JPH08339825A - Battery electrolyte and lithium secondary battery - Google Patents

Battery electrolyte and lithium secondary battery

Info

Publication number
JPH08339825A
JPH08339825A JP7145900A JP14590095A JPH08339825A JP H08339825 A JPH08339825 A JP H08339825A JP 7145900 A JP7145900 A JP 7145900A JP 14590095 A JP14590095 A JP 14590095A JP H08339825 A JPH08339825 A JP H08339825A
Authority
JP
Japan
Prior art keywords
battery
electrolytic solution
electrolyte
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145900A
Other languages
Japanese (ja)
Inventor
Terumi Ogawa
輝美 小川
Yuko Kanazawa
祐子 金澤
Toshiyuki Miwa
俊之 美和
Nozomi Narita
望 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP7145900A priority Critical patent/JPH08339825A/en
Publication of JPH08339825A publication Critical patent/JPH08339825A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a battery electrolyte which can keep high conductivity even at a low temperature and to provide a lithium secondary battery which can keep high charge and discharge capacity even at a low temperature by using the excellent battery electrolyte. CONSTITUTION: A lithium salt is properly dissolved in a nonaqueous solution in which ethylene carbonate, propylene carbonate, dimethyl carbonate and tert- butyl formate are mixed to make a battery electrolyte. A lithium secondary battery is constituted by using the electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電池用の電解液の改
良と、その改良された電解液を用いたリチウム二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved electrolytic solution for a battery and a lithium secondary battery using the improved electrolytic solution.

【0002】[0002]

【従来の技術】リチウム二次電池では、リチウム金属複
合酸化物を正極活物質とし、炭素材料または金属リチウ
ムなどを負極活物質とし、非水系の溶媒にリチウム塩を
適宜に溶解した電解液を使用している。非水溶媒として
は、エチレンカーボネート(EC)、プロピレンカーボ
ネート(PC)、ジメトキシエタン(DME)、ジメチ
ルカーボネート(DMC)、ジエチルカーボネート(D
EC)の1種または2種以上を適宜に混合したものを使
用している。
2. Description of the Related Art In a lithium secondary battery, a lithium metal composite oxide is used as a positive electrode active material, a carbon material or metallic lithium is used as a negative electrode active material, and an electrolyte solution in which a lithium salt is appropriately dissolved in a non-aqueous solvent is used. are doing. As the non-aqueous solvent, ethylene carbonate (EC), propylene carbonate (PC), dimethoxyethane (DME), dimethyl carbonate (DMC), diethyl carbonate (D
One or two or more kinds of EC) are appropriately mixed and used.

【0003】溶質であるリチウム塩としては、LiPF
6 、LiClO4 、LiBF4 などから選択される1種
以上を使用している。電池の形態としてはコイン型や円
筒形などが一般的である。
LiPF6 is a solute lithium salt.
One or more selected from 6 , LiClO 4 , LiBF 4, etc. are used. A coin type or a cylindrical type is generally used as the form of the battery.

【0004】[0004]

【発明が解決しようとする課題】従来のリチウム二次電
池では、−20℃程度の低温環境で充放電を行うと、常
温での充放電に比べて大幅に容量が低下する。これは、
低温になると電解液の導電率が著しく低下し、内部抵抗
が著しく増大することに起因している。また充放電サイ
クル特性も充分に高いものではなかった。
In the conventional lithium secondary battery, when the charge and discharge are performed in a low temperature environment of about -20 ° C, the capacity is significantly reduced as compared with the charge and discharge at room temperature. this is,
This is because the conductivity of the electrolytic solution is remarkably lowered at a low temperature and the internal resistance is remarkably increased. Also, the charge / discharge cycle characteristics were not sufficiently high.

