JPH01152518A - Control system for reactive power compensator - Google Patents

Control system for reactive power compensator

Info

Publication number
JPH01152518A
JPH01152518A JP62312569A JP31256987A JPH01152518A JP H01152518 A JPH01152518 A JP H01152518A JP 62312569 A JP62312569 A JP 62312569A JP 31256987 A JP31256987 A JP 31256987A JP H01152518 A JPH01152518 A JP H01152518A
Authority
JP
Japan
Prior art keywords
current
reactive power
phase
value
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62312569A
Other languages
Japanese (ja)
Other versions
JPH0833784B2 (en
Inventor
Shigeo Konishi
茂雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62312569A priority Critical patent/JPH0833784B2/en
Publication of JPH01152518A publication Critical patent/JPH01152518A/en
Publication of JPH0833784B2 publication Critical patent/JPH0833784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To attain the reactive power compensation of high accuracy by preparing a current aimed value to flow to a reactive power compensator and controlling so that a current actual value to flow to the reactive power compensator may correspond to the current aimed value. CONSTITUTION:The current of a fluctuating load 3 detected by a current transformer 4, a bus voltage detected by a potential transformer 5 and the current of a reactive power compensator 11 detected by a current transformer 13 are inputted to a control circuit 12. The circuit 12 operates the average of the effective power of the load 3 from the bus voltage and the load current, operates the current waveform of an effective power component by the multiplication of the average and a reference sine wave, practices the difference operation of the current waveform and a load current and prepares a current aimed value to flow to the device 11. Moreover, in the circuit 12, a control signal to correspond the current actual value of the inputted device 11 to the current aimed value is generated and given to the device 11. Consequently, even when a deformation is generated to the power waveform, an error is not generated and the reactive power compensation of high accuracy can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、交流系統に接続されている変動負荷が発生
する無効電力を補償することで、この交流系統の電圧変
動を抑制する、静止形の無効電力補償装置の制御方式に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a static type system that suppresses voltage fluctuations in an AC system by compensating for reactive power generated by a fluctuating load connected to the AC system. The present invention relates to a control method for a reactive power compensator.

〔従来の技術〕[Conventional technology]

第5i!lは交流系統の無効電力を補償する従来例を示
した単線結線図であって、母線2には交流電力を供給す
る交流電源1、アーク炉あるいは溶接機のように大きな
変動を生じる変動負荷3と、この変動負荷3から生じる
無効電力を補償するための無効電力補償装N6とが接続
されている。
5th i! 1 is a single-line diagram showing a conventional example of compensating reactive power in an AC system, in which a bus 2 includes an AC power source 1 that supplies AC power, and a variable load 3 that causes large fluctuations such as an arc furnace or a welding machine. and a reactive power compensator N6 for compensating the reactive power generated from the variable load 3.

母線2の電圧は計器用変圧器5により検出され、変動負
荷3の電流は変流器4で検出される。この検出電圧と電
流とを制御回路7へ人力して、これらから無効電力を求
め、この無効電力に対応して無効電力補償装置6を制御
するのであるが、第5図に示すものはサイリスタ位相制
御リアクトル方式と称されるものであって、制御回路7
で検出した無効電力に対応して、この無効電力補償装置
6のサイリスクスイッチを点弧制御することで、リアク
トル電流を位相制御して無効電力を調整している。
The voltage of the bus 2 is detected by a potential transformer 5, and the current of the variable load 3 is detected by a current transformer 4. The detected voltage and current are manually input to the control circuit 7 to obtain reactive power from them, and the reactive power compensator 6 is controlled in accordance with this reactive power. This is called a control reactor system, and the control circuit 7
In response to the detected reactive power, the reactive power is adjusted by controlling the phase of the reactor current by controlling the firing of the si-risk switch of the reactive power compensator 6.

