JPH0612930B2 - Control device for reactive power compensation - Google Patents

Control device for reactive power compensation

Info

Publication number
JPH0612930B2
JPH0612930B2 JP61244174A JP24417486A JPH0612930B2 JP H0612930 B2 JPH0612930 B2 JP H0612930B2 JP 61244174 A JP61244174 A JP 61244174A JP 24417486 A JP24417486 A JP 24417486A JP H0612930 B2 JPH0612930 B2 JP H0612930B2
Authority
JP
Japan
Prior art keywords
function
reactive power
control device
value
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61244174A
Other languages
Japanese (ja)
Other versions
JPS6399727A (en
Inventor
茂雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61244174A priority Critical patent/JPH0612930B2/en
Publication of JPS6399727A publication Critical patent/JPS6399727A/en
Publication of JPH0612930B2 publication Critical patent/JPH0612930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電力系統に接続された変動負荷、例えばア
ーク炉,溶接器,鉄鋼圧延設備などから発生する無効電
力を補償して、系統電圧の変動(フリツカ)を抑制する
サイリスタ位相制御リアクトル式無効電力補償装置(以
下、単にTCRとも略記する)を制御するための制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention compensates for a variable load connected to a power system, such as reactive power generated from an arc furnace, a welder, a steel rolling facility, etc. The present invention relates to a control device for controlling a thyristor phase control reactor type reactive power compensator (hereinafter, also simply abbreviated as TCR) that suppresses fluctuations (flicker).

〔従来の技術〕[Conventional technology]

第4図はこの種の補償システムを示す構成図である。同
図において、1はTCR用制御装置、2はTCR、3は
フイルタコンデンサ、4は負荷である。かゝるシステム
では、系統,負荷,TCRおよびフイルタコンデンサの
各無効電力(var)をそれぞれQS,QL,QTCRおよびQ
Cとするとき、 QS=QL+QTCR+QC0 なる関数を満たすようにTCRを制御して無効電力を補
償し、系統インピーダンスXSによる電圧降下を抑制す
る。このとき、特に急峻な変動をするアーク炉のような
負荷に対しては、半サイクル毎に負荷の無効電力を予測
してTCRを高速で制御することが必要である。
FIG. 4 is a block diagram showing a compensation system of this type. In the figure, 1 is a TCR control device, 2 is a TCR, 3 is a filter capacitor, and 4 is a load. In Such systems, system load, TCR and the reactive power of the filter capacitor (var), respectively Q S, Q L, Q TCR and Q
When the C, Q S = Q L + Q TCR + Q by controlling the TCR to satisfy the C 0 becomes a function to compensate the reactive power, to suppress a voltage drop due to system impedance X S. At this time, particularly for a load such as an arc furnace that changes abruptly, it is necessary to predict the reactive power of the load every half cycle and control the TCR at high speed.

第5図は無効電力補償制御装置の従来例を示すブロツ
図、第6図はその動作説明図である。
FIG. 5 is a block diagram showing a conventional example of a reactive power compensation control device, and FIG. 6 is an operation explanatory diagram thereof.

