JPH02234036A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH02234036A
JPH02234036A JP5663489A JP5663489A JPH02234036A JP H02234036 A JPH02234036 A JP H02234036A JP 5663489 A JP5663489 A JP 5663489A JP 5663489 A JP5663489 A JP 5663489A JP H02234036 A JPH02234036 A JP H02234036A
Authority
JP
Japan
Prior art keywords
stress
sigma
bridge circuit
pressure
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5663489A
Other languages
Japanese (ja)
Inventor
Ryoji Takahashi
良治 高橋
Seiji Takemura
竹村 誠次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5663489A priority Critical patent/JPH02234036A/en
Publication of JPH02234036A publication Critical patent/JPH02234036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To detect stress caused by pressure with high accuracy by detecting a difference between a 1st bridge circuit which detects the synthetic stress of pressure, temperature and inner stress and a 2nd bridge circuit which detects the synthetic stress of the temperature and the inner stress. CONSTITUTION:Four gauge resistances R1a-R4a are respectively formed on a surface inside the edge of a diaphragm part 2 responding to the pressure to form the 1st bridge circuit B1 which detects the output of the resistance change of the stress(sigma p+sigma t+sigma r) obtained by adding the stress sigma p caused by the pressure, the inner stress sigmat caused by the difference of thermal expansion and the inner stress sigma r caused by the difference of structure or materials. Then, four gauge resistances R1b-R4b are formed on the surface of a silicone substrate 1 which is the outside of the edge of the diaphragm part 2 to form the 2nd bridge circuit B which detects the resistance change of the stress(sigmat+sigma r)obtained by adding the stress sigmat and the stress sigma r. The output difference between the circuits B1 and B2, that is, (sigma p+sigma t+sigma r)-(sigma t+sigma r)=sigma p is detected. Thus, the stress caused by the pressure is detected with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、組立てによる内部応力の影響,温度による
内部応力の影響を軽減させた半導体圧力センサに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor pressure sensor in which the effects of internal stress due to assembly and temperature are reduced.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体圧力センサのチップの構成を示す
図で同図(a)は平面図、同図(b)は同図(.)のB
−B’線断面図である。同図において、低濃度のシリコ
ン基板1Kは、その中央部が裏面側から等方性エッチン
グにより削シ取シ薄いシリコン基板として圧力を感知す
るはほ円形状のダイヤフラム部2が形成されておシ、ζ
のダイヤ7ラム部2のエッジ内側表面には、90度の間
隔で等配された位置K高濃度の不純物を拡散させてピエ
ゾ抵抗効果を有するゲージ抵抗Rla + R2a e
 R3@ * R4mがそれぞれ形成されている。また
、このダイヤ72ム部2のエッジ外側のシリコン基板1
の表面にはAj金属Kよる配線リード3が形成され、前
述した各ゲージ抵抗Rla w R2a + R3m 
+ ”4mがブリッジ接続されて第5図K等価回路で示
すようなブリッジ回路Bを構成している。なお、IPは
正極側入力端子、INは負極側入力端子、opは正極側
出力端子、ONは負極側出力端子であシ、これらの端子
IP.IN.OP,ONはシリコン基板1の一端部上に
配線リード3K接続されて一体的に形成されている。
Figure 4 is a diagram showing the structure of a chip of a conventional semiconductor pressure sensor, where (a) is a plan view and (b) is a top view of the same figure (.).
-B' line sectional view. In the figure, a low-concentration silicon substrate 1K has its central portion removed by isotropic etching from the back side, and a nearly circular diaphragm portion 2 for sensing pressure is formed as a thin silicon substrate. ,ζ
On the inner surface of the edge of the diamond 7 ram part 2, there are gauge resistors Rla + R2a e which have a piezoresistance effect by diffusing high concentration impurities at positions K equally spaced at 90 degree intervals.
R3@*R4m are formed respectively. In addition, the silicon substrate 1 outside the edge of this diamond 72m portion 2
Wiring leads 3 made of Aj metal K are formed on the surface of each gauge resistor Rla w R2a + R3m described above.
+ "4m are bridge-connected to form a bridge circuit B as shown in the equivalent circuit K in Figure 5. Note that IP is the positive input terminal, IN is the negative input terminal, OP is the positive output terminal, ON is a negative output terminal, and these terminals IP, IN, OP, and ON are integrally formed on one end of the silicon substrate 1 by being connected to a wiring lead 3K.