〔発明が解決しようとする問題点] ところで、第5図に示す無効電力補償の従来回路では、
サイリスクスイッチを、交流電源1の周波数の半サイク
ルごとに1回しか点弧制御できないために(たとえば5
0 Hz地区では毎秒100回)、無効電力の補償の分
解能が向上できないこと、また負荷電流と母線電圧とか
ら検出される無効電力値には、変動負荷3に流れる電流
の波形歪みなどが原因となって大きな誤差を生じるため
に、正確な無効電力補償を実施することが困難であると
いう大きな不具合がある。さらにサイリスク位相制御リ
アクトル方式による無効電力補償は、無効電力のみの調
整であることから、負荷の有効型−力に不平衡を生じて
も、これを補償できない不具合も合わせて有する。
[Problems to be solved by the invention] By the way, in the conventional reactive power compensation circuit shown in FIG.
Because the thyrisk switch can only be controlled to fire once every half cycle of the frequency of the AC power supply 1 (for example, 5
(100 times per second in the 0 Hz area), the resolution of reactive power compensation cannot be improved, and the reactive power value detected from the load current and bus voltage may be affected by waveform distortion of the current flowing through the variable load 3. This causes a large error, so there is a major problem in that it is difficult to perform accurate reactive power compensation. Furthermore, since the reactive power compensation using the SIRISK phase control reactor system adjusts only the reactive power, it also has the disadvantage that even if an unbalance occurs in the active force of the load, it cannot compensate for this.

そこでこの発明の目的は、波形歪みなどによる誤差を生
じることなく、高精度の無効電力補償を行うとともに、
有効電力の不平衡をも補償できるようにすることにある
Therefore, the purpose of this invention is to perform highly accurate reactive power compensation without causing errors due to waveform distortion, etc.
The object is to be able to compensate for the unbalance of active power as well.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、この発明の制御方式は、交
流系統に接続された負荷の変動に対応して生じる無効電
力を自励式無効電力補償手段により補償することで、こ
の交流系統の電圧変動を抑制している、無効電力補償装
置の制御方式において、前記交流系統の電圧および負荷
電流とから、前記負荷の平均有効電力を求め、各相ごと
の基準正弦波形とこの平均有効電力との乗算により得ら
れる各相ごとの有効電力成分の電流波形と、前記負荷電
流瞬時値との差分演算により得られる波形を前記無効電
力補償装置の電流目標値とし、この無効電力補償装置に
流れる電流実際値を前記の電流目標値に一致させる制御
を各相ごとに行わせるものとする。
In order to achieve the above object, the control method of the present invention compensates for the voltage fluctuations in the AC system by compensating for the reactive power generated in response to the fluctuations in the load connected to the AC system using a self-excited reactive power compensation means. In a control method of a reactive power compensator that suppresses The waveform obtained by calculating the difference between the current waveform of the active power component for each phase obtained by and the instantaneous value of the load current is set as the current target value of the reactive power compensator, and the actual value of the current flowing through the reactive power compensator is set as the current target value of the reactive power compensator. It is assumed that control is performed for each phase to make the current match the current target value.

[作用] この発明は、母線電圧と負荷電流とから、変動負荷の各
相平均有効電力を検出し、この平均有効電力に各相ごと
の基準正弦波形を乗算することで、有効電力成分の電流
瞬時値波形を各相ごとに求め、これと各相ごとに検出さ
れる負荷電流瞬時値波形との差分を演算することで得ら
れる波形を、母線に接続されている自励式の無効電力補
償装置に流れる電流の目標値とする。そこでこの無効電
力補償装置に流れる電流の実際値が、この電流目標値に
一致するように、当該無効電力補償装置を制御すること
で、電流波形歪みなどによる誤差を生じることなく、高
精度の無効電力補償を行うとともに、有効電力も平衡さ
せるものである。
[Operation] This invention detects the average active power of each phase of a fluctuating load from the bus voltage and load current, and multiplies this average active power by a reference sine waveform for each phase to determine the current of the active power component. A self-excited reactive power compensator connected to the bus bar calculates the instantaneous value waveform for each phase and calculates the difference between this and the load current instantaneous value waveform detected for each phase. The target value of the current flowing through the Therefore, by controlling the reactive power compensator so that the actual value of the current flowing through the reactive power compensator matches this current target value, high-precision reactive power It performs power compensation and also balances the active power.

