JPH0833784B2 - Control system of reactive power compensator - Google Patents

Control system of reactive power compensator

Info

Publication number
JPH0833784B2
JPH0833784B2 JP62312569A JP31256987A JPH0833784B2 JP H0833784 B2 JPH0833784 B2 JP H0833784B2 JP 62312569 A JP62312569 A JP 62312569A JP 31256987 A JP31256987 A JP 31256987A JP H0833784 B2 JPH0833784 B2 JP H0833784B2
Authority
JP
Japan
Prior art keywords
reactive power
current
phase
value
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62312569A
Other languages
Japanese (ja)
Other versions
JPH01152518A (en
Inventor
茂雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62312569A priority Critical patent/JPH0833784B2/en
Publication of JPH01152518A publication Critical patent/JPH01152518A/en
Publication of JPH0833784B2 publication Critical patent/JPH0833784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、交流系統に接続されている変動負荷が発
生する無効電力を補償することで、この交流系統の電圧
変動を抑制する、静止形の無効電力補償装置の制御方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention compensates for reactive power generated by a fluctuating load connected to an AC system to suppress voltage fluctuations in this AC system. The present invention relates to a control system for a reactive power compensator.

〔従来の技術〕[Conventional technology]

第5図は交流系統の無効電力を補償する従来例を示し
た単線結線図であって、母線2には交流電力を供給する
交流電源1、アーク炉あるいは溶接機のように大きな変
動を生じる変動負荷3と、この変動負荷3から生じる無
効電力を補償するための無効電力補償装置6とが接続さ
れている。
FIG. 5 is a single-line connection diagram showing a conventional example for compensating for reactive power in an AC system. Fluctuations that cause large fluctuations, such as an AC power supply 1 that supplies AC power to a bus bar 2, an arc furnace, or a welding machine. A load 3 and a reactive power compensator 6 for compensating the reactive power generated from the variable load 3 are connected.

母線2の電圧は計器用変圧器5により検出され、変動
負荷3の電流は変流器4で検出される。この検出電圧と
電流とを制御回路7へ入力して、これらから無効電力を
求め、この無効電力に対応して無効電力補償装置6を制
御するのであるが、第5図に示すものはサイリスタ位相
制御リアクトル方式と称されるものであって、制御回路
7で検出した無効電力に対応して、この無効電力補償装
置6のサイリスタスイッチを点弧制御することで、リア
クトル電流を位相制御して無効電力を調整している。
The voltage of the bus 2 is detected by the voltage transformer 5, and the current of the fluctuating load 3 is detected by the current transformer 4. The detected voltage and the current are input to the control circuit 7, the reactive power is obtained from them, and the reactive power compensator 6 is controlled according to this reactive power. The one shown in FIG. 5 is the thyristor phase. This is called a control reactor system, and in response to the reactive power detected by the control circuit 7, the thyristor switch of this reactive power compensator 6 is ignition-controlled to phase-control the reactor current and disable it. Power is being adjusted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、第5図に示す無効電力補償の従来回路で
は、サイリスタスイッチを、交流電源1の周波数の半サ
イクルごとに1回しか点弧制御できないために(たとえ
ば50Hz地区では毎秒100回)、無効電力の補償の分解能
が向上できないこと、また負荷電流と母線電圧とから検
出される無効電力値には、変動負荷3に流れる電流の波
形歪みなどが原因となって大きな誤差を生じるために、
正確な無効電力補償を実施することが困難であるという
大きな不具合がある。さらにサイリスタ位相制御リアク
トル方式による無効電力補償は、無効電力のみの調整で
あることから、負荷の有効電力に不平衡を生じても、こ
れを補償できない不具合も合わせて有する。
By the way, in the conventional circuit for reactive power compensation shown in FIG. 5, the thyristor switch can be controlled to be fired only once for each half cycle of the frequency of the AC power supply 1 (for example, 100 times per second in the 50 Hz area). The resolution of the compensation cannot be improved, and a large error occurs in the reactive power value detected from the load current and the bus voltage due to the waveform distortion of the current flowing through the variable load 3 and the like.
There is a major drawback that it is difficult to perform accurate reactive power compensation. Furthermore, since the reactive power compensation by the thyristor phase control reactor system is an adjustment of only the reactive power, it has a problem that even if the active power of the load is unbalanced, it cannot be compensated.