第5図の11aはサンプルホールド回路で、第6図
(イ)に示される如き負荷電流iLの零点で系統電圧e0
サンプルを行なうが、この値は第6図(ロ)の如くE
sin(E:系統電圧実効値,:力率角)となる。1
2は積分器で、第6図(ハ)の如く負荷電流零点より積
分期間θiの間積分を行なう。この積分値 負荷電流iLが正弦波に近い時はその実効値に比例する。
従つて、掛算器13でこれらの値を掛け合わせると、 となり(第6図(ニ)参照)、θi の時点でこの値をサ
ンプルホールド回路11bで第6図(ホ)の如くサンプ
ルすることにより、負荷の無効電力予測値を得ることが
できる。14は補償特性調節回路で、得られた無効電力
Lの予測値に対して補償感度などの補償特性を決定す
るための回路であり、その出力に従つてパルス発生器1
5で所望の制御位相の点弧信号g(第6図(ヘ)参照)
を得るように構成されている。
Reference numeral 11a in FIG. 5 is a sample hold circuit, which samples the system voltage e 0 at the zero point of the load current i L as shown in FIG. 6 (a). This value is E as shown in FIG. 6 (b).
sin (E: system voltage effective value ,: power factor angle). 1
Reference numeral 2 denotes an integrator, which performs integration from the load current zero point during the integration period θ i as shown in FIG. This integral When the load current i L is close to a sine wave, it is proportional to its effective value.
Therefore, when these values are multiplied by the multiplier 13, Then (see FIG. 6 (d)), by sampling this value at the time of θ i by the sample hold circuit 11b as shown in FIG. 6 (e), the predicted reactive power of the load can be obtained. 14 is a compensation characteristic adjusting circuit, a circuit for determining the compensation characteristics such compensation sensitivity to the predicted value of the resultant reactive power Q L, sub connexion pulse generator 1 at its output
Ignition signal g of desired control phase at 5 (see FIG. 6 (f))
Is configured to obtain.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このような制御装置によれば、負荷電流
が正弦波形に近い場合は予測精度が高いが、アーク炉の
ように高調波が多く含まれた負荷電流の場合は予測の誤
差が大きくなるという欠点がある。第7図はこれを説明
するためのもので、電流零付近(θiの期間)での波形
歪が大きいと予測誤差が大きくなり、この例では電流積
分値が大きく検出されるため、実際のiLの基本波実効値
よりIL予測値が大きくなつてしまう場合を示してい
る。なお、波形のひずみかたによつて、逆のケースが生
じることは云う迄もない。
However, according to such a control device, although the prediction accuracy is high when the load current is close to a sine waveform, the prediction error is large when the load current contains many harmonics such as in an arc furnace. There are drawbacks. FIG. 7 is for explaining this, and if the waveform distortion near the current zero (the period of θ i ) is large, the prediction error becomes large, and in this example, the current integrated value is detected to be large. It shows a case where the I L predicted value becomes larger than the fundamental wave effective value of i L. Needless to say, the opposite case may occur due to the distortion of the waveform.

したがつて、この発明はこのような波形歪による負荷無
効電力の予測誤差を低減し、予測精度の高い制御装置を
提供することを目的とする。
Therefore, it is an object of the present invention to provide a control device with high prediction accuracy by reducing the prediction error of load reactive power due to such waveform distortion.

〔問題点を解決するための手段〕[Means for solving problems]

負荷電流と系統電圧とを乗算し無効電力瞬時値と有効電
力瞬時値とをそれぞれ求める掛算器と、負荷電流の零点
からの無効電力瞬時値を2回積分して得られる積分値の
2倍の値と有効電力瞬時値の積分値とを加算して得られ
る第1の関数を演算する演算回路と、無効電力補償装置
の発生する無効電力を決定する位相制御角に関係した第
2の関数を発生する関数発生器とを設け、上記第1の関
数を負荷電流零点からの時間の2乗に比例した関数θ2
で割つて得られる関数と前記第2の関数とを比較し、両
者が等しくなつたとき無効電力補償装置のサイリスタを
点弧するための点弧信号を発する。
Multipliers for multiplying the load current and the system voltage to obtain the reactive power instantaneous value and the active power instantaneous value, respectively, and a double of the integrated value obtained by integrating the reactive power instantaneous value from the zero point of the load current twice. A calculation circuit for calculating a first function obtained by adding the integral value of the instantaneous value of the active power and a second function related to the phase control angle for determining the reactive power generated by the reactive power compensator. A function generator for generating is provided, and the first function is a function θ 2 proportional to the square of the time from the load current zero point.
The second function is compared with the function obtained by dividing by, and when both are equal, a firing signal for firing the thyristor of the reactive power compensator is emitted.

〔作用〕[Action]

