JPH08337411A - Graphite particle, its production and lithium ion secondary battery - Google Patents

Graphite particle, its production and lithium ion secondary battery

Info

Publication number
JPH08337411A
JPH08337411A JP7147383A JP14738395A JPH08337411A JP H08337411 A JPH08337411 A JP H08337411A JP 7147383 A JP7147383 A JP 7147383A JP 14738395 A JP14738395 A JP 14738395A JP H08337411 A JPH08337411 A JP H08337411A
Authority
JP
Japan
Prior art keywords
diameter
graphite particles
source component
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7147383A
Other languages
Japanese (ja)
Inventor
Takashi Osaki
孝 大崎
Koji Murai
剛次 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP7147383A priority Critical patent/JPH08337411A/en
Publication of JPH08337411A publication Critical patent/JPH08337411A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To make it possible to form an electrode having a high packing density and excellent charging and discharging efficiency by using graphite particles which are spheroidal particles having a diameter within a prescribed range, have a specific grain size distribution curve and has an inter-crystal layer distance and the size of the crystallize in a C-axis direction within a prescribed range as a battery material. CONSTITUTION: This graphite particles are obtd. by subjecting a catalyst metal source component (e.g.: transition metal component) and carbon source component (e.g.: org. compd.) to a thermal decomposition treatment at 950 to 1200 deg.C in an atmosphere of an inert gas (e.g.: hydrogen enriched gas) and contains the transition metal at 100 to 10,000ppm. The diameter of these particles is 0.3 to 3pm; the 50% diameter in the grain size distribution curve is 3 to 60μm; the 10% diameter/50% diameter (ratio) is 0.1 to 0.3; the 90% diameter/50% diameter (ratio) is 2 to 6; the inter-crystal layer distance is 0.337nm at the largest' the size of the crystallite in the C-axis direction is 50nm at the smallest and the specific surface area is <=15m<2> /g. The charging and discharging efficiency is :>=90% initially and is >=95% at the good time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、黒鉛粒子、黒鉛粒子
の製造方法、およびリチウムイオン2次電池に関し、さ
らに詳しくは、結晶性、すなわち結晶層間距離(d
002 )やC軸方向の結晶子の大きさ(Lc )に優れ、電
池材料として好適に用いることができ、電池材料として
用いた場合に、充填密度が高く、充放電効率に優れた電
極を形成することができる黒鉛粒子、前記黒鉛粒子を効
率よく経済的に製造することができる方法、および、充
放電容量が大きく高電圧であり、充放電効率に優れ、し
かも安全なリチウムイオン2次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to graphite particles, a method for producing graphite particles, and a lithium ion secondary battery, and more specifically, crystallinity, that is, a crystal interlayer distance (d).
002 ) and the crystallite size in the C-axis direction (L c ), and can be suitably used as a battery material. When used as a battery material, an electrode having a high packing density and excellent charge / discharge efficiency can be obtained. Graphite particles that can be formed, a method that can efficiently and economically produce the graphite particles, and a lithium-ion secondary battery that has a large charge / discharge capacity, high voltage, excellent charge / discharge efficiency, and is safe Regarding

【0002】[0002]

【従来の技術と発明が解決しようとする課題】リチウム
イオン2次電池においては、負極に炭素あるいは黒鉛が
用いられ、正極にコバルト酸、ニッケル酸、マンガン酸
等のリチウム化合物(LiCoO2 、LiNiO2 、L
iMn24 )が用いられる。このリチウムイオン2次
電池においては、充電時にリチウムイオンが炭素あるい
は黒鉛の層間に挿入されて層間化合物が形成され、一
方、放電時に炭素あるいは黒鉛の層間からリチウムイオ
ンが放出される。このような充放電機構により、リチウ
ムイオン2次電池は、大容量で高電圧であり、しかも安
全であるという特長を有する。このため、リチウムイオ
ン2次電池は、各種分野での用途が見込まれている。
2. Description of the Related Art In a lithium ion secondary battery, carbon or graphite is used for the negative electrode, and lithium compounds such as cobalt acid, nickel acid, manganic acid (LiCoO 2 , LiNiO 2) are used for the positive electrode. , L
iMn 2 O 4 ) is used. In this lithium ion secondary battery, lithium ions are inserted between carbon or graphite layers during charging to form an intercalation compound, while lithium ions are released from the carbon or graphite layers during discharging. Due to such a charging / discharging mechanism, the lithium ion secondary battery has the features of large capacity, high voltage, and safety. Therefore, the lithium ion secondary battery is expected to be used in various fields.