そこでこの発明の目的は、波形歪みなどによる誤差を
生じることなく、高精度の無効電力補償を行うととも
に、有効電力の不平衡をも補償できるようにすることに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to perform highly accurate reactive power compensation without causing an error due to waveform distortion or the like, and also to compensate for imbalance of active power.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、この発明の制御方式は、
交流系統に接続された負荷の変動に対応して生じる無効
電力を自励式無効電力補償手段により補償することで、
この交流系統の電圧変動を抑制している、無効電力補償
装置の制御方式において、前記交流系統各相の電圧の瞬
時値および各相の負荷電流の瞬時値とを乗算し、該各相
の乗算結果の和から、前記負荷の平均有効電力を求め、
該平均有効電力と各相ごとの基準正弦波形との乗算によ
り得られる各相ごとの有効電力成分の電流波形と、前記
負荷電流瞬時値との差分演算により得られる波形を前記
無効電力補償装置の電流目標値とし、この無効電力補償
装置に流れる電流実際値を前記の電流目標値に一致させ
る制御を各相ごとに行わせるものとする。
In order to achieve the above object, the control system of the present invention is
By compensating the reactive power generated corresponding to the fluctuation of the load connected to the AC system by the self-excited reactive power compensating means,
In the control system of the reactive power compensator that suppresses the voltage fluctuation of the AC system, the instantaneous value of the voltage of each phase of the AC system and the instantaneous value of the load current of each phase are multiplied, and the multiplication of each phase is performed. From the sum of the results, find the average active power of the load,
The current waveform of the active power component for each phase obtained by multiplying the average active power by the reference sine waveform for each phase, and the waveform obtained by the difference calculation between the load current instantaneous value, It is assumed that a current target value is set and control is performed for each phase so that the actual value of the current flowing through the reactive power compensating device matches the current target value.

〔作用〕[Action]

この発明は、母線電圧と負荷電流とから、変動負荷の
各相平均有効電力を検出し、この平均有効電力に各相ご
との基準正弦波形を乗算することで、有効電力成分の電
流瞬時値波形を各相ごとに求め、これと各相ごとに検出
される負荷電流瞬時値波形との差分を演算することで得
られる波形を、母線に接続されている自励式の無効電力
補償装置に流れる電流の目標値とする。そこでこの無効
電力補償装置に流れる電流の実際値が、この電流目標値
に一致するように、当該無効電力補償装置を制御するこ
とで、電流波形歪みなどによる誤差を生じることなく、
高精度の無効電力補償を行うとともに、有効電力も平衡
させるものである。
The present invention detects the average active power of each phase of a fluctuating load from the bus voltage and the load current, and multiplies the average active power by the reference sine waveform of each phase to obtain the instantaneous current value waveform of the active power component. Is calculated for each phase, and the waveform obtained by calculating the difference between this and the load current instantaneous value waveform detected for each phase is the current flowing in the self-excited reactive power compensator connected to the busbar. The target value of. Therefore, by controlling the reactive power compensator so that the actual value of the current flowing through the reactive power compensator matches the current target value, without causing an error due to current waveform distortion or the like,
It not only performs highly accurate reactive power compensation, but also balances active power.

〔実施例〕〔Example〕

第1図は本発明の原理を示した単線結線図であって、
母線2に交流電源1と変動負荷3が接続されているの
は、第5図にて既述の従来例回路の場合と同じである
が、本発明においては、サイリスタ位相制御リアクトル
方式の無効電力補償装置6の代わりに、たとえば強制転
流回路を備えたサイリスタスイッチ(あるいはゲートタ
ーンオフサイリスタのような自己消弧形半導体スイッチ
素子であっても差支えない)とコンデンサとで構成され
た自励式の無効電力補償装置11が母線2に接続されてお
り、この無効電力補償装置11を制御するための制御回路
12には、変流器4で検出される変動負荷3の電流と、計
器用変圧器5で検出される母線電圧、および変流器13で
検出される無効電力補償装置11の電流とが入力されるよ
うになっている。
FIG. 1 is a single line connection diagram showing the principle of the present invention.
The AC power supply 1 and the variable load 3 are connected to the bus bar 2 as in the case of the conventional circuit described above in FIG. 5, but in the present invention, the reactive power of the thyristor phase control reactor method is used. Instead of the compensating device 6, for example, a self-excited invalid device composed of a thyristor switch (or a self-extinguishing type semiconductor switch element such as a gate turn-off thyristor) provided with a forced commutation circuit and a capacitor. A power compensator 11 is connected to the bus 2, and a control circuit for controlling the reactive power compensator 11
The current of the fluctuating load 3 detected by the current transformer 4, the bus voltage detected by the voltage transformer 5 and the current of the reactive power compensating device 11 detected by the current transformer 13 are input to 12. It is supposed to be done.