第6図は第4図に示すゲージ抵抗Rla * R2a 
+R3a * R4mに生じる圧力Pに対する応力を示
したものであシ、同図Kおいて、σpは圧力PKより生
じる応力、σtは温度により生じる応力、σrはゲージ
抵抗R1m+112a・R3a,R4mに生じるアセン
ブリによる応力をそれぞれ示したものである。
Figure 6 shows the gauge resistance Rla * R2a shown in Figure 4.
+R3a * This shows the stress due to the pressure P generated in R4m. In the figure K, σp is the stress generated by the pressure PK, σt is the stress generated by the temperature, and σr is the assembly generated in the gauge resistance R1m+112a, R3a, R4m. This figure shows the stress caused by each stress.

次に動作について説明する。Next, the operation will be explained.

このようK構成される半導体圧力センサにおいて、ダイ
ヤ7ラム部2上のゲージ抵抗Rta+R2a+Raa+
R4mが形成された部分K生じる応力は、第6図に示す
ように圧力PKより生じる応力σpが圧力Pに対してリ
ニアK変化するのに対し、温度により生じる応力σtは
圧力Pに関係表<、温度が決まると、一定の値を示す。
In the semiconductor pressure sensor configured as above, the gauge resistance Rta+R2a+Raa+ on the diamond 7 ram part 2 is
Regarding the stress generated in the part K where R4m is formed, as shown in Figure 6, the stress σp generated by the pressure PK varies linearly with the pressure P, whereas the stress σt generated by the temperature changes with the pressure P according to the relationship table < , shows a constant value once the temperature is determined.

また、材料の熱膨張係数差により生じる応力σrは圧力
に関係なく、構造および温度が決まると、一定の値を示
す。このため、圧力.温度が決まると、ゲージ抵抗R1
,,Rla e RSg * R4JlI Kはσp+
(Ft+1fr に相当する応力が発生し、その応力に
応じた抵抗変化が生じる。一般に応力σr.#tを圧力
Pに比例する応力σpと同時K検出されるため、圧力p
=oの場合でもσt+σrに相当する応力を受け、オフ
セット出力を生じる。
Furthermore, the stress σr caused by the difference in the thermal expansion coefficients of the materials exhibits a constant value regardless of the pressure once the structure and temperature are determined. For this reason, pressure. Once the temperature is determined, the gauge resistance R1
,,Rla e RSg * R4JlI K is σp+
(A stress equivalent to Ft+1fr is generated, and a resistance change occurs in accordance with that stress. Generally, the stress σr.#t is detected simultaneously with the stress σp proportional to the pressure P, so the pressure p
Even in the case of =o, a stress corresponding to σt+σr is applied and an offset output is generated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このように構成される半導体圧力センサ
Kおいて、ピエゾ抵抗係数,応力(2tおよび応力ar
は、温度の関数であるので、オフセット出力は温度変化
Kよ)変化するため、半導体圧力センサには温度補償を
行なうための直列.並列もしくはその両方の抵抗を接続
し、トリミングによる調整を行ない、温度補償を行なう
必要があった。
However, in the semiconductor pressure sensor K configured in this way, the piezoresistance coefficient, stress (2t and stress ar
is a function of temperature, so the offset output changes according to the temperature change K), so the semiconductor pressure sensor has a series . It was necessary to connect resistors in parallel or both, perform trimming adjustments, and perform temperature compensation.