〔実施例〕〔Example〕

第1図は本発明の原理を示した単線結線図であって、母
線2に交流型tA1と変動負荷3が接続されているのは
、第5図にて既述の従来例回路の場合と同じであるが、
本発明においては、サイリスク位相制御リアクトル方式
の無効電力補償装置6の代わりに、たとえば強制転流回
路を備えたサイリスクスイッチ(あるいはゲートターン
オフサイリスタのような自己消弧形半導体スイッチ素子
であっても差支えない)とコンデンサとで構成された自
励式の無効電力補償装置11が母線2に接続されており
、この無効電力補償装置11を制御するだめの制御回路
12には、変流器4で検出される変動負荷3の電流と、
計器用変圧器5で検出される母線電圧、および変流器1
3で検出される無効電力補償装置11の電流とが入力さ
れるようになっている。
FIG. 1 is a single line diagram showing the principle of the present invention, and the connection of the AC type tA1 and the variable load 3 to the bus 2 is different from the conventional circuit described in FIG. The same, but
In the present invention, instead of the reactive power compensator 6 of the Thyrisk phase control reactor type, for example, a Thyrisk switch equipped with a forced commutation circuit (or a self-extinguishing semiconductor switching element such as a gate turn-off thyristor) may be used. A self-excited reactive power compensator 11 composed of a capacitor and a capacitor is connected to the bus 2, and a control circuit 12 for controlling the reactive power compensator 11 includes a current transformer 4 that detects The current of the variable load 3 to be
Bus voltage detected by instrument transformer 5 and current transformer 1
The current of the reactive power compensator 11 detected at step 3 is inputted.

制御回路12は、入力される母線電圧と負荷電流とから
変動負荷3の有効電力の平均値を演算し、これと基準正
弦波との乗算により有効電力成分の電流波形を演算し、
これと負荷電流との差分演算を行って無効電力補償装置
11に流すべき電流目標値を作成する。さらにこの制御
回路12では、これに入力される当該無効電力補償装置
の電流実際値を、前述の電流目標値に一致させる制御信
号を創成して、この制御信号を無効電力補償装置に与え
るようにしている。
The control circuit 12 calculates the average value of the active power of the variable load 3 from the input bus voltage and load current, calculates the current waveform of the active power component by multiplying this by a reference sine wave,
A difference calculation between this and the load current is performed to create a target value of current to be passed through the reactive power compensator 11. Furthermore, this control circuit 12 generates a control signal that makes the actual current value of the reactive power compensator inputted therein coincide with the above-mentioned current target value, and supplies this control signal to the reactive power compensator. ing.

第2図は本発明における無効電力補償装置の制御回路の
第1実施例を示したブロック図であって、交流系統が3
相の場合をあられしている。
FIG. 2 is a block diagram showing a first embodiment of a control circuit for a reactive power compensator according to the present invention, in which an AC system has three
It is raining the case of the phase.

相電圧実効値をE、電源角速度をω、時間をtとすると
、母線2のR,S、T各相の電圧eえ。
If the effective value of the phase voltage is E, the angular velocity of the power source is ω, and the time is t, then the voltage of each phase of R, S, and T of bus 2 is e.

el、eアは下記の(1)、 (2)、 (3)式であ
られすことができる。
el and ea can be calculated using the following formulas (1), (2), and (3).

el =r丁・E −s i n ωt =−−−−−
−−−−−−−−−−−−−−−(1)es””F丁・
E −5in  ((1) t −g)“−(2)el
 =(T−−E −5in  ((11t −W )−
(3)一方、変動負荷3に流れる各相電流111+  
til+jul+ は、■い、Is、Itを各相電流の
実効値とし、また各相の力率角をφえ、φ8.φ丁とす
ると下記の(4)、 (5)、 (6)式となる。
el = r d・E −s in ωt =−−−−−
−−−−−−−−−−−−−−(1)es””F
E −5in ((1) t −g) “−(2) el
=(T--E-5in ((11t-W)-
(3) On the other hand, each phase current 111+ flowing through variable load 3
til+jul+ is (■), Is, It is the effective value of each phase current, and the power factor angle of each phase is φ, and φ8. When φd is assumed, the following equations (4), (5), and (6) are obtained.

i +++ = 汀・I a  −5tn(ωL−φm
 ) −−−−−−−(4)is+=ff ・Is  
・5in(ωt     K−φg )−−−−−−・
・・・・−・・・・−(5)i tI=汀・I T  
・5in(ωt−□π−φT)−・−一−−−−・−・
−・−(6) それ故、掛算器21Rにおいて(1)式に示す電圧e。
i +++ = 汀・I a −5tn(ωL−φm
) −−−−−−−(4) is+=ff ・Is
・5in(ωt K-φg )-----
...
・5in(ωt−□π−φT)−・−1−−−−・−・
-.-(6) Therefore, the voltage e shown in equation (1) in the multiplier 21R.

