JPH08340125A - Method of manufacturing thin film solar battery - Google Patents

Method of manufacturing thin film solar battery

Info

Publication number
JPH08340125A
JPH08340125A JP7143000A JP14300095A JPH08340125A JP H08340125 A JPH08340125 A JP H08340125A JP 7143000 A JP7143000 A JP 7143000A JP 14300095 A JP14300095 A JP 14300095A JP H08340125 A JPH08340125 A JP H08340125A
Authority
JP
Japan
Prior art keywords
electrode layer
substrate
hole
electrode
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7143000A
Other languages
Japanese (ja)
Inventor
Katsuya Tabuchi
勝也 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7143000A priority Critical patent/JPH08340125A/en
Publication of JPH08340125A publication Critical patent/JPH08340125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To manufacture this thin film solar battery in small connecting resistance in hole and high conversion efficiency by a method wherein either one of both electrode layers electrically connected in a through hole of a substrate is arranged on the opposed side surface of a formed surface of the substrate while the opposing back substrate at intervals not exceeding a specific value in the regions exceeding 1/2 of the formed film region back side are arranged on said opposite side surface. CONSTITUTION: In order to connect the third electrode layer 4 on the back of a flexible substrate to the first electrode layer 3 through the intermediary of a through hole 2, the extension part of the electrode layer creeping in the through hole 2 is utilized. For this purpose, it is required that both electrode layers 3, 4 creeping in the through hole 2 come into contact with each other on the inner wall of the through hole 2 or that at least one electrode reaches from the formed surface of the through hole 2 to the opposite side aperture part without being interrupted halfway on the inner wall. Accordingly, in case of forming at least one electrode of the back substrates are opposed not exceeding 11mm in the region exceeding 1/2 of the back side of the formed region on the opposite side of the substrate, the depositing rate of an electrode layer material is decelerated to facilitate the deposition on the inner surface of the through hole 2 thereby enabling a continuous electrode layer extension part to be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁性フィルムのような
可撓性基板上に形成された非晶質半導体薄膜などよりな
る光電変換層を利用した薄膜太陽電池の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell using a photoelectric conversion layer composed of an amorphous semiconductor thin film formed on a flexible substrate such as an insulating film.

【0002】[0002]

【従来の技術】太陽電池はクリーンなエネルギーとして
注目されており、その技術の進歩はめざましいものがあ
る。特に、アモルファスシリコンを主材料とした光電変
換層は大面積の成膜が容易で低価格であるため、それを
用いた薄膜太陽電池に対する期待は大きい。従来の薄膜
太陽電池にはガラス基板が用いられていたが、厚型で重
く、割れやすい欠点があり、また屋外の屋根等への適用
化による作業性の改良等の理由により、薄型・軽量化の
要望が強くなっている。これらの要望に対し、可撓性の
あるプラスチックフィルムあるいは薄膜金属フィルムを
基板に用いた可撓性の薄膜太陽電池の実用化が進みつつ
ある。
2. Description of the Related Art Solar cells have been attracting attention as clean energy, and their technological progress has been remarkable. In particular, since a photoelectric conversion layer mainly composed of amorphous silicon can be easily formed into a large area and is inexpensive, a thin-film solar cell using it is highly expected. Glass substrates have been used for conventional thin film solar cells, but they are thick and heavy, and have the drawback of being easily cracked. Also, they are thin and lightweight for reasons such as improved workability when applied to outdoor roofs. Is becoming more and more demanding. In response to these demands, a flexible thin film solar cell using a flexible plastic film or a thin metal film as a substrate is being put into practical use.

【0003】薄膜太陽電池は、基板の一面上に光電変換
層が両面に電極層を備えて形成される。この電極層のう
ち、光の入射側に存在するものは、ITOあるいはZn
Oなどの透明導電材料よりなる透明電極層である。この
透明電極層はシート抵抗が大きいため、電流が透明電極
層を流れることによる電力ロスが大きくなってしまう。
そのため従来は、薄膜太陽電池を複数の幅のせまいユニ
ットセルに分割し、分割したユニットセルを隣接するユ
ニットセルに電気的に接続する直列接続構造をとってい
た。これに対し、特開平6−342924号で公知の薄
膜太陽電池では、絶縁性基板に穴をあけ、この穴を利用
して光電変換層の反基板側にある透明電極層を基板裏面
の接続電極層と接続することにより、高シート抵抗の透
明電極層を流れる電流の径路の距離を短縮できる。これ
により寸法の限定されたユニットセルに分割することな
く低電圧、大電流型にも構成でき、ジュール損失が少な
く、無効面積の部分が縮小して有効発電面積が増加した
薄膜太陽電池を得ることができた。そして基板裏面の接
続電極層を利用して一方のユニットセルの透明電極層と
隣接ユニットセルの対向電極層を接続することにより直
列接続が容易になるので、特に生産性に優れている。
A thin film solar cell is formed by forming a photoelectric conversion layer on one surface of a substrate and providing electrode layers on both surfaces. Among the electrode layers, those existing on the light incident side are ITO or Zn.
It is a transparent electrode layer made of a transparent conductive material such as O. Since this transparent electrode layer has a large sheet resistance, a power loss due to a current flowing through the transparent electrode layer becomes large.
Therefore, conventionally, a thin film solar cell is divided into a plurality of narrow unit cells, and the divided unit cells are electrically connected to adjacent unit cells in series connection structure. On the other hand, in the thin film solar cell known in Japanese Patent Laid-Open No. 6-342924, a hole is made in the insulating substrate, and the transparent electrode layer on the opposite side of the photoelectric conversion layer is used to form a connection electrode on the back surface of the substrate by utilizing this hole. By connecting to the layer, the distance of the path of the current flowing through the transparent electrode layer having a high sheet resistance can be shortened. As a result, a thin-film solar cell that can be configured as a low-voltage, large-current type without dividing into unit cells of limited dimensions, has a small Joule loss, and has a reduced ineffective area and an increased effective power generation area is obtained. I was able to. The serial connection is facilitated by connecting the transparent electrode layer of one unit cell and the counter electrode layer of the adjacent unit cell by utilizing the connection electrode layer on the back surface of the substrate, which is particularly excellent in productivity.