この発明は、前述し九従来の課題を解決するためになさ
れたものであシ、その目的は、オフセット出力を少なく
するとともKオフセットの温度変化を小さくさせた半導
体圧力センサを提供することにある。
This invention has been made in order to solve the above-mentioned nine conventional problems, and its purpose is to provide a semiconductor pressure sensor in which the offset output is reduced and the temperature change in the K offset is reduced. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明Kよる半導体圧力センサは、ダイヤフラム部のエ
ッジ内側表面に第1のゲージ抵抗体を形成しσp+σt
+σric相当する応力による抵抗変化出力を検出する
第1のブリッジ回路と、ダイヤフラム部のエッジ外側の
シリコン基板表面K前記ゲージ抵抗体K近接して第2の
ゲージ抵抗体を形成し圧力Kよる応力σpを感知しない
でσt+σrに相幽する応力による抵抗変化出力を検出
する第2のブリッジ回路とを有している。
In the semiconductor pressure sensor according to the present invention, a first gauge resistor is formed on the inner surface of the edge of the diaphragm part, and σp+σt
A first bridge circuit detects a resistance change output due to a stress corresponding to and a second bridge circuit that detects the resistance change output due to the stress that overlaps with σt+σr without sensing σt+σr.

〔作用〕[Effect]

この発明においては、第1のブリッジ回路の出力から第
2のブリッジ回路の出力差、すなわち(一ν+#t十σ
r)−(at+σr)一〇pのみが検出され、オフセッ
ト電圧を#1ほ零とするζとができる。
In this invention, the difference between the output of the first bridge circuit and the output of the second bridge circuit, that is, (1ν+#t0σ
Only r) - (at + σr) 10p is detected, and ζ is created in which the offset voltage is approximately zero at #1.

〔実施例〕〔Example〕

以下、図面を用いてこの発明の実施例を詳細K説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明Kよる半導体圧力センサの一実施例に
よるチップの構成を示す図で同図(.)は平面図、同図
(b)は同図(.)のB−B’線の断面図であシ、前述
の図と同一部分には同一符号を付してある。
FIG. 1 is a diagram showing the structure of a chip according to an embodiment of the semiconductor pressure sensor according to the present invention, in which (.) is a plan view, and (b) is a line BB' in the figure (.). This is a sectional view, and the same parts as in the previous figures are given the same reference numerals.

同図Kおいて、各ゲージ抵抗R111#R2JLIR3
a+R41が形成されたダイヤフラム部2のエッジ外側
となるシリコン基板1の表面には、各ゲージ抵抗Rl1
R2a # R3a * R4mに最近接してその形状
,方向および寸法が合同図形となるそれぞれゲージ抵抗
Rib . R2b ,R3b , R4bが高濃度の
不純物を拡散させて形成され、配線リード3Kよりブリ
ッジ接続されて第2図に等価回路で示すよちに第1のブ
リッジ回路B1と第2のブリッジ回路B2とが直列接続
して形成されている。すなわち、圧力を感知するダイヤ
フラム部2のエッジ内側表面Kはそれぞれ4個のゲージ
抵抗Rlm + R2a + R3@ t R4mが形
成されて圧力Kより生じる応力σpと、熱膨張差による
内部応力σtと、構造,材質の異いKよって生じる内部
応力σrとを加算した応力(σp十〇t十σr)に相当
する抵抗変化出力を検出する第1のブリッジ回路B1が
形成され、ダイヤフラム部2のエッジ外側となるシリコ
ン基板1の表面Kはそれぞれ4個のゲージ抵抗Rib 
421)+R3bsR4bが形成されて圧力による応力
σpを感知しないで熱膨張差による内部応力σtと、構
造,材質の異いによって生じる内部応力σrとを加算し
た応力(σt十〇r)K相当する抵抗変化出力を検出す
る第2のブリッジ回路B,が形成されている。
In K in the same figure, each gauge resistor R111#R2JLIR3
On the surface of the silicon substrate 1 which is the outer edge of the diaphragm portion 2 where a+R41 is formed, each gauge resistor Rl1 is provided.
R2a # R3a * Gauge resistor Rib .Rib .Rib . R2b, R3b, and R4b are formed by diffusing high-concentration impurities, and are bridge-connected from the wiring lead 3K to form a first bridge circuit B1 and a second bridge circuit B2, as shown in the equivalent circuit in FIG. are connected in series. That is, on the edge inner surface K of the diaphragm part 2 that senses pressure, four gauge resistances Rlm + R2a + R3 @ t R4m are formed, and the stress σp generated by the pressure K, the internal stress σt due to the difference in thermal expansion, A first bridge circuit B1 is formed to detect a resistance change output corresponding to the stress (σp 10t 1σr) that is the sum of the internal stress σr caused by the different structures and materials K, and the outer edge of the diaphragm part 2 Each surface K of the silicon substrate 1 has four gauge resistors Rib.
421) +R3bsR4b is formed and the stress σp due to pressure is not sensed, and the resistance is equivalent to the stress (σt 10r) K, which is the sum of the internal stress σt due to the difference in thermal expansion and the internal stress σr caused by the difference in structure and material. A second bridge circuit B, which detects a changing output, is formed.