と(4)式に示す電流i□とを乗算して変動負荷3のR
相有効電力を算出するのであるが、同様にして掛算器2
1S、21Tにより、それぞれ変動負荷3のS相とT相
の有効電力を算出し、これらを加算器22 とローパス
フィルタ23 とによりリップル分を除去し、(7)式
に示す3相平均有効電力P1を得る。(なおこのときロ
ーパスフィルタ23のゲインは1/3とする。) P” =     (E−1++  ・cos  φ1
+E°1s−cos  φ。
R of variable load 3 is obtained by multiplying by the current i□ shown in equation (4).
To calculate the phase active power, multiplier 2
1S and 21T calculate the active powers of the S phase and T phase of the variable load 3, respectively, and remove ripples from these using the adder 22 and the low-pass filter 23 to obtain the three-phase average active power shown in equation (7). Get P1. (At this time, the gain of the low-pass filter 23 is set to 1/3.) P" = (E-1++ ・cos φ1
+E°1s-cos φ.

+E−17・cos  φT ) −−−(7)この3
相有効平均電力P0とR相の基準正弦波とを掛算器24
Hにおいて相互に掛合わすことにより、(8)式に示す
ように有効電力成分のR相電流瞬時波形i、を得るが、
同様に掛算器24Sと24Tとにより(9)式と0m式
に示す有効電力成分のS相とT相電流瞬時波形iAsお
よびiA?が得られる。
+E-17・cos φT) ---(7) This 3
A multiplier 24 multiplies the phase effective average power P0 and the reference sine wave of the R phase.
By multiplying each other in H, the R phase current instantaneous waveform i of the active power component is obtained as shown in equation (8).
Similarly, multipliers 24S and 24T are used to form instantaneous S-phase and T-phase current waveforms iAs and iA? of the active power components shown in equations (9) and 0m? is obtained.

(T −p 0 i 4 @ x       s i n ωt  −
−−−−−−−−−−−−−−−=−−−(8)ff 
 −P ”            4この有効電力成
分の電流瞬時値と、変動負荷3に流れる電流の瞬時値と
の差分を求めれば、これが無効電力補償装置11に流す
べき電流目標値になることから、前述の(4)、 (5
)、 (6)式で求めた電流瞬時値と、この(8)、 
(9)、 0ff1式で得られる電流瞬時値との差分を
、加算器25R,25S、25Tで演算することにより
、下記の(IQ、 021.09式に示すような各相の
電流目標値ixz。+  ’  ”+  ITt”が得
らsz れる。
(T −p 0 i 4 @ x sin ωt −
−−−−−−−−−−−−−−−=−−−(8) ff
-P'' 4 If we calculate the difference between the instantaneous value of the current of this active power component and the instantaneous value of the current flowing through the variable load 3, this becomes the target value of the current that should be passed through the reactive power compensator 11. 4), (5
), the instantaneous current value obtained by equation (6), and this (8),
(9) By calculating the difference with the instantaneous current value obtained by the 0ff1 formula using the adders 25R, 25S, and 25T, the current target value ixz of each phase as shown in the following (IQ, 021.09 formula) is calculated. .+'"+ITt" is obtained.