【0004】図2(a)〜(f)はそのような薄膜太陽
電池の製造工程を示す。この薄膜太陽電池には可撓性絶
縁基板1を用いる〔図2(a)〕。可撓性絶縁基板1は
ポリイミド系のフィルムで厚さは50μmである。フィ
ルムとしては、ポリエチレンナフタレート(PEN)、
ポリエーテルサルフォン(PES)、ポリエチレンテレ
フタレート(PET)、アラミド系のフィルム等何でも
用いることができる。この基板1の一部に複数個の貫通
孔2を開ける〔図2(b)〕。貫通孔2は、パンチを用
いて機械的に形成しても、レーザー等のエネルギービー
ムを用いて開けても良い。この上に第一電極層3、およ
びそれと反対側の面に接続電極層となる第三電極層4と
して、Ag膜を約100nm〜400nmの厚さにスパ
ッタリング法により成膜する〔図2(c)〕。この際、
両電極層3、4の延長部が貫通孔2の内壁上で接触する
ことにより両電極層3、4が接続される。なおAg以外
にAl、Cu、Ti等の金属をスパッタリング法あるい
は電子ビーム蒸着法等により形成して金属電極としても
良い。また、金属酸化膜と金属膜よりなる多層膜を電極
層として形成しても良い。このように貫通孔2の明いた
可撓性基板1に電極層を形成する場合は、基板1を加熱
体を兼ねるキャンロールに接している基板上に成膜する
方式は採用できない。なぜなら、貫通孔の明いた基板で
は、貫通孔を通じて電極材料がキャンロールに付着し、
このキャンロール上の電極材料が基板の別の部分が接す
るときに剥離し、基板へ再付着することにより太陽電池
の製造歩留まりが低下する。それ故、加熱体に近接して
基板を通すロールツーロール方式で成膜する。ロールツ
ーロール方式では、図1に示すように真空室11の中に
収容された送りロール12から巻き取りロール13へ搬
送される基板1をアイドルロール14間で加熱体15に
近接して通すことによって加熱し、ターゲット16と加
熱体15との間に高電圧を印加することによってスパッ
タリッグにより基板1上に金属膜を形成する。この装置
では、基板1の片面上にのみにより成膜できないから、
反対側の基板面上の電極層を形成するには、基板1を裏
返しにして加熱体15とターゲット16との間を再度搬
送する。次に、再び複数個の貫通孔5を基板に形成す
る。形成する方法は上で貫通孔2と同じである〔図2
(d)〕。
2A to 2F show a manufacturing process of such a thin film solar cell. A flexible insulating substrate 1 is used for this thin film solar cell [FIG. 2 (a)]. The flexible insulating substrate 1 is a polyimide film and has a thickness of 50 μm. As the film, polyethylene naphthalate (PEN),
Any material such as polyether sulfone (PES), polyethylene terephthalate (PET), and aramid film can be used. A plurality of through holes 2 are formed in a part of the substrate 1 [FIG. 2 (b)]. The through hole 2 may be mechanically formed by using a punch, or may be formed by using an energy beam such as a laser. An Ag film having a thickness of about 100 nm to 400 nm is formed on the first electrode layer 3 as a third electrode layer 4 serving as a connection electrode layer on the surface opposite to the first electrode layer 3 by a sputtering method [FIG. )]. On this occasion,
The extension portions of the two electrode layers 3 and 4 are in contact with each other on the inner wall of the through hole 2 to connect the two electrode layers 3 and 4. In addition to Ag, a metal such as Al, Cu, or Ti may be formed as a metal electrode by a sputtering method, an electron beam evaporation method, or the like. Alternatively, a multilayer film including a metal oxide film and a metal film may be formed as the electrode layer. When the electrode layer is formed on the flexible substrate 1 having a clear through hole 2 as described above, the method of forming the film on the substrate which is in contact with the can roll also serving as a heating body cannot be adopted. Because, in the substrate with a clear through hole, the electrode material adheres to the can roll through the through hole,
The electrode material on the can roll is peeled off when another portion of the substrate comes into contact with it and redeposited on the substrate, so that the manufacturing yield of the solar cell is reduced. Therefore, the film is formed by a roll-to-roll method in which the substrate is passed close to the heating body. In the roll-to-roll method, as shown in FIG. 1, the substrate 1 conveyed from the feed roll 12 housed in the vacuum chamber 11 to the winding roll 13 is passed between the idle rolls 14 in the vicinity of the heating body 15. Then, a high voltage is applied between the target 16 and the heating body 15 to form a metal film on the substrate 1 by the sputtering rig. In this apparatus, since film formation cannot be performed only on one surface of the substrate 1,
To form the electrode layer on the opposite substrate surface, the substrate 1 is turned upside down and conveyed again between the heating body 15 and the target 16. Next, a plurality of through holes 5 are again formed in the substrate. The forming method is the same as that of the through hole 2 above [FIG.
(D)].