次に動作について説明する。Next, the operation will be explained.

とのように構成される半導体圧力センサにおいて、ダイ
ヤ7ラム部2の表面に形成されたゲージ抵抗Rl @ 
+ R2a I R3a l R4&は、シリコン基板
1の結晶方向Kより、適当に配置されるが、互いに形成
位置が離れているので、全て同等の拡散濃度では抵抗値
が構成されるとは限らない。このため、ダイヤフラム部
2のエッジ外側となるシリコン基板1の表面にゲージ抵
抗R1b t Rzb * R3b e R4bを第1
図k示すように各ゲージ抵抗R lg + R 2 a
 t R 3a +R4mに近接して形成することKよ
り、各ゲージ抵抗Rla l R2a # R3g +
 R4aの拡散濃度とほぱ同等となるような拡散濃度を
有するゲージ抵抗R1b+R2b*R3b I R4b
が得られる。また、同様にしてシリコン基板1の等方性
エッチングKより形成されるダイヤフラム部2の中心点
からの誤差,シリコン基板結晶軸およびゲージ抵抗中心
軸の回転誤差もゲージ抵抗Rla + R2a + R
3a + R4aと近接配置される各ゲージ抵抗Rxb
 e Rzb + R3b * R4bとでほほ同等の
値となる。また、ダイヤフラム部2のエッジ内側のゲー
ジ抵抗Rl @ s R2a l R3a l R4g
 K対してそのエッジ外側のゲージ抵抗Rxb + R
2b * Rab + Rabを形状,方向,寸法を合
同図形として最近接して設けることで構造,材質の異い
によって生じる内部応力σrと熱膨張差による内部応力
σtとがほぼ同等となシ、ゲージ抵抗Rla + R2
a + R3a + R4mで構成される第1のブリッ
ジ回路B.の出力と、ゲージ抵抗Rib + ”2b 
+ R3b * R4bで構成される第2のブリッジ回
路B2の出力とがほぼ同等となる。
In the semiconductor pressure sensor configured as follows, a gauge resistance Rl formed on the surface of the diamond 7 ram portion 2
+ R2a I R3a l R4& are appropriately arranged from the crystal direction K of the silicon substrate 1, but since the formation positions are far from each other, the resistance values are not necessarily formed at all equivalent diffusion concentrations. Therefore, a first gauge resistor R1b t Rzb * R3b e R4b is placed on the surface of the silicon substrate 1 which is the outer edge of the diaphragm part 2.
Each gauge resistance R lg + R 2 a as shown in figure k
Each gauge resistor Rla l R2a # R3g +
Gauge resistor R1b+R2b*R3b I R4b having a diffusion concentration almost equal to that of R4a
is obtained. Similarly, the error from the center point of the diaphragm portion 2 formed by isotropic etching K of the silicon substrate 1, the rotation error of the silicon substrate crystal axis and the gauge resistance center axis are also the gauge resistance Rla + R2a + R
3a + each gauge resistor Rxb placed close to R4a
e Rzb + R3b * R4b is almost the same value. Also, the gauge resistance Rl @ s R2a l R3a l R4g inside the edge of the diaphragm part 2
Gauge resistance Rxb + R outside its edge with respect to K
2b * By providing Rab + Rab as congruent figures in shape, direction, and dimensions, the internal stress σr caused by the difference in structure and material is almost equal to the internal stress σt due to the difference in thermal expansion, and the gauge resistance Rla + R2
A first bridge circuit B.a + R3a + R4m. and the gauge resistance Rib + "2b
The output of the second bridge circuit B2 composed of +R3b*R4b is almost the same.