【0003】ところで、遷移金属を触媒として得られる
気相成長炭素繊維(以下「VGCF」と称することがあ
る。)を、あるいはこれを黒鉛化してなる黒鉛を負極に
用いたリチウムイオン2次電池は、充放電容量が大きく
高性能であることが報告されている。このようなリチウ
ムイオン2次電池として、たとえば、特開平3−129
664号公報には、X線回折ピークの半値幅が1°以
下、具体的には直径が1μm以下で、長さが500μm
以下である微細繊維状黒鉛を負極に用いたリチウムイオ
ン2次電池が記載されている。特開平5−182666
号公報には、扁平なリボン形状の炭素繊維を負極に用い
たリチウムイオン2次電池が記載されている。特開平6
−84517号公報には、VGCFを黒鉛化した後、所
定の長さに粉砕したものを負極に用いたリチウムイオン
2次電池が記載されている。特開平6−119922号
公報には、金属の表面に炭素繊維が植毛されているかの
ような構造の炭素繊維植毛金属成形体を負極として用い
たリチウムイオン2次電池が記載されている。
By the way, a lithium ion secondary battery using a vapor-grown carbon fiber (hereinafter sometimes referred to as "VGCF") obtained by using a transition metal as a catalyst or a graphite obtained by graphitizing the fiber is used as a negative electrode. It has been reported that the charge and discharge capacity is large and the performance is high. As such a lithium ion secondary battery, for example, JP-A-3-129
No. 664 discloses that the X-ray diffraction peak has a half width of 1 ° or less, specifically a diameter of 1 μm or less and a length of 500 μm.
A lithium ion secondary battery using the following fine fibrous graphite as a negative electrode is described. JP-A-5-182666
The publication describes a lithium ion secondary battery using a flat ribbon-shaped carbon fiber as a negative electrode. JP-A-6
JP-A-84517 describes a lithium ion secondary battery in which VGCF is graphitized and then crushed to a predetermined length and used as a negative electrode. Japanese Unexamined Patent Publication No. 6-119922 discloses a lithium ion secondary battery using a carbon fiber-implanted metal molding having a structure as if carbon fibers were implanted on the surface of a metal as a negative electrode.

【0004】しかし、これらのリチウムイオン2次電池
における負極は、アスペクト比の大きな繊維あるいは繊
維状黒鉛により形成されているので、密度が高くない。
このため、これらのリチウムイオン2次電池において
は、負極の絶対量、充填密度が充分でないことにより、
大容量かつ高電圧を実現できないという問題がある。
However, since the negative electrode in these lithium ion secondary batteries is formed of fibers or fibrous graphite having a large aspect ratio, its density is not high.
Therefore, in these lithium ion secondary batteries, the absolute amount of the negative electrode and the packing density are not sufficient,
There is a problem that large capacity and high voltage cannot be realized.

【0005】このような事情の下、アスペクト比の大き
な繊維あるいは繊維状黒鉛を粉砕してなる粉砕物を負極
に用いることにより、前記問題の解決を図ることも考え
られる。たとえば、特開平5−221622号公報に
は、黒鉛化気相成長炭素繊維を酸化処理し、加熱処理し
た後、これを粉砕することにより得られる大表面積気相
成長炭素は、結晶性、すなわち結晶層間距離(d002
およびC軸方向の結晶子の大きさ(Lc )に優れる旨が
記載されている。また、特開平6−81218号公報に
は、VGCFを実質的に黒鉛化処理した後に粉砕してな
る層間化合物形成用気相成長炭素は、前記結晶性に優れ
る旨が記載されている。したがって、これらの粉砕物を
負極に用いると、前記問題を解決した高性能のリチウム
イオン2次電池を得ることができると予想される。
Under these circumstances, it may be possible to solve the above problems by using a crushed product obtained by crushing fibers or fibrous graphite having a large aspect ratio as the negative electrode. For example, in Japanese Unexamined Patent Publication (Kokai) No. Hei 5-221622, large surface area vapor-grown carbon obtained by subjecting graphitized vapor-grown carbon fiber to oxidation treatment, heat treatment, and pulverization is crystalline, that is, crystalline. Interlayer distance (d 002 )
And that the crystallite size (L c ) in the C-axis direction is excellent. Further, JP-A-6-81218 describes that vapor phase grown carbon for forming an intercalation compound, which is obtained by substantially graphitizing VGCF and then pulverizing it, has excellent crystallinity. Therefore, it is expected that a high-performance lithium ion secondary battery that solves the above problems can be obtained by using these pulverized products for the negative electrode.