【0005】こうした工程を経た上で、光電変換層とな
る薄膜半導体層6を形成する。薄膜半導体層6は、例え
ば非晶質シリコン(a−Si)を主成分とし、主原料ガ
スにSiH4 、H2 を用いたプラズマCVD法により形
成するが、光電変換層としては、CuInSe2 、Cd
Te、多結晶Siなど何でも用いることができる〔図2
(e)〕。その上に、第二電極層7である透明電極層を
形成する。この層にはITO、SnO2 、ZnOなどの
酸化物導電層を用いるのが一般的であり、例えばスパッ
タリング法によるITO膜を用いる。このとき、膜形成
時にマスクで覆うなどして初めに形成した貫通孔2の部
分にはITO膜が形成されないようにする。〔図2
(f)〕。さらに、太陽電池を形成した面とは反対側の
基板1の表面に金属膜などの低抵抗導電膜からなる付加
第三電極層8を最終的に形成する〔図2(g)〕。この
付加第三電極層8は、貫通孔5の内壁にて付着し、同様
に貫通孔5の内壁に付着している透明電極層7と接続さ
れる。
After passing through these steps, the thin film semiconductor layer 6 to be the photoelectric conversion layer is formed. The thin film semiconductor layer 6 is formed, for example, by a plasma CVD method using amorphous silicon (a-Si) as a main component and SiH 4 and H 2 as main raw material gases. The photoelectric conversion layer includes CuInSe 2 , Cd
Any material such as Te and polycrystalline Si can be used [Fig. 2
(E)]. A transparent electrode layer which is the second electrode layer 7 is formed thereon. An oxide conductive layer of ITO, SnO 2 , ZnO or the like is generally used for this layer, and for example, an ITO film formed by a sputtering method is used. At this time, the ITO film is not formed in the first portion of the through hole 2 which is covered with a mask when forming the film. [Figure 2
(F)]. Further, the additional third electrode layer 8 made of a low resistance conductive film such as a metal film is finally formed on the surface of the substrate 1 opposite to the surface on which the solar cell is formed [FIG. 2 (g)]. The additional third electrode layer 8 is attached to the inner wall of the through hole 5 and is also connected to the transparent electrode layer 7 attached to the inner wall of the through hole 5.

【0006】最後に直列接続を形成するために、図3の
平面図で示すように、形成された太陽電池を一定間隔で
線状に除去し、電気的に絶縁された複数個の太陽電池を
形成する。また、第三電極層4、付加第三電極層8につ
いても、反対面に形成された太陽電池とほぼ同間隔であ
るが対向しない位置でレーザなどを用いて除去し、複数
個の第三電極層に分割する。このとき、分割された第三
電極層領域では隣のユニットセルの貫通孔5を順次含む
ように分割線を表面上の分割線に対してずらす。この工
程により、非被覆領域を介して相隣り合うユニットセル
の一方の第二電極層7が、他方のセルの第三電極層と直
列に接続されることとなり、最終的には基板上の複数個
のユニットセルが順次直列接続された構造が形成され
る。
Finally, in order to form a series connection, as shown in the plan view of FIG. 3, the formed solar cells are linearly removed at regular intervals to form a plurality of electrically insulated solar cells. Form. Further, the third electrode layer 4 and the additional third electrode layer 8 are also removed by using a laser or the like at a position which has almost the same interval as the solar cell formed on the opposite surface but does not face each other, and a plurality of third electrode layers is formed. Divide into layers. At this time, in the divided third electrode layer region, the dividing line is shifted with respect to the dividing line on the surface so as to sequentially include the through holes 5 of the adjacent unit cells. By this step, one of the second electrode layers 7 of the unit cells adjacent to each other via the non-covering region is connected in series with the third electrode layer of the other cell, and finally, a plurality of the unit cells on the substrate are formed. A structure in which individual unit cells are sequentially connected in series is formed.

【0007】[0007]

【発明が解決しようとする課題】このような薄膜太陽電
池において、基板表面上の電極層3あるいは4と基板裏
面の第三電極層5、8との貫通孔2あるいは5通じての
接続抵抗(以下孔内接続抵抗と記す)は、出力特性に大
きな影響を与える。しかし、従来の方法で製造した薄膜
太陽電池の孔内接続抵抗が数Ωないし無限大となってい
る場合があり、変換効率が大きく低下したり、直列接続
が形成できない場合がある。
In such a thin film solar cell, the connection resistance (through the through hole 2 or 5) between the electrode layer 3 or 4 on the front surface of the substrate and the third electrode layer 5, 8 on the back surface of the substrate ( Hereinafter, referred to as in-hole connection resistance) has a great influence on output characteristics. However, the in-hole connection resistance of the thin-film solar cell manufactured by the conventional method may be several Ω or infinity, the conversion efficiency may be significantly reduced, and series connection may not be formed.

【0008】本発明は、上述の問題を解決し、孔内接続
抵抗が小さく、変換効率の高い薄膜太陽電池の製造方法
を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a thin film solar cell having a small in-hole connection resistance and a high conversion efficiency.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、第一の本発明は、絶縁性の可撓性基板の一面上に
半導体よりなる光電変換層をはさんで第一電極層、透明
第二電極層をそれぞれ成膜し、基板の他面上に第三電極
層を成膜し、第一電極層および第二電極層と第三電極層
とをそれぞ基板に開けられた貫通孔内に回り込んだ二つ
の電極層のうちの少なくとも一方の電極層の延長部を介
して電気的に接続する薄膜太陽電池の製造方法におい
て、基板の貫通孔内で電気的に接続する両電極層の少な
くとも一方を、基板の被成膜面の反対側の面に、被成膜
領域の裏側の少なくとも二分の一以上の領域で11mm
以下の間隔で対向する背後基体を配置して成膜するもの
とする。その場合、貫通孔を機械的方法で開け、貫通孔
の一方の端部に連結したばりの生じた場合に、貫通孔の
他方の端部の開口する基板面を被成膜面とし、基板の反
対側の面に対向して背後基体を配置して成膜することが
よい。背後基体を基板の加熱体として使用し、基板の被
成膜面にターゲットを対向させて行うスパッタリング法
で電極層を成膜することが有効である。第二の本発明
は、上述の薄膜太陽電池の製造方法において、貫通孔の
外周の長さが1.8mm以上であるものとする。いずれ
の場合も、基板の一面上に成膜した第一電極層、光電変
換層、第二電極層を複数の領域に分割し、基板の他面上
に成膜した第三電極層を複数の領域に分割し、基板の他
面上に成膜した第三電極層を複数の領域に分割し、基板
の一面上の各層の一つの領域に属する第一電極層に貫通
孔を介して接続される第三電極層と、基板の一面上の各
層の前記領域に隣接する領域に属する第二電極層とを別
の貫通孔を介して接続することが良い。
In order to achieve the above object, the first invention is to provide a first electrode layer sandwiching a photoelectric conversion layer made of a semiconductor on one surface of an insulating flexible substrate. , A transparent second electrode layer was formed, a third electrode layer was formed on the other surface of the substrate, and the first electrode layer, the second electrode layer, and the third electrode layer were formed on the substrate, respectively. In the method for manufacturing a thin-film solar cell in which at least one of the two electrode layers that wraps around the through hole is electrically connected through an extension portion of the electrode layer, both of the electrically connecting inside the through hole of the substrate are provided. At least one of the electrode layers is formed on the surface of the substrate opposite to the film-forming surface in an area of at least one-half or more on the back side of the film-forming area by 11 mm.
It is assumed that the opposing back substrates are arranged at the following intervals to form a film. In that case, the through-hole is opened by a mechanical method, and when a burr connected to one end of the through-hole occurs, the substrate surface at the other end of the through-hole is used as a film formation surface, It is preferable to form a film by disposing a back substrate so as to face the opposite surface. It is effective to form the electrode layer by a sputtering method in which the back substrate is used as a heating body of the substrate and the target is opposed to the film formation surface of the substrate. The second aspect of the present invention is the method for manufacturing a thin-film solar cell described above, wherein the outer peripheral length of the through hole is 1.8 mm or more. In any case, the first electrode layer, the photoelectric conversion layer, and the second electrode layer formed on one surface of the substrate are divided into a plurality of regions, and the third electrode layer formed on the other surface of the substrate is formed into a plurality of regions. The third electrode layer formed on the other surface of the substrate is divided into a plurality of areas, and is connected to the first electrode layer belonging to one area of each layer on the one surface of the substrate through a through hole. It is preferable to connect the third electrode layer that is located on the one surface of the substrate and the second electrode layer that belongs to a region adjacent to the region of each layer on one surface of the substrate through another through hole.