制御回路12は、入力される母線電圧と負荷電流とから
変動負荷3の有効電力の平均値を演算し、これと基準正
弦波との乗算により有効電力成分の電流波形を演算し、
これと負荷電流との差分演算を行って無効電力補償装置
11に流すべき電流目標値を作成する。さらにこの制御回
路12では、これに入力される当該無効電力補償装置の電
流実際値を、前述の電流目標値に一致させる制御信号を
創成して、この制御信号を無効電力補償装置に与えるよ
うにしている。
The control circuit 12 calculates the average value of the active power of the variable load 3 from the input bus voltage and load current, and calculates the current waveform of the active power component by multiplying this by the reference sine wave,
The reactive power compensator is calculated by calculating the difference between this and the load current.
Create the target current value to be applied to 11. Further, in the control circuit 12, a control signal for making the actual current value of the var compensator input to the control circuit 12 coincide with the above-mentioned current target value is created, and this control signal is given to the var compensator. ing.

第2図は本発明における無効電力補償装置の制御回路
の第1実施例を示したブロック図であって、交流系統が
3相の場合をあらわしている。
FIG. 2 is a block diagram showing a first embodiment of the control circuit of the reactive power compensating device according to the present invention, and shows the case where the AC system has three phases.

相電圧実効値をE、電源角速度をω、時間をtとする
と、母線2のR,S,T各相の電圧eR,eS,eTは下記の
(1),(2),(3)式であらわすことができる。
Assuming that the phase voltage effective value is E, the power source angular velocity is ω, and the time is t, the voltages e R , e S , e T of the R, S, T phases of the bus 2 are as follows (1), (2), ( It can be expressed by equation (3).

一方、変動負荷3に流れる各相電流iR1,iS1,iT1,は、
IR,IS,ITを各相電流の実効値とし、また各相の力率角を
φRSとすると下記の(4),(5),(6)式
となる。
On the other hand, each phase current i R1 , i S1 , i T1 flowing in the variable load 3 is
When I R , I S , and I T are the effective values of each phase current, and the power factor angle of each phase is φ R , φ S , and φ T , the following equations (4), (5), and (6) are obtained. Become.

それ故、掛算器21Rにおいて(1)式に示す電圧eR
(4)式に示す電流iR1とを乗算して変動負荷3のR相
有効電力を算出するのであるが、同様にして掛算器21S,
21Tにより、それぞれ変動負荷3のS相とT相の有効電
力を算出し、これらを加算器22とローパスフイルタ23と
によりリップル分を除去し、(7)式に示す3相平均有
効電力P*を得る。(なおこのときローパスフイルタ23の
ゲインは1/3とする。) この3相有効平均電力P*とR相の基準正弦波とを掛算
器24Rにおいて相互に掛合わすことにより、(8)式に
示すように有効電力成分のR相電流瞬時波形iARを得る
が、同様に掛算器24Sと24Tとにより(9)式と(10)式
に示す有効電力成分のS相とT相電流瞬時波形iASおよ
びiATが得られる。
Therefore, in the multiplier 21R, the voltage e R shown in the equation (1) is multiplied by the current i R1 shown in the equation (4) to calculate the R-phase active power of the variable load 3. 21S,
The 21T calculates the active powers of the S phase and T phase of the variable load 3, respectively, and the ripple component is removed by the adder 22 and the low-pass filter 23, and the three-phase average active power P * shown in the equation (7) is calculated . To get (At this time, the gain of the low-pass filter 23 is 1/3.) By multiplying the three-phase effective average power P * and the R-phase reference sine wave in the multiplier 24R, the R-phase instantaneous current waveform i AR of the active power component is obtained as shown in equation (8). Similarly, by the multipliers 24S and 24T, the S-phase and T-phase current instantaneous waveforms i AS and i AT of the active power components shown in the equations (9) and (10) can be obtained.