【0006】しかしながら、黒鉛化気相成長炭素繊維を
粉砕して短くした場合には、粉砕に伴って微粉が生じ、
繊維に破断面が生ずる。このため、この粉砕物をリチウ
ムイオン2次電池における負極に使用すると、前記微粉
あるいは破断面と電解液とが反応してしまうことから初
回充放電効率が90%以下に、特に細かく粉砕した場合
には70%台にまで低下してしまうという問題がある。
However, when the graphitized vapor grown carbon fiber is crushed and shortened, fine powder is generated due to the crushing,
The fiber has a fracture surface. Therefore, when this pulverized product is used as a negative electrode in a lithium ion secondary battery, the fine powder or the fractured surface reacts with the electrolytic solution, so that the initial charge / discharge efficiency is 90% or less, especially when finely pulverized. Has the problem that it will drop to the 70% range.

【0007】この発明は、前記従来における問題を解決
することを目的の一つとする。この発明は、結晶性、す
なわち結晶層間距離(d002 )やC軸方向の結晶子の大
きさ(Lc )に優れ、電池材料として好適に用いること
ができ、電池材料として用いた場合に、充填密度が高
く、充放電効率に優れた電極を形成することができる黒
鉛粒子を提供することを目的の一つとする。また、この
発明は、前記黒鉛粒子を効率よく経済的に製造すること
ができる方法を提供することを目的の一つとする。さら
に、この発明は、充放電容量が大きく高電圧であり、充
放電効率に優れ、しかも安全なリチウムイオン2次電池
を提供することを目的の一つとする。
An object of the present invention is to solve the above-mentioned conventional problems. INDUSTRIAL APPLICABILITY The present invention is excellent in crystallinity, that is, the distance between crystal layers (d 002 ) and the size of crystallites in the C-axis direction (L c ), can be suitably used as a battery material, and when used as a battery material, It is an object of the present invention to provide graphite particles having a high packing density and capable of forming an electrode having excellent charge / discharge efficiency. Another object of the present invention is to provide a method capable of efficiently and economically producing the graphite particles. Further, another object of the present invention is to provide a lithium ion secondary battery which has a large charge / discharge capacity, a high voltage, excellent charge / discharge efficiency, and is safe.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の発明は以下の通りであり、請求項1に記載の発明は、
直径が0.3〜3μmである球状粒子が鎖状に結合して
なり、粒度分布曲線における50%径が3〜60μmで
あり、粒度分布曲線における10%径と50%径との比
(10%径/50%径)が0.1〜0.3であり、粒度
分布曲線における90%径と50%径との比(90%径
/50%径)が2〜6であり、結晶層間距離(d002
が大きくとも0.337nmであり、C軸方向の結晶子
の大きさ(Lc )が小さくとも50nmであることを特
徴とする黒鉛粒子であり、請求項2に記載の発明は、不
活性ガスの雰囲気下で、触媒金属源成分と炭素源成分と
を熱分解処理して得られるところの、遷移金属を100
〜10,000ppmの量で含有する炭素質粒子を、熱
処理することを特徴とする請求項1に記載の黒鉛粒子の
製造方法であり、請求項3に記載の発明は、触媒金属源
成分が遷移金属化合物であり、炭素源成分が有機化合物
である請求項2に記載の黒鉛粒子の製造方法であり、請
求項4に記載の発明は、触媒金属源成分および炭素源成
分が共に遷移金属化合物である前記請求項2に記載の黒
鉛粒子の製造方法であり、請求項5に記載の発明は、不
活性ガスが水素富化ガスである請求項2〜4のいずれか
に記載の黒鉛粒子の製造方法であり、請求項6に記載の
発明は、熱分解処理は熱分解温度が950〜1,200
℃である請求項2〜5のいずれかに記載の黒鉛粒子の製
造方法であり、請求項7に記載の発明は、請求項1に記
載の黒鉛粒子を用いて形成された負極を備えてなること
を特徴とするリチウムイオン2次電池である。
The invention for solving the above problems is as follows, and the invention according to claim 1 is
The spherical particles having a diameter of 0.3 to 3 μm are connected in a chain shape, the 50% diameter in the particle size distribution curve is 3 to 60 μm, and the ratio of the 10% diameter to the 50% diameter in the particle size distribution curve (10 % Diameter / 50% diameter) is 0.1 to 0.3, the ratio of 90% diameter to 50% diameter (90% diameter / 50% diameter) in the particle size distribution curve is 2 to 6, and Distance (d 002 )
Is 0.337 nm at most, and the size (L c ) of the crystallite in the C-axis direction is at most 50 nm. Graphite particles characterized in that the invention according to claim 2 is an inert gas. Transition metal, which is obtained by subjecting the catalytic metal source component and the carbon source component to thermal decomposition treatment in an atmosphere of
The method for producing graphite particles according to claim 1, wherein the carbonaceous particles contained in an amount of ˜10,000 ppm are heat treated, and the invention according to claim 3 is characterized in that the catalyst metal source component is transitional. The method for producing graphite particles according to claim 2, which is a metal compound and the carbon source component is an organic compound, and the invention according to claim 4 is that the catalyst metal source component and the carbon source component are both transition metal compounds. The method for producing the graphite particles according to claim 2, wherein the invention according to claim 5 is the method for producing the graphite particles according to any one of claims 2 to 4, wherein the inert gas is a hydrogen-enriched gas. In the invention according to claim 6, the thermal decomposition treatment has a thermal decomposition temperature of 950 to 1,200.
The method for producing the graphite particles according to any one of claims 2 to 5, wherein the invention according to claim 7 comprises a negative electrode formed using the graphite particles according to claim 1. It is a lithium ion secondary battery characterized by the above.