18□傘=f+++fAえ −・・−一−−−−−−−
−−−・・−・−−−−−−・−・−・・−・・・・θ
!)1 sz” = is+  t As  ”−−−
−−−−・−・・−−−−−−−・・−・−・−・−・
−・−・−Q2)f T t ” = t t +  
j s t  ”−’−’−−−−−−−”’−−−”
−’−’−−−−−−−−−−−−”−’−’−031
変流器13で検出される無効電力補償装置11の電流実
際値i。r  ’ !!+  I TZを上述の電流目
標値に一致させるために、加算器26R,26S、27
Tにおいて両者の偏差を演算し、この演算結果を電流調
節器27R,275,27Tへ人力させると、これらの
電流調節器27R,27S、27Tはそれぞれの入力偏
差を零にする制御信号を次段のパルスジェネレータ28
R,28S、28Tへ出力する。よってこれらパルスジ
ェネレータ28R,28S、28Tの出力で無効電力補
償装置11のサイリスクスイッチをオン・オフ制御する
ことにより、電流実際値は電流目標値どおりとなる。す
なわちi@tζi、げ。
18□Umbrella=f+++fAe −・・−1−−−−−−−
−−−・・−・−−−−−−・−・−・・−・・・・θ
! )1 sz"=is+tAs"---
−−−−・−・・−−−−−−−・・−・−・−・−・
−・−・−Q2) f T t ” = t t +
j s t ”−’−’−−−−−−−”’−−−”
−'−'−−−−−−−−−−−−”−'−'−031
Actual current value i of the reactive power compensator 11 detected by the current transformer 13. r'! ! + I TZ to match the above-mentioned current target value, adders 26R, 26S, 27
When the deviation between the two is calculated at T and the calculation result is manually input to the current regulators 27R, 275, and 27T, these current regulators 27R, 27S, and 27T transmit control signals to the next stage to make their respective input deviations zero. pulse generator 28
Output to R, 28S, 28T. Therefore, by controlling the sirisk switch of the reactive power compensator 11 on and off using the outputs of these pulse generators 28R, 28S, and 28T, the actual current value matches the current target value. In other words, i@tζi, ge.

i、ζts*” 1 172ζitz  が実現できる
i,ζts*” 1 172ζitz can be realized.

交流ili源1から母線2へ流れる各相の系統電流をそ
れぞれ1131 1 ms+  i tsとすると、j
si=1st  15g 1tsIIIII It+    Itsとなって無効
電力は完全に補償され、かつ交流系統には3相が平衡し
た有効電力成分の電流だけが流れることになる。
If the system current of each phase flowing from the AC ili source 1 to the bus 2 is 1131 1 ms+ i ts, then j
si=1st 15g 1tsIII It+ Its, the reactive power is completely compensated, and only the current of the active power component in which the three phases are balanced flows through the AC system.

第3図は第2図に示す第1実施例回路の各部の動作をあ
られしたタイムチャートであって、横軸は電流角速度ω
であられしているが、第3図(イ)は母線2の各相電圧
波形を、第3図(ロ)は変動負荷3に流れる各相の波形
を、第3図(ハ)は変動負荷3の有効電力を、第3図(
ニ)は各相の店準正弦波形と有効電力成分の電流波形を
、第3図(ホ)は各相の電流目標値の波形を、第3図(
へ)は各相の系統電流の波形を、それぞれがあられして
いる。
FIG. 3 is a time chart showing the operation of each part of the circuit of the first embodiment shown in FIG. 2, and the horizontal axis is the current angular velocity ω.
However, Figure 3 (A) shows the voltage waveform of each phase of bus 2, Figure 3 (B) shows the waveform of each phase flowing to variable load 3, and Figure 3 (C) shows the voltage waveform of each phase flowing to variable load 3. The effective power of 3 is shown in Figure 3 (
d) shows the quasi-sine waveform of each phase and the current waveform of the active power component, Fig. 3(e) shows the waveform of the current target value of each phase, and Fig. 3(e) shows the waveform of the current target value of each phase.
) shows the waveforms of the grid current for each phase.

第4図は本発明における無効電力補償装置の制御回路の
第2実施例を示したブロック図であるが、この第4図に
おける掛算器21R,21S、2LTと、加算器22と
、掛算器24R,24S、24Tと、加算器25R,2
5S、25T、26R,263,26Tと、電流調節器
27R,27S、27Tならびにパルスジェネレータ2
8R,28S、2BTは第2図において既述の第1実施
例回路のものと、その名称・用途・機能は同じであるか
ら、これらの説明は省略する。
FIG. 4 is a block diagram showing a second embodiment of the control circuit of the reactive power compensator according to the present invention. , 24S, 24T and adders 25R, 2
5S, 25T, 26R, 263, 26T, current regulators 27R, 27S, 27T and pulse generator 2
8R, 28S, and 2BT have the same names, uses, and functions as those of the circuit of the first embodiment already described in FIG. 2, so their explanations will be omitted.