したがって圧力に対する感度はゲージ抵抗R1..R4
a # R3@ * R4mはダイヤフラム部2のエッ
ジ内側κ配置され敏感に検知可能とな夛、ゲージ抵抗R
ib + R2b + R3b * R4bはダイヤフ
ラム部2のエッジ外側VC配置されるため、ダイヤスラ
ム部2の厚さとシリコン基板1の厚さとの比の2乗に比
例して鈍感となる。例えばダイヤフラ八部2の厚さを約
40μmとし、シリコン基板1の厚さを約400μmと
すると、1/1 0 0の感度に落すことが可能となる
。換言すれば、圧力感度の見積シを行なうことができる
Therefore, the sensitivity to pressure is the gauge resistance R1. .. R4
a # R3 @ * R4m is a gauge resistance R that is placed inside the edge of the diaphragm part 2 and can be sensitively detected.
ib + R2b + R3b * Since R4b is arranged on the outer edge VC of the diaphragm portion 2, it becomes insensitive in proportion to the square of the ratio between the thickness of the diaphragm portion 2 and the thickness of the silicon substrate 1. For example, if the thickness of the diaphragm portion 2 is about 40 μm and the thickness of the silicon substrate 1 is about 400 μm, the sensitivity can be reduced to 1/100. In other words, pressure sensitivity can be estimated.

このような構成によれば、ダイヤフラム部2のエッジ内
側表面に形成されたゲージ抵抗R1aeR2atR3@
 y R4a Kより構成される第1のブリッジ回路B
1の出力と、ダイヤフラム部2のエッジ外側のシリコン
基板1表面に形成されたゲージ抵抗R1b.R2b .
 R3b l R4bによル構成される第2のブリッジ
回路B.の出力との差、すなわち(σp十〇t+σr)
一(σt+σr)=−σpのみが検出され、第3図に示
すようKオフセット出力を零とすることができる。
According to such a configuration, the gauge resistance R1aeR2atR3@ formed on the inner surface of the edge of the diaphragm portion 2
First bridge circuit B composed of y R4a K
1 output and a gauge resistor R1b.1 formed on the surface of the silicon substrate 1 outside the edge of the diaphragm portion 2. R2b.
Second bridge circuit B.R3b l R4b. The difference between the output of
Only one (σt+σr)=−σp is detected, and the K offset output can be made zero as shown in FIG.

なお、前述した実施例においては、圧力による応力σp
を検出するゲージ抵抗”11& + R2a + 9−
3@ +R4mをダイヤ7ラム部2のエッジ内側に配置
し、圧力を検出しないゲージ抵抗Rib”+R2b・’
Rsb・R4bをダイヤフラム部2のエッジ外側、つt
,bシリコン基板1上に形成した場合について説明した
が、本発明はこれK限定されるものではなく、ゲージ抵
抗Rla e R2@ v R3m l R4@をシリ
コン基板1上K形成し、ゲージ抵抗Rl b * R2
b + R3b ,R4bをダイヤフラム部2のエッジ
内側に設けてそれぞれブリッジ回路を構成しても前述と
全く同様の効果が得られる。
In addition, in the above-mentioned embodiment, stress σp due to pressure
Gauge resistance to detect "11 & + R2a + 9-
3@+R4m is placed inside the edge of the diamond 7 ram part 2, and the gauge resistance Rib"+R2b・' which does not detect pressure
Connect Rsb and R4b to the outside edge of diaphragm part 2,
, b is formed on the silicon substrate 1, but the present invention is not limited to this. Gauge resistors Rla e R2@v R3m l R4@ are formed on the silicon substrate 1, b*R2
Even if b + R3b and R4b are provided inside the edge of the diaphragm portion 2 to form a bridge circuit, the same effect as described above can be obtained.

また、前述した実施例においては、ダイヤフラム部2は
シリコン基板1を等方性エッチングによる円形状に形成
した場合について説明したが、異方性エッチングにより
形成しても良く、また四角形状K形成しても前述と全く
同様の効来が得られる。
Further, in the above embodiment, the diaphragm portion 2 is formed in a circular shape by isotropic etching on the silicon substrate 1, but it may be formed in a rectangular shape by anisotropic etching. However, the same effect as described above can be obtained.