【0009】以下、この発明の黒鉛粒子、黒鉛粒子の製
造方法、およびリチウムイオン2次電池について詳細に
説明する。
The graphite particles, the method for producing the graphite particles, and the lithium ion secondary battery of the present invention will be described in detail below.

【0010】−黒鉛粒子− この発明における黒鉛粒子は、直径が0.3〜3μmで
ある球状粒子が鎖状に結合してなる構造を有する。黒鉛
粒子の構造は、SEMにより、個々の粒子の大きさや繋
がり状態を観察することができる。この発明の黒鉛粒子
においては、個々の球状粒子が強固に結合している。
-Graphite particles-The graphite particles in the present invention have a structure in which spherical particles having a diameter of 0.3 to 3 µm are connected in a chain. Regarding the structure of the graphite particles, the size and connection state of individual particles can be observed by SEM. In the graphite particles of the present invention, individual spherical particles are firmly bonded.

【0011】この発明における黒鉛粒子は、粒度分布曲
線における50%径が通常3〜60μm、好ましくは5
〜50μmであり、さらに好ましくは10〜40μmで
あり、粒度分布曲線における10%径と50%径との比
(10%径/50%径)が0.1〜0.3であり、粒度
分布曲線における90%径と50%径との比(90%径
/50%径)が2〜6である粒度分布曲線を有する。黒
鉛粒子が前記特定の粒度分布曲線を有すると、この発明
の目的を効果的に達成することができる。具体的には、
前記50%径が前記範囲内であると、充分な密度を有
し、薄膜化の可能な電極を得ることができる。また、1
0%径と50%径との比および90%径と50%径との
比が前記範囲内であると、充填密度が高く、しかも大容
量、高充放電効率、高サイクル特性の電極を得ることが
できる。粒度分布曲線は、マイクロトラックを用いて測
定することができる。
In the graphite particles of the present invention, the 50% diameter in the particle size distribution curve is usually 3 to 60 μm, preferably 5
To 50 μm, more preferably 10 to 40 μm, the ratio of 10% diameter to 50% diameter (10% diameter / 50% diameter) in the particle size distribution curve is 0.1 to 0.3, and the particle size distribution is The particle size distribution curve has a ratio of 90% diameter to 50% diameter (90% diameter / 50% diameter) of 2 to 6 in the curve. When the graphite particles have the above-mentioned specific particle size distribution curve, the object of the present invention can be effectively achieved. In particular,
When the 50% diameter is within the above range, an electrode having a sufficient density and capable of being thinned can be obtained. Also, 1
When the ratio of the 0% diameter to the 50% diameter and the ratio of the 90% diameter to the 50% diameter are within the above ranges, the packing density is high and an electrode having a large capacity, a high charge / discharge efficiency and a high cycle characteristic is obtained. be able to. The particle size distribution curve can be measured using Microtrac.