この有効電力成分の電流瞬時値と、変動負荷3に流れ
る電流の瞬時値との差分を求めれば、これが無効電力補
償装置11に流すべき電流目標値になることから、前述の
(4),(5),(6)式で求めた電流瞬時値と、この
(8),(9),(10)式で得られる電流瞬時値との差
分を、加算器25R,25S,25Tで演算することにより、下記
の(11),(12),(13)式に示すような各相の電流目
標値iR2 *,iS2 *,iT2 *が得られる。
If the difference between the instantaneous current value of the active power component and the instantaneous value of the current flowing through the fluctuating load 3 is calculated, this becomes the target current value to be passed through the reactive power compensator 11, and therefore the above (4), ( 5) Calculate the difference between the instantaneous current value obtained by the equations (6) and the instantaneous current value obtained by the equations (8), (9), (10) with the adders 25R, 25S, 25T. As a result, current target values i R2 * , i S2 * , i T2 * for each phase are obtained as shown in the following equations (11), (12) and (13).

iR2 *=iR1−iAR ……(11) iS2 *=iS1−iAS ……(12) iT2 *=iT1−iAT ……(13) 変流器13で検出される無効電力補償装置11の電流実際
値iR2,iS2,iT2を上述の電流目標値に一致させるため
に、加算器26R,26S,27Tにおいて両者の偏差を演算し、
この演算結果を電流調節器27R,27S,27Tへ入力させる
と、これらの電流調節器27R,27S,27Tはそれぞれの入力
偏差を零にする制御信号を次段のパルスジェネレータ28
R,28S,28Tへ出力する。よってこれらパルスジェネレー
タ28R,28S,28Tの出力で無効電力補償装置11のサイリス
タスイッチをオン・オフ制御することにより、電流実際
値は電流目標値どおりとなる。すなわちiR2≒iR2 *,iS2
≒iS2 *,iT2≒iT2 *が実現できる。
i R2 * = i R1 -i AR ...... (11) i S2 * = i S1 -i AS ...... (12) i T2 * = i T1 -i AT ...... (13) Detected by current transformer 13 In order to match the actual current values i R2 , i S2 , and i T2 of the reactive power compensator 11 to the above-described current target values, adders 26R, 26S, and 27T calculate the deviation between the two,
When this calculation result is input to the current regulators 27R, 27S, and 27T, these current regulators 27R, 27S, and 27T generate control signals for zeroing the respective input deviations, and the pulse generator 28 of the next stage.
Output to R, 28S, 28T. Therefore, by controlling the on / off of the thyristor switch of the reactive power compensator 11 with the outputs of these pulse generators 28R, 28S, 28T, the actual current value becomes the current target value. That is, i R2 ≈ i R2 * , i S2
≈i S2 * , i T2 ≈i T2 * can be realized.

交流電源1から母線2へ流れる各相の系統電流をそれ
ぞれiR3,iS3,iT3とすると、 となって無効電力は完全に補償され、かつ交流系統には
3相が平衡した有効電力成分の電流だけが流れることに
なる。
If the system currents of each phase flowing from the AC power supply 1 to the bus 2 are i R3 , i S3 , and i T3 , respectively, Therefore, the reactive power is completely compensated, and only the current of the active power component in which the three phases are balanced flows in the AC system.

第3図は第2図に示す第1実施例回路の各部の動作を
あらわしたタイムチャートであって、横軸は電流角速度
ωであらわしているが、第3図(イ)は母線2の各相電
圧波形を、第3図(ロ)は変動負荷3に流れる各相の波
形を、第3図(ハ)は変動負荷3の有効電力を、第3図
(ニ)は各相の基準正弦波形と有効電力成分の電流波形
を、第3図(ホ)は各相の電流目標値の波形を、第3図
(ヘ)は各相の系統電流の波形を、それぞれがあらわし
ている。
FIG. 3 is a time chart showing the operation of each part of the circuit of the first embodiment shown in FIG. 2, and the horizontal axis shows the current angular velocity ω, but FIG. The phase voltage waveform is shown in Fig. 3 (b), the waveform of each phase flowing through the variable load 3, Fig. 3 (c) is the active power of the variable load 3, and Fig. 3 (d) is the reference sine of each phase. The waveform and the current waveform of the active power component are shown in FIG. 3 (e), which shows the current target value waveform of each phase, and FIG. 3 (f) which shows the system current waveform of each phase.