さらに前述した実施例においては、シリコン基板1上K
配線リード3をAt金属により形成した場合について説
明したが、拡散導体により形成して屯前述と全く同様の
効果が得られる。
Furthermore, in the embodiment described above, K on the silicon substrate 1 is
Although the case where the wiring lead 3 is made of At metal has been described, the same effect as described above can be obtained by forming it with a diffused conductor.

また、前述した実施例においては、ダイヤ7ラム部2の
エッジ内側のゲージ抵抗Rl @ + R28 e R
3@ #R4mおよびエッジ外側のゲージ抵抗Rib 
l R2b *Rs1) . R4bの対で2組のブリ
ッジ回路を構成した場合Kついて説明したが、これらの
対を複数組形成し、複数組を直列に接続することによ〕
、複数倍の感度を有する圧力センサを得ることができる
In addition, in the above-mentioned embodiment, the gauge resistance Rl @ + R28 e R inside the edge of the diamond 7 ram portion 2
3 @ #R4m and gauge resistance Rib on the outside of the edge
l R2b *Rs1) . We have explained the case K in which two sets of bridge circuits are formed by the R4b pair, but by forming a plurality of these pairs and connecting the plurality of sets in series]
, a pressure sensor with multiple times the sensitivity can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、圧力,温度および
内部応力の合成応力を検出する第1のブリッジ回路と、
温度および内部応力の合成応力を検出する第2のブリッ
ジ回路との差Kより圧力Kよる応力を検出するととによ
夛、オフセット出力が極めて小さくなるとともKオフセ
ットの温度変化が小さくなるので、精度の高い半導体圧
力センナが得られる。また、組立における残留応力を極
めて小さくするためのチップ部に与える影響を小さくさ
せるダイボンド方法,ダイパッドの形状等を考慮する必
要のあった従来の圧力センサは構造的K制限を受けてい
たのに対して本発明による構成によれば、構造,形状お
よび材質などに全く関係なく選定でき、例えばモールド
樹脂により外装も可能となシ、安価で高精度の半導体圧
力センサが得られるなどの極めて優れた効果が得られる
As explained above, according to the present invention, the first bridge circuit detects the composite stress of pressure, temperature, and internal stress;
If the stress due to pressure K is detected rather than the difference K from the second bridge circuit that detects the composite stress of temperature and internal stress, the offset output will be extremely small and the temperature change in K offset will be small, so the accuracy will be improved. A semiconductor pressure sensor with high temperature can be obtained. In addition, conventional pressure sensors were subject to structural K limitations, which required consideration of the die bonding method and the shape of the die pad to minimize the effect on the chip part in order to minimize residual stress during assembly. According to the configuration according to the present invention, the pressure sensor can be selected regardless of structure, shape, material, etc., can be packaged with molded resin, and has extremely excellent effects such as being able to obtain an inexpensive and highly accurate semiconductor pressure sensor. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(.) . (b)は本発明による半導体圧力セ
ンサの一実施例を示す圧力センサチップの平面図,その
B−B’線の断面図、第2図は第1図の牛導体圧力セン
サチツプの等価回路甲、第3図は第1図の半導体圧力セ
ンサチツプに圧力が加わったときに生ずる内部合成応力
を示す図、第4図(a) , (b)は従来の半導体圧
力センナを説明する圧力センサチップの平面図,そのB
−B/線の断面図、第5図は第4図の半導体圧力センサ
チツプの等価回路図、第6図は第4図の半導体圧力セン
サチップK圧力が加わったときK生ずる内部合成応力を
示す図である。 1●●●●シリコン基板、2●gasダイヤフラム部、
3●●●●配線リード、Rla,RB),R2a+R2
b,R3a,R3b+R4awR4b  ” ”●●ゲ
ージ抵抗、IP●・●●正極側入力端子、!N●●争●
負極側入力端子、OP●●●●正極側出力端子、ON●
●・・負極側出力端子。 、第 5 図
Figure 1 (.). (b) is a plan view of a pressure sensor chip showing an embodiment of the semiconductor pressure sensor according to the present invention, and a cross-sectional view thereof taken along the line BB'; FIG. 2 is an equivalent circuit A of the conductor pressure sensor chip of FIG. 1; Figure 3 is a diagram showing the internal composite stress that occurs when pressure is applied to the semiconductor pressure sensor chip in Figure 1, and Figures 4 (a) and (b) are plane views of the pressure sensor chip illustrating a conventional semiconductor pressure sensor. Figure, Part B
5 is an equivalent circuit diagram of the semiconductor pressure sensor chip shown in FIG. 4, and FIG. 6 is a diagram showing the internal composite stress that occurs when pressure is applied to the semiconductor pressure sensor chip K shown in FIG. 4. It is. 1●●●● silicon substrate, 2●gas diaphragm part,
3●●●●Wiring lead, Rla, RB), R2a+R2
b, R3a, R3b+R4awR4b ” “●● Gauge resistance, IP●・●● Positive side input terminal,! N●●war●
Negative side input terminal, OP●●●●Positive side output terminal, ON●
●...Negative output terminal. , Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 低濃度のシリコン基板と、前記シリコン基板の一部を裏
面よりエッチングを施して形成された薄層からなるダイ
ヤフラム部と、前記ダイヤフラム部表面のエッジ内側の
4個所に高濃度不純物を拡散して形成されたピエゾ抵抗
効果を有する第1のゲージ抵抗体と、前記ダイヤフラム
部のエッジ外側のシリコン基板表面に前記第1のゲージ
抵抗体に近接して高濃度不純物を拡散して形成されたピ
エゾ抵抗効果を有する第2のゲージ抵抗体と、前記シリ
コン基板上に形成されかつ前記第1のゲージ抵抗体およ
び第2のゲージ抵抗体をそれぞれブリッジ接続して第1
のブリッジ回路および第2のブリッジ回路を形成する配
線リードとを少なくとも備えたことを特徴とする半導体
圧力センサ。
A diaphragm part consisting of a low concentration silicon substrate, a thin layer formed by etching a part of the silicon substrate from the back side, and a high concentration impurity diffused into four locations inside the edge of the surface of the diaphragm part. a first gauge resistor having a piezoresistance effect; and a piezoresistance effect formed by diffusing high concentration impurities on the silicon substrate surface outside the edge of the diaphragm portion in the vicinity of the first gauge resistor. a second gauge resistor formed on the silicon substrate and having a bridge connection between the first gauge resistor and the second gauge resistor, respectively.
A semiconductor pressure sensor comprising at least a bridge circuit and a wiring lead forming a second bridge circuit.
JP5663489A 1989-03-08 1989-03-08 Semiconductor pressure sensor Pending JPH02234036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5663489A JPH02234036A (en) 1989-03-08 1989-03-08 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5663489A JPH02234036A (en) 1989-03-08 1989-03-08 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH02234036A true JPH02234036A (en) 1990-09-17