【0005】この発明は前述した従来の問題点に鑑みな
されたもので、その目的は、低温でも高い導電率を保つ
ことができる電池用電解液を提供することにあり、ま
た、そのような優れた電解液を使用して低温でも充放電
容量を高く保つことができるとともに充放電サイクル特
性の優れたリチウム二次電池を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide an electrolytic solution for a battery which can maintain a high conductivity even at a low temperature. Another object of the present invention is to provide a lithium secondary battery which can maintain a high charge / discharge capacity even at a low temperature by using the electrolytic solution and has excellent charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明の電池用電解液
は、エチレンカーボネートとプロピレンカーボネートと
ジメチルカーボネートとギ酸tert- ブチルを混合した非
水溶媒にリチウム塩を適宜に溶解したものである。そし
て、この発明の電解液を用いてリチウム二次電池を構成
してなるのである。
The battery electrolyte of the present invention comprises a lithium salt appropriately dissolved in a non-aqueous solvent prepared by mixing ethylene carbonate, propylene carbonate, dimethyl carbonate and tert-butyl formate. Then, a lithium secondary battery is constructed by using the electrolytic solution of the present invention.

【0007】[0007]

【作用】エチレンカーボネートとプロピレンカーボネー
トとジメチルカーボネートは従来から電池用電解液に使
用されていた成分であり、この3成分を混合した溶媒に
リチウム塩を溶解した電池用電解液は既知のものであ
る。この発明においては、ギ酸tert- ブチルが従来は知
られていなかった電池用電解液の新規な成分である。前
記の既知3成分に新規成分であるギ酸tert- ブチルを混
合した点が本発明の特徴である。
[Function] Ethylene carbonate, propylene carbonate and dimethyl carbonate are components that have been conventionally used in battery electrolytes, and battery electrolytes in which a lithium salt is dissolved in a solvent in which these three components are mixed are known. . In the present invention, tert-butyl formate is a novel component of an electrolytic solution for a battery which has not been known so far. It is a feature of the present invention that tert-butyl formate which is a new component is mixed with the above-mentioned three known components.

【0008】この発明による電解液は低温でも高い導電
率を保つ。したがって、この電解液を使用してリチウム
二次電池を構成すれば、低温でも充放電容量を高く保つ
ことができ、また優れた充放電サイクル特性を実現でき
る。
The electrolytic solution according to the present invention maintains high conductivity even at low temperatures. Therefore, if a lithium secondary battery is constructed using this electrolytic solution, the charge / discharge capacity can be kept high even at low temperatures, and excellent charge / discharge cycle characteristics can be realized.

【0009】[0009]

【実施例】【Example】

[従来例の電解液C]既知の3成分エチレンカーボネー
ト(EC)とプロピレンカーボネート(PC)とジメチ
ルカーボネート(DMC)とを容量比で1:1:2の割
合で混合した溶媒にリチウム塩であるLiPF6 を溶解
したものを電解液Cとする。これを以下ではベース電解
液Cとも称する。
[Electrolytic Solution C of Conventional Example] A known mixture of three-component ethylene carbonate (EC), propylene carbonate (PC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1: 2 is a lithium salt in a solvent. An electrolyte solution C is a solution of LiPF 6 . This is also referred to below as the base electrolyte C.

【0010】[比較例の電解液B]前記のベース電解液
Cに第4成分としてギ酸メチルを適宜に混合したものを
電解液Bとする。
[Electrolytic Solution B of Comparative Example] An electrolytic solution B is prepared by appropriately mixing the above base electrolytic solution C with methyl formate as a fourth component.

【0011】[本発明の電解液A]前記のベース電解液
Cに第4成分としてギ酸tert- ブチルを適宜に混合した
ものを電解液Aとする。
[Electrolytic Solution A of the Present Invention] An electrolytic solution A is prepared by appropriately mixing the above-mentioned base electrolytic solution C with tert-butyl formate as a fourth component.

【0012】《各電解液の導電率の比較》電解液Bにお
けるギ酸メチルの混合量をさまざまに変化させた試料
と、電解液Aにおけるギ酸tert- ブチルの混合量をさま
ざまに変化させた試料をつくり、これらとベース電解液
Cについて、20℃およびマイナス20℃での導電率を
測定した。その結果を図1に示している。
<< Comparison of Conductivities of Electrolytes >> Samples with various amounts of mixed methyl formate in the electrolytic solution B and samples with various amounts of mixed tert-butyl formate in the electrolytic solution A were compared. Then, the electrical conductivity of these and the base electrolyte C at 20 ° C. and −20 ° C. were measured. The result is shown in FIG.