この第4図に示す第2実施例回路では、ローパスフィル
タ23によって3相有効電力平均値P”を求める代わり
に、加算器22で得られた有効電力Pの値を積分器31
R,313,31Tにより1サイクルあるいは半サイク
ルなどの所定期間積分演算を行い、その演算最終値をサ
ンプルホールド回路32R、32S 、 32”rにお
いてサンプリングさせることにより平均値演算を行って
、各相ごとの有効電力平均値P ”II+  P ”S
+  P ”Tを得るようにしているのであって、これ
以降の動作は第1実施例回路の場合と同じである。
In the second embodiment circuit shown in FIG. 4, instead of obtaining the three-phase active power average value P'' by the low-pass filter 23, the value of the active power P obtained by the adder 22 is used by the integrator 31.
R, 313, 31T perform integral calculation for a predetermined period such as one cycle or half cycle, and the final value of the calculation is sampled in sample hold circuits 32R, 32S, 32"r to perform average value calculation. The average value of active power P ``II+ P ''S
+P''T is obtained, and the subsequent operations are the same as in the first embodiment circuit.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、変動の大なる負荷が接続されている
交流系統に、自励式の無効電力補償装置を接続し、この
変動負荷の有効電力の各相平均値と基準正弦波形との乗
算により得られる各相の有効電力成分の電流瞬時値と、
負荷電流瞬時値との差分を演算し、この差分演算結果を
前記無効電力補償装置に流れる電流の目標値にし、この
無効電力補償装置に流れる電流実際値がこの電流目標値
と一敗するような制御を行わせるようにしているので、
電流波形に歪みを生じても誤差を生じることなく、高精
度で無効電力の補償を行うので、当該交流系統の電圧変
動を抑制できる効果を発揮するとともに、各相ごとの有
効電力に不平衡を生じるのを防止できる効果も合わせて
有する。
According to this invention, a self-excited reactive power compensator is connected to an AC system to which a highly fluctuating load is connected, and the multiplication of the average value of each phase of the active power of this fluctuating load by a reference sine waveform is performed. The obtained instantaneous current value of the active power component of each phase,
Calculate the difference with the instantaneous value of the load current, use this difference calculation result as the target value of the current flowing through the reactive power compensator, and set the current value such that the actual value of the current flowing through the reactive power compensator is one match with this current target value. I'm trying to control it, so
Since it compensates for reactive power with high precision without causing errors even if the current waveform is distorted, it has the effect of suppressing voltage fluctuations in the AC system, and also eliminates unbalance in the active power of each phase. It also has the effect of preventing this from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示した単線結線図、第2図は本
発明における無効電力補償装置の制御回路の第1実施例
を示したブロック図、第3図は第2図に示す第1実施例
回路の各部の動作をあられしたダイヤグラム、第4図は
本発明における無効電力補償装置の制御回路の第2実施
例を示したブロック図であり、第5図は交流系統の無効
電力を補償する従来例を示した単線結線図である。 1・・・交流電源、2・・・母線、3・・・変動負荷、
4゜13・・・変流器、5・・・計器用変圧器、6.1
1・・・無効電力補償装置、7.12・・・制御回路、
21R,213゜21T、24R,24S、24T・・
・掛算器、22.25R。 25S、25T、26R,26S、26T・・・加算器
、23・・・ローパスフィルタ、27R,27S、27
T・・・電流調節器、28R,28S、28T・・・パ
ルスジェネレータ、31R231S、31T・・・積分
器、32R、32S 、 32T・・・サンプルホール
ド回路。 ■ 1 図 第 3 図 第4 図
FIG. 1 is a single line diagram showing the principle of the present invention, FIG. 2 is a block diagram showing a first embodiment of a control circuit for a reactive power compensator according to the present invention, and FIG. FIG. 4 is a block diagram showing the operation of each part of the circuit of the first embodiment, FIG. 4 is a block diagram showing the second embodiment of the control circuit of the reactive power compensator according to the present invention, and FIG. FIG. 2 is a single-line diagram showing a conventional example of compensation. 1...AC power supply, 2...bus bar, 3...variable load,
4゜13... Current transformer, 5... Instrument transformer, 6.1
1... Reactive power compensator, 7.12... Control circuit,
21R, 213° 21T, 24R, 24S, 24T...
・Multiplier, 22.25R. 25S, 25T, 26R, 26S, 26T...Adder, 23...Low pass filter, 27R, 27S, 27
T... Current regulator, 28R, 28S, 28T... Pulse generator, 31R231S, 31T... Integrator, 32R, 32S, 32T... Sample hold circuit. ■ 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)交流系統に接続された負荷の変動に対応して生じる
無効電力を自励式無効電力補償手段により補償すること
で、この交流系統の電圧変動を抑制している、無効電力
補償装置の制御方式において、前記交流系統の電圧およ
び負荷電流とから、前記負荷の平均有効電力を求め、各
相ごとの基準正弦波形とこの平均有効電力との乗算によ
り得られる各相ごとの有効電力成分の電流波形と、前記
負荷電流瞬時値との差分演算により得られる波形を前記
無効電力補償装置の電流目標値とし、この無効電力補償
装置に流れる電流実際値を前記の電流目標値に一致させ
る制御を各相ごとに行わせることを特徴とする無効電力
補償装置の制御方式。
1) A control method for a reactive power compensator that suppresses voltage fluctuations in an AC system by compensating the reactive power generated in response to fluctuations in the load connected to the AC system using a self-excited reactive power compensation means. , the average active power of the load is determined from the voltage and load current of the AC system, and the current waveform of the active power component for each phase is obtained by multiplying the reference sine waveform for each phase by this average active power. The waveform obtained by calculating the difference between the current value and the instantaneous load current value is set as the current target value of the reactive power compensator, and control is performed for each phase to make the actual value of the current flowing through the reactive power compensator match the current target value. A control method for a reactive power compensator, characterized in that the control is performed at each time.
JP62312569A 1987-12-10 1987-12-10 Control system of reactive power compensator Expired - Lifetime JPH0833784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312569A JPH0833784B2 (en) 1987-12-10 1987-12-10 Control system of reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312569A JPH0833784B2 (en) 1987-12-10 1987-12-10 Control system of reactive power compensator