Family

ID=13032751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5663489A Pending JPH02234036A (en) 1989-03-08 1989-03-08 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH02234036A (en)

Similar Documents

Publication Publication Date Title
US4320664A (en) Thermally compensated silicon pressure sensor
US6973836B2 (en) Semiconductor pressure sensor having diaphragm
US6861276B2 (en) Method for fabricating a single chip multiple range pressure transducer device
JPS60128673A (en) Semiconductor pressure-sensing device
WO1981003086A1 (en) Silicon pressure sensor
US4065971A (en) Semiconductor pressure transducer
JPS59136977A (en) Pressure sensitive semiconductor device and manufacture thereof
US6150917A (en) Piezoresistive sensor bridge having overlapping diffused regions to accommodate mask misalignment and method
US5432372A (en) Semiconductor pressure sensor
JPH06213743A (en) Semiconductor pressure sensor
US20040177699A1 (en) Semiconductor pressure sensor
JPH0554709B2 (en)
JPH02234036A (en) Semiconductor pressure sensor
JPH04178533A (en) Semiconductor pressure sensor
JPH0554708B2 (en)
JPH034568A (en) Semiconductor pressure sensor
JPH0412436Y2 (en)
JPS6341079A (en) Semiconductor distortion-converting device
JPH0834315B2 (en) Semiconductor pressure sensor
JP2980440B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH06163939A (en) Semiconductor pressure sensor and fabrication thereof
JP2621984B2 (en) Semiconductor pressure sensor
JPH0259635B2 (en)
JPH0758347A (en) Semiconductor pressure sensor and its manufacture
JPH04258177A (en) Semiconductor strain detector