【0012】この発明における黒鉛粒子は、結晶層間距
離(d002 )が通常0.337nm以下であり、好まし
くは0.3354〜0.3369nmである。結晶層間
距離(d002 )が前記範囲内であると、この発明の目的
を効果的に達成することができる。具体的には、放電容
量をC6 Liとしての理論値372mAh/gにまで高
くすることができる。また、C軸方向の結晶子の大きさ
(Lc )が通常50nm以上であり、好ましくは60〜
100nm値以上である。なお、ここで「100nm以
上」と記載したが、結晶性の測定は「学振法」によるX
線回折で行われ、計算上Lc が100nmを超えた場合
には100nm以上と表現することになっている。C軸
方向の結晶子の大きさ(Lc )が前記範囲内であると、
この発明の目的を効果的に達成することができる。具体
的には、放電容量をC6 Liとしての理論値372mA
h/gにまで高くすることができる。結晶層間距離(d
002 )およびC軸方向の結晶子の大きさ(Lc )は、X
線回折により測定することができる。
The graphite particles in the present invention have a crystal layer distance (d 002 ) of usually 0.337 nm or less, preferably 0.3354 to 0.3369 nm. When the distance between crystal layers (d 002 ) is within the above range, the object of the present invention can be effectively achieved. Specifically, the discharge capacity can be increased to a theoretical value of 372 mAh / g as C 6 Li. The crystallite size (L c ) in the C-axis direction is usually 50 nm or more, preferably 60 to
It is 100 nm or more. In addition, although described as "100 nm or more" here, the crystallinity is measured by "Gakushin method".
It is performed by line diffraction, and when L c exceeds 100 nm in calculation, it is expressed as 100 nm or more. When the crystallite size (L c ) in the C-axis direction is within the above range,
The object of the present invention can be effectively achieved. Specifically, the theoretical value is 372 mA when the discharge capacity is C 6 Li.
It can be as high as h / g. Crystal layer distance (d
002 ) and the crystallite size (L c ) in the C-axis direction is X
It can be measured by line diffraction.

【0013】この発明における黒鉛粒子は、比表面積が
通常15m2 /g以下であり、好ましくは0.1〜10
2 /gであり、特に好ましくは0.3〜3m2 /gで
ある。比表面積が前記範囲内であると、この発明の目的
を効果的に達成することができる。具体的には、初回の
充放電効率を90%以上、良好なときには95%以上に
まで高めることができる。比表面積は、BET法(N
2 )により測定することができる。
The graphite particles in the present invention have a specific surface area of usually 15 m 2 / g or less, preferably 0.1-10.
m 2 / g, particularly preferably 0.3 to 3 m 2 / g. When the specific surface area is within the above range, the object of the present invention can be effectively achieved. Specifically, the initial charge / discharge efficiency can be increased to 90% or more, and to 95% or more when the efficiency is good. The specific surface area is the BET method (N
2 ) can be measured.

【0014】この発明における黒鉛粒子は、結晶性、す
なわち結晶層間距離(d002 )やC軸方向の結晶子の大
きさ(Lc )に優れ、電池材料として好適に用いること
ができる。また、電池材料として用いた場合に、充填密
度が高く、充放電効率に優れた電極を形成することがで
きる。このため、前記黒鉛粒子は、特にリチウムイオン
2次電池における負極形成材料として好適に用いること
ができる。
The graphite particles in the present invention are excellent in crystallinity, that is, the distance between crystal layers (d 002 ) and the size of crystallites in the C-axis direction (L c ), and can be suitably used as a battery material. Further, when used as a battery material, it is possible to form an electrode having a high packing density and excellent charge / discharge efficiency. Therefore, the graphite particles can be suitably used particularly as a negative electrode forming material in a lithium ion secondary battery.

【0015】−黒鉛粒子の製造方法− この発明の黒鉛粒子は、この発明の黒鉛粒子の製造方法
により製造することができる。前記黒鉛粒子の製造方法
においては、不活性ガスの雰囲気下で、触媒金属源成分
と炭素源成分とを熱分解処理して得られるところの、遷
移金属を100〜10,000ppmの量で含有する炭
素質粒子を、熱処理する。
-Method of Producing Graphite Particles-The graphite particles of the present invention can be produced by the method of producing graphite particles of the present invention. In the method for producing the graphite particles, a transition metal is contained in an amount of 100 to 10,000 ppm, which is obtained by subjecting a catalytic metal source component and a carbon source component to thermal decomposition treatment in an inert gas atmosphere. The carbonaceous particles are heat treated.