【0013】図1のグラフから明らかなように、ベース
電解液Cに適量(10〜50容量%程度)のギ酸メチル
を混合した電解液Bや、ベース電解液Cに適量(10〜
50容量%程度)のギ酸tert- ブチルを混合した電解液
Aでは、ベース電解液Cに比して明らかに導電率が向上
する。特に、この発明の電解液Aの方が比較例の電解液
Bよりも導電率が良くなる。
As is clear from the graph of FIG. 1, an appropriate amount (10 to 50% by volume) of methyl formate is mixed with the base electrolytic solution C or an appropriate amount (10 to 10% by volume) of the base electrolytic solution C.
In the electrolytic solution A in which tert-butyl formate (about 50% by volume) is mixed, the conductivity is obviously improved as compared with the base electrolytic solution C. In particular, the electrolytic solution A of the present invention has better conductivity than the electrolytic solution B of the comparative example.

【0014】《リチウム二次電池の試作例》ビーカーセ
ルと呼ぶ図2に示す構造のリチウム二次電池を試作し
た。図2において、LiCoO2 に導電剤としてカーボ
ン粉末とバインダとしてのテフロン粉末を混合した正極
合剤1をシート状に成形し、これをチタンネット製の集
電体2に圧着して正極としている。また、炭素質粉末に
バインダとしてのEPDM(エチレンプロピレンジエン
モノマー)を混合した負極合剤3をシート状に成形し、
これをニッケルネット製の集電体4に圧着して負極とし
ている。正極合剤1および負極合剤3のシート形状は1
0mm×10mmの正方形である。ビーカー5の中につ
ぎに述べる電解液を入れて、その中に前記の正極と負極
を図のように対向配置した。
<< Prototype Example of Lithium Secondary Battery >> A lithium secondary battery having a structure shown in FIG. In FIG. 2, a positive electrode mixture 1 in which carbon powder as a conductive agent and Teflon powder as a binder are mixed with LiCoO 2 is formed into a sheet shape, which is pressure-bonded to a current collector 2 made of titanium net to form a positive electrode. Further, a negative electrode mixture 3 obtained by mixing carbonaceous powder with EPDM (ethylene propylene diene monomer) as a binder is formed into a sheet,
This is pressure-bonded to a nickel net current collector 4 to form a negative electrode. The sheet shape of the positive electrode mixture 1 and the negative electrode mixture 3 is 1
It is a square of 0 mm × 10 mm. An electrolyte solution described below was put in the beaker 5, and the positive electrode and the negative electrode were placed in the beaker 5 so as to face each other as shown in the drawing.

【0015】電解液として従来のベース電解液Cを用い
た前記構造の試作電池を従来例(c)とする。電解液と
してベース電解液Cに50%のギ酸メチルを加えた電解
液Bを用いた試作電池を比較例(b)とする。電解液と
してベース電解液Cに50%のギ酸tert- ブチルを加え
た試作電池を実施例(a)とする。
A prototype battery of the above structure using a conventional base electrolyte C as an electrolyte is referred to as a conventional example (c). A prototype battery using an electrolyte solution B prepared by adding 50% methyl formate to a base electrolyte solution C as an electrolyte solution is referred to as Comparative Example (b). Example (a) is a prototype battery in which 50% tert-butyl formate is added to the base electrolyte solution C as an electrolyte solution.

【0016】《試作電池の充放電試験》前述の3種の試
作電池(a)(b)(c)について、20℃で充放電サ
イクル特性試験を行った。充電電流および放電電流は0.
75mA、充電終止電圧は4.2 V、放電終止電圧は2.8 V
とした。その試験結果を図3に示している。本発明の実
施例(a)の特性がもっとも良く、つぎに従来例(c)
が良く、比較例(b)はサイクルの進行に伴って容量の
劣化が著しかった。同じギ酸エステルであっても、この
発明によるギ酸tert- ブチルを加えた電解液Aの性能が
良く、ギ酸エチルを加えた比較例の電解液Bの性能は著
しく悪かった。
<< Charge / Discharge Test of Prototype Battery >> A charge / discharge cycle characteristic test was performed at 20 ° C. for the above-mentioned three types of prototype batteries (a), (b) and (c). Charge current and discharge current are 0.
75mA, end-of-charge voltage 4.2V, end-of-discharge voltage 2.8V
And The test results are shown in FIG. The characteristic of the embodiment (a) of the present invention is the best, and then the conventional example (c).
In Comparative Example (b), the capacity was significantly deteriorated as the cycle progressed. Even with the same formate ester, the performance of the electrolytic solution A containing tert-butyl formate according to the present invention was good, and the performance of the comparative electrolytic solution B containing ethyl formate was extremely poor.