【0010】[0010]

【作用】特に薄膜太陽電池のユニットセルの直列接続に
利用される可撓性基板裏面の第三電極層を、表面上の第
一電極層あるいは第二電極層と基板の貫通孔を介して接
続するには、貫通孔内に回り込んだ電極層の延長部が利
用される。そのためには、電極層の双方が貫通孔に回り
込んで貫通孔の内壁上で接触するか、少なくとも一方が
貫通孔の被成膜面と反対側の開口部まで内壁上で途切れ
ることなく到達することが必要である。スパッタリング
法あるいはプラズマCVD法でロールツーロール方式に
より成膜する場合、基板面に到達する電極層材料粒子の
速度が速いと内壁上に堆積しないで抜けてしまう可能性
が高い。そこで、少なくとも一方の電極層の成膜時に基
板の反対側に被成膜領域の裏側の二分の一上の領域で背
後基体を11mm以下に対向させれば、電極層材料の速
度が低下し、貫通孔内面に堆積しやすくなり、連続した
電極層延長部が形成される。特に貫通孔をパンチなどを
用いる機械的に開通孔を開ける場合に、貫通孔の端に連
結して絶縁基板のばりが生ずることがある。貫通孔の外
周の一部はばりのない部分あるいはばりが貫通孔内壁よ
り離れている場合は問題ないが、全周でばりが絶縁基板
から貫通孔内へ張り出しているときは、このばりが、電
極層の接続を妨げる。背後基体を設けることにより、被
成膜面と反対側からばりの形成する溝内に背後基体では
ね返った電極層材料が進入し、反対側の面の電極層との
接触が確保され、孔内接続抵抗が低くなる。一方、孔内
接続抵抗は貫通孔の内壁の面積、すなわち貫通孔の外周
部の長さに依存する。貫通孔の外周を1.8mm以上と
することで、基板両面の電極層の少なくとも一方の被着
面積が広くなり、孔内接続抵抗が減少する。
[Function] Particularly, the third electrode layer on the back surface of the flexible substrate, which is used for series connection of the unit cells of the thin film solar cell, is connected to the first electrode layer or the second electrode layer on the front surface through the through hole of the substrate. In order to do so, the extension of the electrode layer that goes around the through hole is used. For that purpose, both of the electrode layers wrap around the through hole and come into contact with each other on the inner wall of the through hole, or at least one of the electrode layers reaches the opening on the opposite side of the film forming surface of the through hole without interruption on the inner wall. It is necessary. When the film is formed by the roll-to-roll method by the sputtering method or the plasma CVD method, if the speed of the electrode layer material particles reaching the substrate surface is high, there is a high possibility that the electrode layer material particles are not deposited on the inner wall and come off. Therefore, when at least one of the electrode layers is formed, if the back substrate is opposed to the opposite side of the substrate in the upper half of the deposition target area by 11 mm or less, the speed of the electrode layer material decreases, It is easy to deposit on the inner surface of the through hole, and a continuous electrode layer extension is formed. In particular, when the through hole is mechanically opened by using a punch or the like, burrs of the insulating substrate may occur due to the connection to the end of the through hole. There is no problem if a part of the outer circumference of the through hole is a flash-free part or if the flash is away from the inner wall of the through hole, but if the flash is protruding from the insulating substrate into the through hole on the entire circumference, this flash is Prevents connection of electrode layers. By providing the back substrate, the electrode layer material repelled by the back substrate enters the groove formed by the burr from the side opposite to the film formation surface, and the contact with the electrode layer on the opposite side is ensured, so that the inside of the hole Connection resistance is low. On the other hand, the in-hole connection resistance depends on the area of the inner wall of the through hole, that is, the length of the outer peripheral portion of the through hole. By setting the outer circumference of the through hole to be 1.8 mm or more, the deposition area of at least one of the electrode layers on both surfaces of the substrate is widened, and the connection resistance in the hole is reduced.