第4図は本発明における無効電力補償装置の制御回路
の第2実施例を示したブロック図であるが、この第4図
における掛算器21R,21S,21Tと、加算器22と、掛算器24
R,24S,24Tと、加算器25R,25S,25T,26R,26S,26Tと、電流
調節器27R,27S,27Tならびにパルスジェネレータ28R,28
S,28Tは第2図において既述の第1実施例回路のもの
と、その名称・用途・機能は同じであるから、これらの
説明は省略する。
FIG. 4 is a block diagram showing a second embodiment of the control circuit of the reactive power compensator according to the present invention. The multipliers 21R, 21S, 21T, the adder 22 and the multiplier 24 in FIG.
R, 24S, 24T, adder 25R, 25S, 25T, 26R, 26S, 26T, current regulator 27R, 27S, 27T and pulse generator 28R, 28
Since S and 28T have the same names, uses, and functions as those of the circuit of the first embodiment described above in FIG. 2, their description will be omitted.

この第4図に示す第2実施例回路では、ローパスフイ
ルタ23によって3相有効電力平均値P*を求める代わり
に、加算器22で得られた有効電力Pの値を積分器31R,31
S,31Tにより1サイクルあるいは半サイクルなどの所定
期間積分演算を行い、その演算最終値をサンプルホール
ド回路32R,32S,32Tにおいてサンプリングさせることに
より平均値演算を行って、各相ごとの有効電力平均値P*
R,P* S,P* を得るようにしているのであって、これ以降
の動作は第1実施例回路の場合と同じである。
In the second embodiment circuit shown in FIG. 4, instead of obtaining the three-phase active power average value P * by the low pass filter 23, the value of the active power P obtained by the adder 22 is used as an integrator 31R, 31.
S, 31T performs integral calculation for a predetermined period such as 1 cycle or half cycle, and the final value of the calculation is sampled by sample hold circuits 32R, 32S, 32T to calculate the average value and average the active power for each phase. Value P *
Since R , P * S , and P * T are obtained, the operation thereafter is the same as that of the first embodiment circuit.

〔発明の効果〕〔The invention's effect〕

この発明によれば、変動の大なる負荷が接続されてい
る交流系統に、自励式の無効電力補償装置を接続し、こ
の変動負荷の有効電力の各相平均値と基準正弦波形との
乗算により得られる各相の有効電力成分の電流瞬時値
と、負荷電流瞬時値との差分を演算し、この差分演算結
果を前記無効電力補償装置に流れる電流の目標値にし、
この無効電力補償装置に流れる電流実際値がこの電流目
標値と一致するような制御を行わせるようにしているの
で、電流波形に歪みを生じても誤差を生じることなく、
高精度で無効電力の補償を行うので、当該交流系統の電
圧変動を抑制できる効果を発揮するとともに、各相ごと
の有効電力に不平衡を生じるのを防止できる効果も合わ
せて有する。
According to the present invention, a self-excited reactive power compensator is connected to an AC system to which a load with large fluctuations is connected, and by multiplying the average value of each phase of the active power of this fluctuating load by a reference sine waveform. The current instantaneous value of the active power component of each phase obtained, and the difference between the load current instantaneous value is calculated, the difference calculation result as the target value of the current flowing through the reactive power compensator,
Since the control is performed so that the actual value of the current flowing through this reactive power compensator matches the current target value, no error occurs even if the current waveform is distorted,
Since the reactive power is compensated with high accuracy, the voltage fluctuation of the AC system can be suppressed, and the active power of each phase can be prevented from being unbalanced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を示した単線結線図、第2図は本
発明における無効電力補償装置の制御回路の第1実施例
を示したブロック図、第3図は第2図に示す第1実施例
回路の各部の動作をあらわしたダイヤグラム、第4図は
本発明における無効電力補償装置の制御回路の第2実施
例を示したブロック図であり、第5図は交流系統の無効
電力を補償する従来例を示した単線結線図である。 1……交流電源、2……母線、3……変動負荷、4,13…
…変流器、5……計器用変圧器、6,11……無効電力補償
装置、7,12……制御回路、21R,21S,21T,24R,24S,24T…
…掛算器、22,25R,25S,25T,26R,26S,26T……加算器、23
……ローパスフイルタ、27R,27S,27T……電流調節器、2
8R,28S,28T……パルスジェネレータ、31R,31S,31T……
積分器、32R,32S,32T……サンプルホールド回路。
FIG. 1 is a single line connection diagram showing the principle of the present invention, FIG. 2 is a block diagram showing a first embodiment of a control circuit of a reactive power compensating device according to the present invention, and FIG. 3 is a diagram showing in FIG. FIG. 4 is a block diagram showing a second embodiment of the control circuit of the reactive power compensating apparatus according to the present invention, and FIG. 5 shows the reactive power of the AC system. It is a single-line connection diagram showing a conventional example for compensation. 1 ... AC power supply, 2 ... Busbar, 3 ... Variable load, 4,13 ...
… Current transformer, 5 …… Instrument transformer, 6,11 …… Reactive power compensator, 7,12 …… Control circuit, 21R, 21S, 21T, 24R, 24S, 24T…
… Multiplier, 22,25R, 25S, 25T, 26R, 26S, 26T …… Adder, 23
...... Low pass filter, 27R, 27S, 27T ...... Current regulator, 2
8R, 28S, 28T …… Pulse generator, 31R, 31S, 31T ……
Integrator, 32R, 32S, 32T ... Sample and hold circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流系統に接続された負荷の変動に対応し
て生じる無効電力を自励式無効電力補償手段により補償
することで、この交流系統の電圧変動を抑制している、
無効電力補償装置の制御方式において、 前記交流系統各相の電圧の瞬時値および各相の負荷電流
の瞬時値とを乗算し、該各相の乗算結果の和から、前記
負荷の平均有効電力を求め、 該平均有効電力と各相ごとの基準正弦波形との乗算によ
り得られる各相ごとの有効電力成分の電流波形と、前記
負荷電流瞬時値との差分演算により得られる波形を前記
無効電力補償装置の電流目標値とし、 この無効電力補償装置に流れる電流実際値を前記の電流
目標値に一致させる制御を各相ごとに行わせることを特
徴とする無効電力補償装置の制御方式。
1. A self-excited reactive power compensating means compensates the reactive power generated in response to the fluctuation of a load connected to the AC system, thereby suppressing the voltage fluctuation of the AC system.
In the control system of the reactive power compensator, the instantaneous value of the voltage of each phase of the AC system and the instantaneous value of the load current of each phase are multiplied, and from the sum of the multiplication results of each phase, the average active power of the load is calculated. Then, the waveform obtained by calculating the difference between the current waveform of the active power component for each phase obtained by multiplying the average active power by the reference sine waveform for each phase and the load current instantaneous value is used as the reactive power compensation. A control method for a reactive power compensating device, characterized in that a control is performed for each phase so that a current target value of the device is set, and an actual value of a current flowing through the reactive power compensating device is made to match the current target value.
JP62312569A 1987-12-10 1987-12-10 Control system of reactive power compensator Expired - Lifetime JPH0833784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312569A JPH0833784B2 (en) 1987-12-10 1987-12-10 Control system of reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312569A JPH0833784B2 (en) 1987-12-10 1987-12-10 Control system of reactive power compensator