負荷電流iLと系統電圧e0を掛けて得られる有効電力瞬時
値pと、負荷電流iLと系統電圧から90゜遅れの電圧e90
を掛けて得られる無効電力瞬時値qとから、第一の関数
=2∫∫qdθdθ+∫pdθ(θは負荷電流零点からの角
度)を演算し、負荷の無効電力QLと表わされる関係式に基づいてTCRの制御角位相を決
定するもので、サイリスタを制御する直前までの無効電
力瞬時値qの積分値によつて制御を行なうことにより、
負荷電流に含まれる高調波成分を平均化し、無効電力の
予測精度の向上を図る。点弧信号を得る方法としては、
補償装置の発生する無効電力を決定する位相制御角βに
関係した第2の関数f(β)と とが等しくなるという条件でパルスを得る方法と、θ2
×f(β)と(2∫∫qdθdθ+∫pdθ)とが等しくなるとい
う条件でパルスを得る方法とがある。
Instantaneous value p of active power obtained by multiplying load current i L and system voltage e 0, and voltage e 90 90 ° behind load current i L and system voltage
And a reactive power instantaneous value q obtained by multiplying a, (the θ angle from the load current zero point) the first function = 2∫∫qdθdθ + ∫pdθ calculates the reactive power Q L of the load is The control angle phase of the TCR is determined on the basis of the relational expression expressed as follows. By performing control by the integrated value of the reactive power instantaneous value q until immediately before the control of the thyristor,
The harmonic components contained in the load current are averaged to improve the prediction accuracy of the reactive power. As a method of obtaining the ignition signal,
The second function f (β) related to the phase control angle β that determines the reactive power generated by the compensator, A method for obtaining a pulse with the proviso that bets are equal, theta 2
There is a method of obtaining a pulse under the condition that × f (β) and (2∫∫qdθdθ + ∫pdθ) are equal.

〔発明の実施例〕Example of Invention

負荷の無効電力を補償するためのTCRの制御関係式
は、次式の如く表わされる。
The control relational expression of the TCR for compensating the reactive power of the load is expressed by the following expression.

F(QL−QL0)+QTCR=K(一定)……(1) ここで、KFは補償感度、QLは負荷の無効電力、QL0
Lの非変動成分(ベース分)、QTCRはTCRの発生す
る無効電力である。通常はK=QTCR(TCRの定格無
効電力)と選ばれるので、上記(1)式は となる。ここで、QTCRを系統電圧零点から90゜の位相
を起点とする制御角βで表わすと、 の如くなる。こゝに、βminは最小制御位相角で、この
位相でTCRは定格の無効電力QTCRRを発生する。
K F (Q L −Q L0 ) + Q TCR = K (constant) (1) where K F is the compensation sensitivity, Q L is the reactive power of the load, and Q L0 is the non-variable component of Q L (base component). ), Q TCR is the reactive power generated by the TCR. Since K = Q TCR (rated reactive power of TCR) is usually selected, the above equation (1) is Becomes Here, when Q TCR is represented by a control angle β starting from the phase of 90 ° from the system voltage zero point, It becomes like. Here, βmin is the minimum control phase angle at which the TCR produces the rated reactive power Q TCRR .

(3)式を(2)式に代入すると、 KF(QL−QL0)=f(β) ……(4) となる。但し、 である。Substituting Eq. (3) into Eq. (2), K F (Q L −Q L0 ) = f (β) (4) However, Is.

一方、負荷電流iLの基本波成分を考えて、 (θは負荷電流零点からの電気角) と表わすと、有効電力瞬時値p及び無効電力瞬時値q
は、それぞれ次式の如く表わされる 但し、E0は系統電圧実効値であり、は力率角であ
る。
On the other hand, considering the fundamental wave component of the load current i L , (Θ is an electrical angle from the load current zero point), the active power instantaneous value p and the reactive power instantaneous value q
Are respectively expressed by the following equations. However, E 0 is a system voltage effective value, and is a power factor angle.

pの電流零点からの積分値は、 となる。The integral value from the current zero point of p is Becomes

また、qの電流零点からの積分値は、 となり、さらにもう一度積分すると、 となる。Also, the integral value of q from the current zero point is And integrating again, Becomes

2×(10)式+(8)式から、 が得られる。負荷無効電力QLは、QL=E0Lsinで
あるので、 2∫∫qdθdθ+∫pdθ=QL×θ2 なる関係式が成立する。従つて、 となり、この(12)式の先の(4)式を代入すると、 となる。そこで、左辺及び右辺の2つの関数を作り、そ
れらの交点を求めれば(13)式を満足するTCRの制御位
相となる。
From 2 × (10) formula + (8) formula, Is obtained. Load reactive power Q L, so it is Q L = E 0 I L sin , 2∫∫qdθdθ + ∫pdθ = Q L × θ 2 relational expression is satisfied. Therefore, Then, substituting equation (4) above equation (12), Becomes Therefore, if the two functions of the left side and the right side are created and their intersections are obtained, the control phase of the TCR satisfying the equation (13) is obtained.