【0011】[0011]

【実施例】以下、既に示した図を引用して本発明の効果
を確かめるための比較例および実施例の薄膜太陽電池の
製造方法について述べる。図2に示した製造工程のう
ち、図2(c)の第一電極層3および第三電極層4をA
gスパッタリングで形成する工程を表1に示すように2
種類の条件で行った。加熱体・基板間距離pおよびター
ゲット・基板間距離qは図1に示す。図2(b)の工程
で開ける貫通孔2の直径は0.5mmである。
EXAMPLES A method for manufacturing thin film solar cells of Comparative Examples and Examples for confirming the effects of the present invention will be described below with reference to the drawings already shown. In the manufacturing process shown in FIG. 2, the first electrode layer 3 and the third electrode layer 4 of FIG.
As shown in Table 1, the steps of forming by g-sputtering are
I went under different conditions. The distance p between the heating element and the substrate and the distance q between the target and the substrate are shown in FIG. The diameter of the through hole 2 formed in the step of FIG. 2B is 0.5 mm.

【0012】[0012]

【表1】 実施例で、加熱体・基板間距離pが0〜3mmとなって
いるのは、基板が搬送中に振動したり、あるいは、幅方
向に波うっていることにより、加熱体との間の距離が一
定ではないためである。
[Table 1] In the example, the distance p between the heating element and the substrate is 0 to 3 mm because the distance between the heating element and the heating element is due to the vibration of the substrate during the transportation or the waviness in the width direction. Is not constant.

【0013】図4は、このようにして成膜された第一電
極層と第三電極層との間貫通孔2内の接触抵抗の分布を
示す。比較例の加熱体・基板間距離が約15mmの場合
は、孔内接続抵抗のばらつきが非常に大きく、太陽電池
の特性が低下しない0.2Ω以下の抵抗を実現している
ものは60.5%と非常に良品率が低い。さらに、1Ω
以上のもの13個の内6個は完全に電気的に開放状態で
あった。一方、実施例の加熱体・基板間距離pが0〜3
mmの場合では、孔内接続抵抗が0.2Ω以下のものが
ほとんどで良品率は98.9%と改善し、不良品でもす
べて0.3Ω以下と太陽電池特性にあまり影響を及ぼさ
ない範囲の値である。
FIG. 4 shows the distribution of contact resistance in the through hole 2 between the first electrode layer and the third electrode layer thus formed. When the distance between the heating element and the substrate in the comparative example is about 15 mm, the variation in the connection resistance in the hole is very large, and the resistance of 0.2 Ω or less that does not deteriorate the characteristics of the solar cell is 60.5. %, The rate of non-defective products is very low. Furthermore, 1Ω
Six of the thirteen of the above were completely electrically open. On the other hand, the distance p between the heating element and the substrate in the embodiment is 0 to 3
In the case of mm, in most cases the connection resistance in the hole was 0.2Ω or less, and the rate of non-defective products was improved to 98.9%, and even defective products were all 0.3Ω or less, which is within the range that does not significantly affect the solar cell characteristics. It is a value.

【0014】本実施例では、加熱体・基板間距離pとし
て0〜3mmの場合の例を示したが、この距離として
は、約5mm、約10mm程度の場合についても、約1
5mmの場合と比較して抵抗低下、良品率向上に効果が
あった。約5mmでは、良品率の歩留まりは95.8
%、10mmの場合では83.7%であった。10mm
の場合に歩留まりは低下したが、不良品のものでも0.
8Ω以下で、電気的に開放状態になるものはなかった。
In the present embodiment, an example in which the distance p between the heating element and the substrate is 0 to 3 mm is shown, but this distance is about 1 mm even when it is about 5 mm or about 10 mm.
Compared with the case of 5 mm, it was effective in lowering the resistance and improving the yield rate. At about 5 mm, the yield rate of non-defective products is 95.8.
%, It was 83.7% in the case of 10 mm. 10 mm
In the case of, the yield decreased, but even if the defective product was 0.
None of them were in an electrically open state at 8Ω or less.

【0015】さらに、このように加熱体・基板間距離p
を短くすることは、基板が加熱体15をターゲット16
の間を通る全領域にわたって行う必要はなく、50%以
上の範囲で11mm以下であれば抵抗低下、良品率向上
の効果が得られる。また、Ag以外の金属電極において
も同様の効果が得られる。次いで、図2(d)に示した
ように直径1mmの貫通孔5を開け、図2(e)に示し
たように薄膜半導体層6を形成したのち、ITOのスパ
ッタリングで図2(f)の第二電極層7、Agのスパッ
タリングで図2(g)の付加第三電極層8の成膜工程を
表2に示すように2種類の条件で行った。
Further, in this way, the distance p between the heating element and the substrate is
To shorten the temperature
It is not necessary to carry out over the entire region passing through the gaps, and if it is 11 mm or less in the range of 50% or more, the effect of lowering the resistance and improving the yield rate can be obtained. The same effect can be obtained with metal electrodes other than Ag. Next, as shown in FIG. 2D, a through hole 5 having a diameter of 1 mm is opened, a thin film semiconductor layer 6 is formed as shown in FIG. 2E, and then ITO sputtering is performed to form a thin film semiconductor layer 6 as shown in FIG. As shown in Table 2, the film formation process of the second electrode layer 7 and the additional third electrode layer 8 of FIG. 2G by sputtering Ag was performed under two kinds of conditions.