Publications (2)

Publication Number Publication Date
JPH01152518A JPH01152518A (en) 1989-06-15
JPH0833784B2 true JPH0833784B2 (en) 1996-03-29

Family

ID=18030797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312569A Expired - Lifetime JPH0833784B2 (en) 1987-12-10 1987-12-10 Control system of reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0833784B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418615A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Manufacture of reactive power compensator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125416A (en) * 1985-11-26 1987-06-06 Res Dev Corp Of Japan Compensating device for instantaneous reactive and active power

Also Published As

Publication number Publication date
JPH01152518A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
US5212630A (en) Parallel inverter system
KR960000802B1 (en) Parallel operation system of ac output inverters
US4698581A (en) Reactive power compensation apparatus
JPH01303060A (en) Parallel operation equipment for ac output converter
US5065304A (en) Controller for AC power converter
JPH06233464A (en) Apparatus for suppressing voltage fluctuations and harmonics
JP2708648B2 (en) Parallel operation control device
JPH0833784B2 (en) Control system of reactive power compensator
JP2924601B2 (en) Power converter
JPH0515069A (en) Parallel operation control device of three-phase ac output converter
JPH01270791A (en) Speed controller for induction motor
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JPS6035890B2 (en) circuit constant generator
JPH05184154A (en) Parallel operation controller for ac output converter
JPH0744841B2 (en) Power converter control circuit
JPH08140268A (en) Controller of reactive power compensator
JP3252634B2 (en) Inverter circuit output voltage control method
JP2730383B2 (en) Parallel operation control device for AC output converter
JPH0586566B2 (en)
JPH0477550B2 (en)
JPH07107656B2 (en) Reactive power regulator
JPH0682305B2 (en) Reactive power compensator
JPS6295618A (en) Reactive power compensating device
JPH08149824A (en) Parallel operation device of inverter
JPH02193570A (en) Control of inverter