第1図はこの発明の実施例を示す構成図で、以上の如き
演算を具体的に実現するためのものである。また、第2
図はその動作を説明するための各部波形図である。
FIG. 1 is a block diagram showing an embodiment of the present invention, which is for concretely realizing the above-mentioned calculation. Also, the second
The figure is a waveform chart of each part for explaining the operation.

第1図において、掛算器13a,13bは第2図(イ)
に示される負荷電流iLと系統電圧と同相の電圧e0、及び
それから90゜位相が遅れた電圧e90とから、第2図
(ロ)の如き無効電力瞬時値qと有効電力瞬時値pを演
算するものである。掛算器13aの出力qを積分器12
a及び12bによつて2回積分した後、比例増幅器16
aによりゲイン調整して出力h=2∫∫qdθdθ(第2図
(ハ)参照)を得、また掛算器13bの出力pを積分器
12cにより積分して出力i=∫pdθ(第2図(ハ)参
照)を得た後、加算器17aで両者を加算して出力j=
2∫∫qdθdθ+∫pdθ(第2図(ハ)参照)が演算され
る。さらに、信号jは割算器18に入力され、関数発生
器19で作られた関数θ2で割ることにより を演算し、減算器17bにおいて電圧設定器20に設定
されているQL0の値を差引いた後、比例増幅器16bで
F倍した後、コンパレータ22に入力する。コンパレ
ータ22の他方の入力には関数発生器21によつて作ら
れた関数f(β)が入力されており、第2図(ニ)の如く
両入力が等しくなつた点で点弧信号を得るように構成さ
れているため、先の(13)式の関係式を満す制御位相の点
弧信号q(第2図(ホ)参照)を得ることができる。
In FIG. 1, multipliers 13a and 13b are shown in FIG.
From the load current i L , the voltage e 0 in phase with the system voltage, and the voltage e 90 with a 90 ° phase delay from that shown in Fig. 2, the reactive power instantaneous value q and the active power instantaneous value p as shown in Fig. 2 (b) are shown. Is calculated. The output q of the multiplier 13a is converted to the integrator 12
After integrating twice by a and 12b, the proportional amplifier 16
The gain is adjusted by a to obtain the output h = 2∫∫qdθdθ (see FIG. 2C), and the output p of the multiplier 13b is integrated by the integrator 12c to output i = ∫pdθ (Fig. 2 ( C)) is obtained, the two are added by the adder 17a to output j =
2∫∫qdθdθ + ∫pdθ (see FIG. 2C) is calculated. Further, the signal j is input to the divider 18 and divided by the function θ 2 generated by the function generator 19 And subtracting the value of Q L0 set in the voltage setter 20 in the subtractor 17b, multiplying it by K F in the proportional amplifier 16b, and inputting it to the comparator 22. The function f (β) created by the function generator 21 is input to the other input of the comparator 22, and a firing signal is obtained at a point where both inputs are equal as shown in FIG. With such a configuration, it is possible to obtain the ignition signal q (see FIG. 2 (e)) of the control phase that satisfies the relational expression (13).

第3図はこの発明の別な実施例を示す構成図である。FIG. 3 is a block diagram showing another embodiment of the present invention.

これは、先の(13)式の両辺にθ2 を掛けて KF(2∫∫qdθdθ+∫pdθ−θ2L0)=θ2f(β) (14) と変形し、この式の両辺の2つの関数を作つて両者を比
較することにより点弧信号を得るようにしたものであ
る。基本的な考え方は第1図に示すものとまつたく同じ
で、(14)式の演算をそのまま具体的な回路に置き変えた
だけであるので、詳細な説明は省略する。
This is obtained by multiplying both sides of the equation (13) by θ 2 and transforming it into K F (2∫∫qdθdθ + ∫pdθ−θ 2 QL 0 ) = θ 2 f (β) (14) The ignition signal is obtained by creating two functions on both sides and comparing the two. The basic idea is the same as that shown in FIG. 1, and since the calculation of equation (14) is simply replaced with a specific circuit, detailed description will be omitted.