【0016】[0016]

【表2】 加熱体・基板間の距離pが0〜3mmとなっているの
は、基板1が搬送中に振動したり、あるいは幅方向に波
つていることにより、加熱体との距離が一定ではないた
めである。図5はこのようにして成膜された第二電極層
7の膜厚に対する付加第三極層8との貫通孔5内の接続
抵抗の分布を示す。条件A、すなわち付加第三電極層8
を形成する際の加熱体・基板間距離pが約15mmの場
合では、pが0〜3mmの条件Bの場合に比較して孔内
接続抵抗のばらつきが大きく、また、第二電極層7の膜
厚が70nm以下の薄い場合において、太陽電池の特性
低下の原因となる3Ω以上の抵抗値のものもあった。一
方、付加第三電極層8を加熱体・基板間距離pを0〜3
mmにして形成した条件Bの場合には、第二電極層7の
膜厚に関係なく、3Ω以下のほぼ一定の抵抗値となって
おり、良好な特性を示した。
[Table 2] The distance p between the heating element and the substrate is 0 to 3 mm because the distance between the heating element and the substrate is not constant because the substrate 1 vibrates during conveyance or is wavy in the width direction. is there. FIG. 5 shows the distribution of the connection resistance in the through hole 5 with the additional third electrode layer 8 with respect to the film thickness of the second electrode layer 7 thus formed. Condition A, that is, the additional third electrode layer 8
When the distance p between the heating element and the substrate when forming is about 15 mm, the variation in the in-hole connection resistance is larger than that under the condition B where p is 0 to 3 mm, and the second electrode layer 7 In some cases, when the film thickness was as thin as 70 nm or less, the resistance value was 3 Ω or more, which causes deterioration of the characteristics of the solar cell. On the other hand, the additional third electrode layer 8 has a heater body-substrate distance p of 0 to 3
In the case of the condition B in which the second electrode layer 7 was formed to have a thickness of 3 mm, the resistance value was a substantially constant value of 3Ω or less, regardless of the film thickness of the second electrode layer 7, and good characteristics were exhibited.

【0017】条件Bでは、加熱体・基板間距離pとして
いずれも0〜3mmの場合の例を示したが、この距離と
しては、約5mm、約10mmの場合についても大部分
が3Ω以下で不良品が少なく、一方が15mmの場合と
比較して抵抗低下、良品率向上に効果があった。また、
このように加熱体・基板間距離pを短くすることは、基
板が加熱体15とターゲットの間を通る全領域にわたっ
て行う必要がなく、50%以上の範囲で11mm以下で
あれば一定で低い抵抗値、良好な特性が得られる。
In condition B, an example is shown in which the distance p between the heating element and the substrate is 0 to 3 mm, but most of this distance is 3 Ω or less even when it is about 5 mm or about 10 mm. The number of non-defective products was small, and it was effective in lowering the resistance and improving the non-defective product rate as compared with the case where one of them was 15 mm. Also,
It is not necessary to shorten the distance p between the heating body and the substrate as described above over the entire region where the substrate passes between the heating body 15 and the target. If the distance is 50% or more and 11 mm or less, the resistance is constant and low. Value, good characteristics can be obtained.

【0018】表3は、表1で比較例、表2で条件Aとし
て示した条件で各電極層を成膜した比較例の太陽電池
と、第三電極層4、第二電極層7の成膜は加熱体・基板
間距離p=0〜3mmで行ったがそれらと接続の対象と
なる第一電極層3、付加第三電極層8の成膜はp=約1
5mmの条件で行った実施例の太陽電池の特性を示す。
Table 3 shows the formation of the third electrode layer 4 and the second electrode layer 7, and the solar cell of the comparative example in which each electrode layer was formed under the conditions shown as the comparative example in Table 1 and the condition A in Table 2. The film was formed with the distance between the heating body and the substrate p = 0 to 3 mm, but the film formation of the first electrode layer 3 and the additional third electrode layer 8 to be connected to them was p = about 1
The characteristic of the solar cell of the Example performed on condition of 5 mm is shown.

【0019】[0019]

【表3】 実施例では、孔内で接続される電極層の一方を加熱体・
基板間距離pを0〜3mmで成膜することにより、比較
例に比較して直列接続を形成する貫通孔の部分での抵抗
が低下したため曲線因子が向上し、変換効率が19%向
上した。すなわち、電極層の一方を形成する際にpを小
さくすることにより本発明の効果が得られることがわか
った。さらに、第三電極層4、第二電極層7の成膜時の
pを約5mmにしたときには変換効率が約6.1%、約
10mm程度にしたときには変換効率が約5.9%とな
り表3の比較例よりも曲線因子が向上したことが認めら
れた。
[Table 3] In the embodiment, one of the electrode layers connected in the hole is heated by
By forming the film with the substrate-to-substrate distance p of 0 to 3 mm, the resistance in the portion of the through-hole forming the serial connection was reduced as compared with the comparative example, so that the fill factor was improved and the conversion efficiency was improved by 19%. That is, it was found that the effect of the present invention can be obtained by reducing p when forming one of the electrode layers. Furthermore, the conversion efficiency is about 6.1% when p is about 5 mm during the formation of the third electrode layer 4 and the second electrode layer 7, and about 5.9% when about 10 mm. It was confirmed that the fill factor was improved as compared with the comparative example of No. 3.

【0020】以上の実施例では成膜をスパッタリング法
で行ったかプラズマCVDにより成膜する場合を、基板
背後の接地電極を近接させることで同様の効果が得られ
た。図6は、表1に示した比較例と同様の条件で第一電
極層3、第三電極層4の成膜を行ったが、貫通孔の直径
が1mmの場合の孔内接続抵抗の分布を調べた結果であ
る。貫通孔2の直径が0.5mmから1mmに大きくな
ることで、良品率は60.5%から96.3%へと大き
く改善された。また、良品の孔内接続抵抗も、直径0.
5mmの場合では到達しなかった0.1Ω以下の値を、
直径を1mmと大きくすることで可能となった。この抵
抗の低下は、ホール外周部の長さが長くなることで、第
一電極層3と第三電極層4の貫通孔2の内壁面上での接
触領域が増加するためである。同様の抵抗の低下は第二
電極層7と付加第三電極層8の孔内接続抵抗においても
見られた。この実施例の結果より、孔内接続抵抗、およ
び良品率の歩留まりは孔の外周部の長さに依存し、外周
が1.8mm、すなわち円形ならば直径約0.6mm以
上であることが重要である。本実施例では、孔の形状は
円であるが、外周の長さが1.8mm以上であることが
重要で、孔の形状は何でも良い。
In the above examples, when the film formation was performed by the sputtering method or the film formation by plasma CVD, the same effect was obtained by bringing the ground electrode behind the substrate close. In FIG. 6, the first electrode layer 3 and the third electrode layer 4 were formed under the same conditions as in the comparative example shown in Table 1, but the distribution of the connection resistance in the hole when the diameter of the through hole was 1 mm Is the result of examining. By increasing the diameter of the through holes 2 from 0.5 mm to 1 mm, the non-defective rate was greatly improved from 60.5% to 96.3%. Also, the connection resistance in the hole of a good product is 0.
The value of 0.1Ω or less, which did not reach in the case of 5 mm,
It became possible by increasing the diameter to 1 mm. This decrease in resistance is because the length of the outer peripheral portion of the hole becomes longer, so that the contact area on the inner wall surface of the through hole 2 of the first electrode layer 3 and the third electrode layer 4 increases. A similar decrease in resistance was also observed in the in-hole connection resistance of the second electrode layer 7 and the additional third electrode layer 8. From the results of this example, the connection resistance in the hole and the yield of the non-defective product rate depend on the length of the outer peripheral portion of the hole, and it is important that the outer diameter is 1.8 mm, that is, if the outer periphery is circular, the diameter is about 0.6 mm or more. Is. In this embodiment, the shape of the hole is a circle, but it is important that the length of the outer circumference is 1.8 mm or more, and the shape of the hole may be any shape.