【0016】不活性ガスとしては、水素富化ガスを好適
に挙げることができる。水素富化ガスとしては、水素ガ
スそのものであってもよいし、水素ガス以外に、たとえ
ばN2 ガス、COガス、CO2 ガス、希ガスたとえばH
e、Ne、Ar、Kr、Xe等、空気などのその他のガ
スを含有していてもよい。水素富化ガスがその他のガス
を含有する場合、その他のガスの水素ガスに対する混合
比(その他のガス/水素ガス)としては、通常1/3以
下であり、好ましくは1/5以下である。
As the inert gas, a hydrogen-rich gas can be preferably mentioned. The hydrogen-rich gas may be hydrogen gas itself, or other than hydrogen gas, for example, N 2 gas, CO gas, CO 2 gas, noble gas such as H
Other gases such as e, Ne, Ar, Kr, Xe, etc., such as air, may be contained. When the hydrogen-enriched gas contains other gas, the mixing ratio of the other gas to the hydrogen gas (other gas / hydrogen gas) is usually 1/3 or less, preferably 1/5 or less.

【0017】また、場合によっては、後述する実施例で
採用した混合比のいずれかの値または0を下限値とし、
後述する実施例で採用した混合比のいずれかの値または
1/3を上限値とする混合比を採用することもできる。
前記水素富化ガスはキャリアガスとして機能し、触媒源
成分が分解することにより析出する金属超微粒子を活性
状態に保ち、炭素源成分が分解する速度を制御する等の
役割を有する。
Further, in some cases, any value or 0 of the mixing ratios used in Examples described later is set as a lower limit value,
It is also possible to adopt any one of the mixing ratios adopted in the examples described later or a mixing ratio having an upper limit value of 1/3.
The hydrogen-enriched gas functions as a carrier gas, and has a role of keeping the ultrafine metal particles precipitated by the decomposition of the catalyst source component in an active state and controlling the rate of decomposition of the carbon source component.

【0018】触媒金属源成分(A)としては、熱分解処
理の温度領域において、触媒金属を放出して気体の状態
になる物質であれば特に制限はなく、たとえば遷移金属
化合物をあげることができる。前記遷移金属化合物とし
ては、鉄、銅、ニッケル、クロム、タングステン、モリ
ブデンなどの遷移金属を含有する化合物であれば特に制
限はなく、有機遷移金属化合物および無機遷移金属化合
物を挙げることができる。これらの中でも特にFe、N
i、Coに代表される第VIII族元素を含有する化合物が
好ましい。
The catalyst metal source component (A) is not particularly limited as long as it is a substance which releases the catalyst metal into a gas state in the temperature range of the thermal decomposition treatment, and examples thereof include transition metal compounds. . The transition metal compound is not particularly limited as long as it is a compound containing a transition metal such as iron, copper, nickel, chromium, tungsten and molybdenum, and an organic transition metal compound and an inorganic transition metal compound can be mentioned. Among these, especially Fe and N
Compounds containing a Group VIII element typified by i and Co are preferable.

【0019】前記有機遷移金属化合物としては、たとえ
ばフェロセンやニッケロセン等のメタロセン、鉄カルボ
ニル、鉄ヒドロカルボニル、コバルトカルボニル、ニッ
ケルカルボニル等の金属カルボニル、アセチルアセトナ
ート鉄、アセチルアセトナートニッケル、酢酸ニッケル
などを挙げることができる。
Examples of the organic transition metal compound include metallocenes such as ferrocene and nickelocene, metal carbonyls such as iron carbonyl, iron hydrocarbonyl, cobalt carbonyl and nickel carbonyl, iron acetylacetonate, nickel acetylacetonate and nickel acetate. Can be mentioned.

【0020】なお、この触媒金属成分(A)が、黒鉛粒
子を形成するのに十分な炭素分がその分子中に存在する
ような有機遷移金属化合物であるときには、この触媒金
属成分(A)は炭素源成分としても機能する。すなわ
ち、有機遷移金属化合物は触媒金属成分となり、かつ炭
素源成分となり得ることもある。
When the catalytic metal component (A) is an organic transition metal compound having sufficient carbon content in its molecule to form graphite particles, the catalytic metal component (A) is It also functions as a carbon source component. That is, the organic transition metal compound may serve as a catalyst metal component and a carbon source component.