〔発明の効果〕〔The invention's effect〕

この発明によれば、負荷電流iLの一定期間積分値によつ
て予測を行なうのをやめ連続的に無効電力qと有効電力
pの積分を行ない、サイリスタを制御する直前までの積
分値に基づいてTCRの制御条件を満足する点弧信号を
得るように構成したため負荷電流に含まれる高調波の影
響が低減され、負荷無効電力の予測精度を大幅に向上す
ることができる利点がもたらされる。
According to the present invention, the prediction is stopped based on the integral value of the load current i L for a certain period of time, the reactive power q and the active power p are continuously integrated, and the integral value up to immediately before the control of the thyristor is used. Since the ignition signal satisfying the TCR control condition is obtained, the influence of the harmonics contained in the load current is reduced, and the advantage of significantly improving the prediction accuracy of the load reactive power is brought about.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示す構成図、第2図はその
動作を説明するための各部波形図、第3図はこの発明の
他の実施例を示す構成図、第4図は無効電力補償システ
ムの一般的な例を示す構成図、第5図は無効電力補償用
制御装置の従来例を示すブロツク図、第6図はその動作
を説明するための各部波形図、第7図は波形ひずみによ
る無効電力の予測誤差を説明するための説明図である。 符号説明 1……無効電力補償用制御装置、2……無効電力補償装
置(TCR)、3……フイルタコンデンサ、4……負
荷、11a,11b……サンプルホールド回路、12,
12a,12b,12c……積分器、13,13a,1
3b,13c,13d……掛算器、14……補償特性調
節回路、15……パルス発生器、16a,16b……比
例増幅器、17a,17b……加減算器、18……割算
器、19,21……関数発生器、22……コンパレー
タ。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a waveform chart of respective parts for explaining the operation, FIG. 3 is a block diagram showing another embodiment of the present invention, and FIG. FIG. 5 is a block diagram showing a general example of a power compensation system, FIG. 5 is a block diagram showing a conventional example of a reactive power compensation control device, FIG. 6 is a waveform diagram of each part for explaining the operation, and FIG. It is explanatory drawing for demonstrating the prediction error of the reactive power by waveform distortion. Reference numeral 1 ... Reactive power compensation control device, 2 ... Reactive power compensation device (TCR), 3 ... Filter capacitor, 4 ... Load, 11a, 11b ... Sample and hold circuit, 12,
12a, 12b, 12c ... integrator, 13, 13a, 1
3b, 13c, 13d ... Multiplier, 14 ... Compensation characteristic adjusting circuit, 15 ... Pulse generator, 16a, 16b ... Proportional amplifier, 17a, 17b ... Adder / subtractor, 18 ... Divider, 19, 21 ... Function generator, 22 ... Comparator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電力系統に接続された変動負荷が発生する
無効電力を補償し電圧変動を抑制すべく設けられるサイ
リスタ位相制御式無効電力補償装置を制御するための制
御装置であつて、 負荷電流と系統電圧とを乗算し無効電力瞬時値と有効電
力瞬時値とをそれぞれ求める掛算器と、 負荷電流の零点からの無効電力瞬時値を2回積分して得
られる積分値の2倍の値と有効電力瞬時値の積分値とを
加算して得られる第1の関数を演算する演算回路と、 前記無効電力補償装置の発生する無効電力を決定する位
相制御角に関係した第2の関数を発生する関数発生器
と、 を備え、 前記第1の関数を負荷電流零点からの時間の2乗に比例
した関数θ2 で割つて得られる関数と前記第2の関数と
を比較し、両者が著しくなつたとき前記サイリスタを点
弧するための点弧信号を発することを特徴とする無効電
力補償用制御装置。
1. A control device for controlling a thyristor phase control type reactive power compensator provided for compensating reactive power generated by a fluctuating load connected to a power system and suppressing a voltage fluctuation, comprising a load current. And a system voltage to obtain a reactive power instantaneous value and an active power instantaneous value, respectively, and a value that is twice the integrated value obtained by integrating the reactive power instantaneous value from the zero point of the load current twice. An arithmetic circuit that calculates a first function obtained by adding the integrated value of the active power instantaneous value, and a second function that is related to the phase control angle that determines the reactive power generated by the reactive power compensator. And a function generator obtained by dividing the first function by a function θ 2 proportional to the square of the time from the load current zero point, and comparing the second function with the second function. Ignite the thyristor when it is fired Reactive power compensation control apparatus characterized by issuing a firing signal for.
【請求項2】特許請求の範囲第1項に記載の無効電力補
償制御装置において、前記第1の関数と第2の関数に関
数θ2 を掛けて得られる関数とを比較し、両者が等しく
なつたとき点弧信号を発することを特徴とする無効電力
補償用制御装置。
2. A reactive power compensation controller according to claim 1, wherein the first function and the second function are compared with a function obtained by multiplying the function by a function θ 2. A reactive power compensating control device, which emits an ignition signal when struck.
【請求項3】特許請求の範囲第1項に記載の無効電力補
償用制御装置において、前記第2の関数と比較される関
数を前記第1の関数を関数θ2 で割つて得られる関数か
ら負荷無効電力の非変動成分(ベース分)に相当する所
定値を差し引いたものとすることを特徴とする無効電力
補償用制御装置。
3. The reactive power compensating control device according to claim 1, wherein a function to be compared with the second function is obtained by dividing the first function by the function θ 2. A reactive power compensating control device, wherein a predetermined value corresponding to a non-variable component (base component) of load reactive power is subtracted.
【請求項4】特許請求の範囲第2項に記載の無効電力補
償用制御装置において、前記第2の関数にθ2 を掛けて
得られる関数と比較される関数を前記第1の関数から負
荷無効電力の非変動成分(ベース分)に相当する所定値
に関数θ2 を乗じた量を差し引いたものとするこを特徴
とする無効電力補償用制御装置。
4. The reactive power compensating controller according to claim 2, wherein a function to be compared with a function obtained by multiplying the second function by θ 2 is loaded from the first function. A reactive power compensating control device, wherein a predetermined value corresponding to a non-variable component (base component) of reactive power is multiplied by a function θ 2 and subtracted.
JP61244174A 1986-10-16 1986-10-16 Control device for reactive power compensation Expired - Lifetime JPH0612930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244174A JPH0612930B2 (en) 1986-10-16 1986-10-16 Control device for reactive power compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244174A JPH0612930B2 (en) 1986-10-16 1986-10-16 Control device for reactive power compensation