【0021】[0021]

【発明の効果】本発明によれば、貫通孔の開けた可撓性
基板に成膜する際に背後に11mm以下の間隔で基体を
置くことにより、貫通孔を電極層材料の通り抜けを防い
で貫通孔内壁に電極層の延長部が形成されるようにする
ことにより、基板表裏の電極層の貫通孔内での接続が歩
留まり良く低抵抗化した。また、貫通孔の外周を1.8
mm以上とすることによっても孔内接続抵抗を低くする
ことができる。これにより、基板裏面の第三電極層を用
いての直列接続構造の薄膜太陽電池の孔内接続抵抗によ
る変換効率の低下ないしは直列接続不能が防止でき、薄
膜太陽電池の用途拡大に極めて有効である。
According to the present invention, when a film is formed on a flexible substrate having a through hole, a substrate is placed behind the substrate at an interval of 11 mm or less to prevent the through hole from passing through the electrode layer material. By forming the extension portion of the electrode layer on the inner wall of the through hole, the connection between the electrode layers on the front and back sides of the substrate in the through hole was reduced and the resistance was lowered. In addition, the outer circumference of the through hole is 1.8
The hole connection resistance can also be reduced by setting the thickness to at least mm. As a result, it is possible to prevent the conversion efficiency from being lowered or the inability to connect in series due to the connection resistance in the hole of the thin film solar cell of the serial connection structure using the third electrode layer on the back surface of the substrate, and it is extremely effective in expanding the applications of the thin film solar cell. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いられるロールツーロール
方式成膜装置の断面図
FIG. 1 is a sectional view of a roll-to-roll type film forming apparatus used in an embodiment of the present invention.

【図2】本発明の実施される薄膜太陽電池の製造方法の
工程を(a)ないし(g)の順に示す断面図
FIG. 2 is a cross-sectional view showing steps of a method for manufacturing a thin film solar cell according to the present invention in the order of (a) to (g).

【図3】本発明の実施によって製造される薄膜太陽電池
の平面図で(a)は上面図、(b)は下面図
FIG. 3 is a plan view of a thin-film solar cell manufactured by implementing the present invention, in which (a) is a top view and (b) is a bottom view.

【図4】本発明の実施例と比較例における孔内接続抵抗
の分布図
FIG. 4 is a distribution diagram of in-hole connection resistance in an example of the present invention and a comparative example.

【図5】二つの成膜条件における孔内接続抵抗と第二電
極膜厚との関係線図
FIG. 5 is a relationship diagram of the connection resistance in the hole and the film thickness of the second electrode under two film forming conditions.

【図6】別の本発明の実施例における孔内接続抵抗の分
布図
FIG. 6 is a distribution diagram of connection resistance in holes in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可撓性基板 2、5 貫通孔 3 第一電極層 4 第三電極層 6 薄膜半導体層 7 第二電極層 8 付加第三電極層 11 真空室 15 加熱体 16 ターゲット 1 Flexible Substrate 2, 5 Through Hole 3 First Electrode Layer 4 Third Electrode Layer 6 Thin Film Semiconductor Layer 7 Second Electrode Layer 8 Additional Third Electrode Layer 11 Vacuum Chamber 15 Heating Body 16 Target