【0021】前記無機遷移金属化合物としては、たとえ
ば塩化鉄、塩化チタン、塩化ニッケル、塩化モリブデ
ン、塩化タングステンなどを挙げることができる。
Examples of the inorganic transition metal compound include iron chloride, titanium chloride, nickel chloride, molybdenum chloride and tungsten chloride.

【0022】この発明においては、これらの触媒金属源
成分の中でも後述する実施例で用いた化合物、およびメ
タロセンが好ましい。
In the present invention, among these catalyst metal source components, the compounds used in the examples described later and the metallocenes are preferable.

【0023】炭素源成分(B)としては、熱分解処理の
温度領域において、気体の状態になる有機化合物であれ
ば特に制限はなく、たとえば、炭化水素化合物、N、
O、S、ハロゲン原子等の原子を含有する有機化合物、
Na等の金属原子を含有する有機化合物などを挙げるこ
とができる。
The carbon source component (B) is not particularly limited as long as it is an organic compound which becomes a gas state in the temperature range of the thermal decomposition treatment. For example, a hydrocarbon compound, N,
Organic compounds containing atoms such as O, S and halogen atoms,
Examples thereof include organic compounds containing a metal atom such as Na.

【0024】前記炭化水素化合物としては、脂肪族炭化
水素、芳香族炭化水素などを挙げることができる。
Examples of the hydrocarbon compound include aliphatic hydrocarbons and aromatic hydrocarbons.

【0025】前記脂肪族炭化水素としては、たとえば、
メタン、エタン、プロパン、ブタン、ペンタン、ヘキサ
ン等の飽和脂肪族炭化水素;エチレン、プロピレン、ブ
テン、ペンテン、ヘキセン等の不飽和脂肪族炭化水素;
シクロプロパン、シクロブタン、シクロペンタン、シク
ロヘキサン、シクロヘプタン、シクロペンテン、シクロ
ヘキセン、アダマンタン、デカリン、ボルナン等の脂環
式炭化水素などを挙げることができる。
Examples of the aliphatic hydrocarbon include, for example,
Saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane and hexane; unsaturated aliphatic hydrocarbons such as ethylene, propylene, butene, pentene and hexene;
Examples thereof include alicyclic hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclopentene, cyclohexene, adamantane, decalin and bornane.

【0026】前記芳香族炭化水素としては、ベンゼン、
キシレン、トルエン、クメン、ナフタレン、アントラセ
ン、フェノール、ビフェニル、ビフェニレン、インデ
ン、スチレンなどを挙げることができる。
The aromatic hydrocarbon is benzene,
Examples thereof include xylene, toluene, cumene, naphthalene, anthracene, phenol, biphenyl, biphenylene, indene and styrene.

【0027】前記N、O、S、ハロゲン原子等の原子を
含有する化合物としては、たとえばアニリン、ピロー
ル、イミダゾール、ピラゾール、ピリジン、ピペリジ
ン、ピリダジン、ピリミジン、ピラジン、キノリン、イ
ソキノリン、プリンなどのN原子を含有する化合物;C
O、CO2 、アセトン、アルキルケトン、テトラヒドロ
ピラン、ピラン、エチレンオキサイド、テトラヒドロフ
ラン、フラン、エタノール等のアルコール類、フェノー
ル、グルコース等の単糖、マルトース糖の二単糖、サイ
クロデキストリン等のオリゴ糖等の糖類、脂肪酸類、な
どのO原子を含有する化合物;チオール類、チオフェン
などのS原子を含有する化合物;p−ジクロロベンゼン
等のジハロベンゼン、ジクロロエタン等のジハロアルカ
ンなどのハロゲン原子を含有する化合物;オキサゾー
ル、イソオキサゾール、チアゾール、1,2,3−チア
ジアゾール、キサンチン、尿酸などのその他の化合物;
などを挙げることができる。
Examples of the compounds containing atoms such as N, O, S and halogen atoms include N atoms such as aniline, pyrrole, imidazole, pyrazole, pyridine, piperidine, pyridazine, pyrimidine, pyrazine, quinoline, isoquinoline and purine. A compound containing C;
O, CO 2 , acetone, alkyl ketone, tetrahydropyran, pyran, ethylene oxide, tetrahydrofuran, furan, alcohols such as ethanol, monosaccharides such as phenol and glucose, disaccharides of maltose sugar, oligosaccharides such as cyclodextrin, etc. O-containing compounds such as sugars, fatty acids, etc .; S-containing compounds such as thiols and thiophenes; dihalobenzenes such as p-dichlorobenzene; halogen-containing compounds such as dihaloalkanes such as dichloroethane; Other compounds such as oxazole, isoxazole, thiazole, 1,2,3-thiadiazole, xanthine, uric acid;
And so on.