Publications (2)

Publication Number Publication Date
JPS6399727A JPS6399727A (en) 1988-05-02
JPH0612930B2 true JPH0612930B2 (en) 1994-02-16

Family

ID=17114864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244174A Expired - Lifetime JPH0612930B2 (en) 1986-10-16 1986-10-16 Control device for reactive power compensation

Country Status (1)

Country Link
JP (1) JPH0612930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684665B (en) 2011-03-15 2016-03-02 台达电子工业股份有限公司 Capacitance type switch module

Also Published As

Publication number Publication date
JPS6399727A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
US5808462A (en) Apparatus for detecting the amplitude and phase of an a.c. signal
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JPH0625955B2 (en) Control device for reactive power compensation
JPH0612930B2 (en) Control device for reactive power compensation
JPH0612931B2 (en) Control device for reactive power compensation
JPH0625954B2 (en) Control device for reactive power compensation
JP5716961B2 (en) Control device for reactive power compensator
JPH0625953B2 (en) Control device for reactive power compensation
JPH0432621B2 (en)
JP2003324847A (en) Method and apparatus for compensating voltage flicker
JPH02287808A (en) Control system for reactive power compensating device
JPS63115202A (en) Feedback process controller
JP5545048B2 (en) Control device for reactive power compensator
JPH08140268A (en) Controller of reactive power compensator
JPH07231649A (en) Controller for voltage pwm converter
JP3504007B2 (en) Active filter control method and device
SU868721A1 (en) Ac voltage stabilizer
JPH01152518A (en) Control system for reactive power compensator
JPS61264416A (en) Control system for reactive power compensating device
JPH02144615A (en) Control system for reactive power compensating device
JPS6337599B2 (en)
JPH07104740B2 (en) Controller for reactive power compensator
JPH0711847U (en) Control method of voltage fluctuation suppression device
JPH03112390A (en) Variable speed controller for induction motor
JPH0625952B2 (en) Control device for reactive power compensation