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の可撓性基板の一面上に半導体より
なる光電変換層をはさんで第一電極層、透明第二電極層
をそれぞれ成膜し、基板の他面上に第三電極層を成膜
し、第一電極層および第二電極層と第三電極層とをそれ
ぞ基板に開けられた貫通孔内に回り込んだ二つの電極層
のうちの少なくとも一方の電極層の延長部を介して電気
的に接続する薄膜太陽電池の製造方法において、基板の
貫通孔内で電気的に接続する両電極層の少なくとも一方
を、基板の被成膜面の反対側の面に、被成膜領域裏側の
少なくとも二分の一以上の領域で11mm以下の間隔で
対向する背後基体を配置して成膜することを特徴とする
薄膜太陽電池の製造方法。
1. A first electrode layer and a transparent second electrode layer are formed on one surface of an insulating flexible substrate with a photoelectric conversion layer made of a semiconductor interposed therebetween, and a third electrode is formed on the other surface of the substrate. An electrode layer is formed, and at least one of the two electrode layers in which the first electrode layer and the second electrode layer and the third electrode layer are respectively wrapped around the through holes formed in the substrate In the method for manufacturing a thin film solar cell electrically connected via an extension portion, at least one of both electrode layers electrically connected in the through hole of the substrate, on the surface opposite to the film-formed surface of the substrate, A method for manufacturing a thin-film solar cell, characterized in that at least one-half or more regions on the back side of the film formation region are arranged with opposing backing substrates arranged at intervals of 11 mm or less.
【請求項2】貫通孔を機械的方法で開け、貫通孔の一方
の端部に連結したばりの生じた場合に、貫通孔の他方の
端部の開口する基板面を被成膜面とし、基板の反対側の
面に対向して背後基体を配置して成膜する請求項1記載
の薄膜太陽電池の製造方法。
2. A through hole is formed by a mechanical method, and when a burr connected to one end of the through hole occurs, a substrate surface at which the other end of the through hole opens is used as a film formation surface, The method for manufacturing a thin-film solar cell according to claim 1, wherein the back substrate is arranged so as to face the opposite surface of the substrate to form a film.
【請求項3】背後基体を基板の加熱体として使用し、基
板の被成膜端面にターゲットを対向させて行うスパッタ
リング法で電極層を成膜する請求項1あるいは2記載の
薄膜太陽電池の製造方法。
3. The method for producing a thin film solar cell according to claim 1, wherein the back substrate is used as a heating body for the substrate, and the electrode layer is formed by a sputtering method in which the target is opposed to the end surface of the substrate on which the film is to be formed. Method.
【請求項4】絶縁性の可撓精基板の一面上に半導体より
なる光電変換層をはさんで第一電極層、透明第二電極層
をそれぞれ成膜し、基板の他面上に第三電極層を成膜
し、第一電極層および第二電極層と第三電極層とをそれ
ぞ基板に開けられた貫通孔内に回り込んだ二つの電極層
のうちの少なくとも一方の電極層の延長部を介して電気
的に接続する薄膜太陽電池の製造方法において、貫通孔
の外周の長さが1.8mm以上であることを特徴とする
薄膜太陽電池の製造方法。
4. A first electrode layer and a transparent second electrode layer are formed on one surface of an insulative flexible substrate with a photoelectric conversion layer made of a semiconductor interposed therebetween, and a third electrode is formed on the other surface of the substrate. An electrode layer is formed, and at least one of the two electrode layers in which the first electrode layer and the second electrode layer and the third electrode layer are respectively wrapped around the through holes formed in the substrate A method of manufacturing a thin-film solar cell, which is electrically connected via an extension, wherein the through hole has an outer circumference of 1.8 mm or more.
【請求項5】基板の一面上に成膜した第一電極層、光電
変換層、第二電極層を複数の領域に分割し、基板の他面
上に成膜した第三電極層を複数の領域に分割し、基板の
一面上の各層の一つの領域に属する第一電極層に貫通孔
を介して接続される第三電極層と、基板の一面上の各層
の前記領域に隣接する領域に属する第二電極層とを別の
貫通孔を介して接続する請求項1ないし4のいずれかに
記載の薄膜太陽電池の製造方法。
5. A first electrode layer, a photoelectric conversion layer, and a second electrode layer formed on one surface of a substrate are divided into a plurality of regions, and a third electrode layer formed on the other surface of the substrate is formed into a plurality of areas. A third electrode layer that is divided into regions and is connected to the first electrode layer belonging to one region of each layer on one surface of the substrate through a through hole; and a region adjacent to the region of each layer on one surface of the substrate. The method for manufacturing a thin-film solar cell according to claim 1, wherein the second electrode layer to which the thin film solar cell belongs is connected through another through hole.
JP7143000A 1995-06-09 1995-06-09 Method of manufacturing thin film solar battery Pending JPH08340125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7143000A JPH08340125A (en) 1995-06-09 1995-06-09 Method of manufacturing thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7143000A JPH08340125A (en) 1995-06-09 1995-06-09 Method of manufacturing thin film solar battery

Publications (1)

Publication Number Publication Date
JPH08340125A true JPH08340125A (en) 1996-12-24

Family

ID=15328619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7143000A Pending JPH08340125A (en) 1995-06-09 1995-06-09 Method of manufacturing thin film solar battery

Country Status (1)

Country Link
JP (1) JPH08340125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235982B1 (en) * 1998-08-27 2001-05-22 Fuji Electric Co., Ltd. Photoelectric conversion apparatus and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235982B1 (en) * 1998-08-27 2001-05-22 Fuji Electric Co., Ltd. Photoelectric conversion apparatus and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5626686A (en) Thin-film solar cell and method of manufacturing the same
US5348589A (en) Solar cell and method of forming the same
US5928439A (en) Thin-film solar cell and method for the manufacture thereof
US6441301B1 (en) Solar cell and method of manufacturing the same
WO2009148562A1 (en) Thin film solar cells with monolithic integration and backside contact
JP2007165903A (en) Integrated thin-film solar cell and method of manufacturing same
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
CN110739361A (en) Photovoltaic device interconnects, photovoltaic devices including the same, and methods of forming interconnects
JPH0983001A (en) Integrated thin film solar battery
JP3755048B2 (en) Integrated thin film tandem solar cell and manufacturing method thereof
JPH0210777A (en) Integrated series connection method of thick film solar cell and tandem solar cell
CN1037052A (en) The method of the thin film solar battery array row that production is connected in series
JPH09139515A (en) Transparent conducting film electrode
JP4067589B2 (en) Thin film solar cell fabrication method
KR101295547B1 (en) Thin film type solar cell module and manufacturing method thereof
JPH08340125A (en) Method of manufacturing thin film solar battery
JP4127994B2 (en) Photovoltaic device manufacturing method
JPH1126795A (en) Manufacture of integrated thin film solar cell
JPH09219530A (en) Chalcopyirite structure semiconductor thin film solar battery and manufacture thereof
JPH09129903A (en) Integrated thin film tandem solar battery and manufacture thereof
JP2005521247A (en) Self-adjusting series circuit of thin film layer and its fabrication method
EP0450468A1 (en) Photovoltaic device and process for manufacturing the same
JP2002151720A (en) Thin-film solar cell
JP3655027B2 (en) Integrated thin film photoelectric converter
JP4077456B2 (en) Integrated thin film solar cell