Publications (2)

Publication Number Publication Date
JPH01152518A true JPH01152518A (en) 1989-06-15
JPH0833784B2 JPH0833784B2 (en) 1996-03-29

Family

ID=18030797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312569A Expired - Lifetime JPH0833784B2 (en) 1987-12-10 1987-12-10 Control system of reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0833784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418615A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Manufacture of reactive power compensator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125416A (en) * 1985-11-26 1987-06-06 Res Dev Corp Of Japan Compensating device for instantaneous reactive and active power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125416A (en) * 1985-11-26 1987-06-06 Res Dev Corp Of Japan Compensating device for instantaneous reactive and active power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418615A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Manufacture of reactive power compensator

Also Published As

Publication number Publication date
JPH0833784B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US5808462A (en) Apparatus for detecting the amplitude and phase of an a.c. signal
US5065304A (en) Controller for AC power converter
JPH06233464A (en) Apparatus for suppressing voltage fluctuations and harmonics
JPH01152518A (en) Control system for reactive power compensator
JP2781602B2 (en) Power converter control device and system thereof
JPH0775342A (en) Power converter
JPS6035890B2 (en) circuit constant generator
JPS636611A (en) Controller for compensation of reactive power
JPH0625951B2 (en) Reactive power compensator
JPH01194870A (en) Parallel connection device for power supply including inverter
KR100266403B1 (en) Output voltage control device for 3-phase inverter
JPH0682305B2 (en) Reactive power compensator
JPH073803Y2 (en) Compensation current detection circuit for power compensator
JP2745728B2 (en) Inverter control method
JPH02287808A (en) Control system for reactive power compensating device
JPH0477550B2 (en)
JPH0748949B2 (en) Circulating current type triangular connection cycloconverter control method
JPS6368916A (en) Controller for reactive power compensation
JPH0625949B2 (en) Reactive power compensator
JPH01227632A (en) Static type reactive power compensator
JPS6295618A (en) Reactive power compensating device
JPS5870327A (en) Controlling system of power converter
JPH0538143A (en) Controller of cyclo converter
JPH0612930B2 (en) Control device for reactive power compensation
JPH04127844A (en) Inverter control circuit