【0017】この原因としては、ギ酸メチルのアルデヒ
ド基の水素は外れやすく、水素イオンが発生しやすいた
めと考えられる。水素イオンが他の溶媒の分解を促進
し、充放電サイクル時において著しい容量劣化を起こす
のであろう。これに対してギ酸tert- ブチルは、3個の
メチル基の存在がアルデヒド基の水素を安定化し、水素
イオンは発生しにくい。そのためこの溶媒を分解するこ
となく安定した充放電サイクル特性を示すと推察され
る。
It is considered that this is because hydrogen in the aldehyde group of methyl formate is easily released and hydrogen ions are easily generated. Hydrogen ions may accelerate the decomposition of other solvents, causing a significant capacity deterioration during charge / discharge cycles. On the other hand, in tert-butyl formate, the presence of three methyl groups stabilizes the hydrogen of the aldehyde group, and hydrogen ions are less likely to be generated. Therefore, it is presumed that stable charge / discharge cycle characteristics are exhibited without decomposing the solvent.

【0018】前記の充放電試験において、100サイク
ル目の放電をマイナス20℃の低温下で行った。その1
00サイクル目の放電容量は、初回の放電容量を100
としたときに、本発明の実施例(a)では75%、比較
例(b)では2%、従来例(c)では53%であった。
本発明の実施例(a)では低温での容量低下がきわめて
小さく、従来例(c)より明らかに特性が向上してい
る。比較例(b)の低温特性は劣悪でまったく実用にな
らない。
In the charge / discharge test, the 100th cycle of discharge was performed at a low temperature of -20 ° C. Part 1
The discharge capacity at the 00th cycle is 100 times the discharge capacity at the first time.
When it was set, it was 75% in Example (a) of the present invention, 2% in Comparative Example (b), and 53% in Conventional Example (c).
In the example (a) of the present invention, the capacity decrease at a low temperature is extremely small, and the characteristics are clearly improved as compared with the conventional example (c). The low temperature characteristics of Comparative Example (b) are so poor that they cannot be used at all.

【0019】図1に示した電解液の低温下の導電率特性
は電解液Bも電解液Cより良好であったが、前記のよう
な理由で充放電サイクル特性が著しく悪くなる。つま
り、ベース電解液Cに加える第4の成分としては、ギ酸
エステルならば何でも良い訳ではなく、ギ酸tert- ブチ
ルが良いのである。
The electrical conductivity characteristics of the electrolytic solution at low temperature shown in FIG. 1 were better than those of the electrolytic solution B, but the charge / discharge cycle characteristics were remarkably deteriorated for the reasons described above. In other words, as the fourth component added to the base electrolyte C, any formate ester is not necessary, but tert-butyl formate is preferable.

【0020】なお、本実施例では、リチウム塩としてL
iPF6 、LiClO4 、LiBF4、LiCF3
3 、Li(CF3 SO2 2 N等から1種以上、適宜
選択する。
In this example, L was used as the lithium salt.
iPF 6 , LiClO 4 , LiBF 4, LiCF 3 S
One or more kinds are appropriately selected from O 3 , Li (CF 3 SO 2 ) 2 N and the like.

