63102377A (en) Manufacture of thin film pressure sensor
JPH01183165A (en) Semiconductor pressure sensor
JPH01302867A (en) Semiconductor sensor
JPH0682844B2 (en) Semiconductor strain converter
JP3087334B2 (en) Semiconductor device
JPS5836998Y2 (en) semiconductor pressure sensor
JPH0769239B2 (en) Semiconductor pressure sensor
JPH0786617A (en) Semiconductor pressure sensor
JPS633468A (en) Semiconductor pressure sensor
JP2621984B2 (en) Semiconductor pressure sensor
JPH11183287A (en) Semiconductor pressure sensor and its manufacture
JPH0560672B2 (en)
JPH02234036A (en) Semiconductor pressure sensor
JPH05251715A (en) Semiconductor pressure sensor and its manufacture