【0021】[0021]

【発明の効果】この発明においては、ギ酸tert- ブチル
が従来は知られていなかった電池用電解液の新規な成分
である。このギ酸tert- ブチルを既知の3成分(エチレ
ンカーボネートとプロピレンカーボネートとジメチルカ
ーボネート)に適量加えることで、この電解液は低温で
も高い導電率を保つようになる。したがって、この電解
液を使用してリチウム二次電池を構成すれば、低温でも
充放電容量を高く保つことができる。しかも充放電サイ
クル特性も従来より向上する。
INDUSTRIAL APPLICABILITY In the present invention, tert-butyl formate is a novel component of an electrolytic solution for a battery which has hitherto been unknown. By adding an appropriate amount of this tert-butyl formate to the known three components (ethylene carbonate, propylene carbonate, and dimethyl carbonate), this electrolytic solution maintains high conductivity even at low temperatures. Therefore, if a lithium secondary battery is constructed using this electrolyte, the charge / discharge capacity can be kept high even at low temperatures. Moreover, the charge / discharge cycle characteristics are also improved as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の試験例による電解液の導電率特性を
示すグラフである。
FIG. 1 is a graph showing conductivity characteristics of an electrolytic solution according to a test example of the present invention.

【図2】この発明の試験に供したリチウム二次電池のビ
ーカーセルの構造図である。
FIG. 2 is a structural diagram of a beaker cell of a lithium secondary battery used in a test of the present invention.

【図3】この発明の試験による試作電池の充放電サイク
ル特性を示すグラフである。
FIG. 3 is a graph showing charge / discharge cycle characteristics of a prototype battery according to the test of the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 集電体 3 負極合剤 4 集電体 5 ビーカー 1 Positive electrode mixture 2 Current collector 3 Negative electrode mixture 4 Current collector 5 Beaker

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成田 望 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nozomu Narita 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エチレンカーボネートとプロピレンカー
ボネートとジメチルカーボネートとギ酸tert- ブチルを
混合した非水溶媒にリチウム塩を適宜に溶解してなる電
池用電解液。
1. An electrolytic solution for a battery, which is obtained by appropriately dissolving a lithium salt in a non-aqueous solvent in which ethylene carbonate, propylene carbonate, dimethyl carbonate and tert-butyl formate are mixed.
【請求項2】 リチウム金属複合酸化物を正極活物質と
し、炭素材料または金属リチウムなどを負極活物質と
し、請求項1の電池用電解液を用いたリチウム二次電
池。
2. A lithium secondary battery using the battery electrolyte according to claim 1, wherein the lithium metal composite oxide is used as a positive electrode active material, and a carbon material or metallic lithium is used as a negative electrode active material.
JP7145900A 1995-06-13 1995-06-13 Battery electrolyte and lithium secondary battery Pending JPH08339825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145900A JPH08339825A (en) 1995-06-13 1995-06-13 Battery electrolyte and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145900A JPH08339825A (en) 1995-06-13 1995-06-13 Battery electrolyte and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08339825A true JPH08339825A (en) 1996-12-24

Family

ID=15395663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145900A Pending JPH08339825A (en) 1995-06-13 1995-06-13 Battery electrolyte and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08339825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091422A1 (en) * 2004-03-22 2005-09-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2006032207A1 (en) * 2004-09-24 2006-03-30 Byd Company Limited Electrolytes for lithium ion batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091422A1 (en) * 2004-03-22 2005-09-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US7985502B2 (en) 2004-03-22 2011-07-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2006032207A1 (en) * 2004-09-24 2006-03-30 Byd Company Limited Electrolytes for lithium ion batteries

Similar Documents

Publication Publication Date Title
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP2000003724A (en) Nonaqueous electrolyte and lithium secondary battery using the same
KR100325868B1 (en) Organic electrolytic solution and lithium secondary battery adopting the same
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
CN109980285A (en) For lithium-chalcogen battery electrolyte system
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
JP3258841B2 (en) Lithium secondary battery
JPH07335261A (en) Lithium secondary battery
JPH06119926A (en) Nonaqueous electrplyte battery
JPH09147910A (en) Lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH0864246A (en) Sealed type nonaqueous electrolyte secondary battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JP3107300B2 (en) Lithium secondary battery
JPH053112B2 (en)
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JPH08339825A (en) Battery electrolyte and lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
KR100408515B1 (en) Organic electrolyte and lithium secondary battery using the same
KR100309776B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
KR100309777B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
KR100309775B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
JP2002170576A (en) Nonaqueous electrolyte cell
JPH09306538A (en) Secondary battery having nonaqueous solvent electrolyte