【0028】また、炭素源成分(B)として、ガソリ
ン、軽油、灯油、重油、アントラセン油、天然ガス、ナ
フサなどを挙げることもできる。
Further, examples of the carbon source component (B) include gasoline, light oil, kerosene, heavy oil, anthracene oil, natural gas, naphtha and the like.

【0029】上記炭素弦成分(B)はその一種を単独で
使用することもできるし、またその二種以上を併用する
こともできる。
The carbon string component (B) may be used alone or in combination of two or more.

【0030】この発明においては、これらの炭素源成分
の中でも後述する実施例において用いた化合物、ならび
にトルエンおよびチオフェンが好ましい。
In the present invention, among these carbon source components, the compounds used in Examples described later, and toluene and thiophene are preferable.

【0031】触媒金属源成分(A)と炭素源成分(B)
との混合比(Aのモル数/Bのモル数)としては、通常
0.1/99.9〜50/50であり、好ましくは0.
5/99.5〜30/70であり、特に好ましくは1/
99〜10/90である。また、場合によっては、後述
する実施例で採用した混合比のいずれかの値または0.
1/99.9を一端値とし、後述する実施例で採用した
混合比のいずれかの値または50/50を他端値とする
含有量範囲を採用することもできる。前記混合比が前記
範囲内にあると、この発明の目的を効率よく達成するこ
とができる。一方、触媒金属成分が前記範囲よりも少な
いと、黒鉛粒子の結晶化度が低くなり、逆に前記範囲よ
りも多いと、原料比のコストが高くなる割りにその効果
が見られないことがある。
Catalyst metal source component (A) and carbon source component (B)
The mixing ratio (mol number of A / mol number of B) is usually 0.1 / 99.9 to 50/50, and preferably 0.1.
5 / 99.5 to 30/70, particularly preferably 1 /
It is 99 to 10/90. Further, depending on the case, any value of the mixing ratios or 0.
It is also possible to adopt a content range in which 1 / 99.9 is one end value and one of the mixing ratios adopted in Examples described later or the other end value is 50/50. When the mixing ratio is within the above range, the object of the present invention can be efficiently achieved. On the other hand, if the catalytic metal component is less than the above range, the crystallinity of the graphite particles will be low, and conversely, if it is more than the above range, the effect may not be seen despite the high cost of the raw material ratio. .

【0032】不活性ガスの触媒金属源成分(A)と炭素
源成分(B)との混合ガスに対する混合比(不活性ガス
のモル数/混合ガスのモル数)としては、通常30/7
0〜90/10であり、好ましくは40/60〜80/
20であり、特に好ましくは50/50〜70/30で
ある。また、場合によっては、後述する実施例で採用し
た混合比のいずれかの値または30/70を一端値と
し、後述する実施例で採用した混合比のいずれかの値ま
たは90/10を他端値とする含有量範囲を採用するこ
ともできる。前記混合比が前記範囲内にあると、副生物
である気相成長炭素繊維の割合を少なくすることがで
き、黒鉛粒子の結晶化度を良好な値に維持することがで
きる。
The ratio of the inert gas to the mixed gas of the catalytic metal source component (A) and the carbon source component (B) (the number of the inert gas / the number of the mixed gas) is usually 30/7.
0 to 90/10, preferably 40/60 to 80 /
20 and particularly preferably 50/50 to 70/30. Further, in some cases, one of the values or 30/70 of the mixing ratios used in the examples described below is set as one end value, and any value of the mixing ratios used in the examples described below or 90/10 is set as the other end. It is also possible to adopt a content range to be a value. When the mixing ratio is within the above range, the proportion of vapor grown carbon fiber which is a by-product can be reduced, and the crystallinity of graphite particles can be maintained at a good value.

【0033】この発明における熱分解処理は、熱分解温
度が通常950〜1,200℃であり、好ましくは98
0〜1,150℃であり、特に好ましくは1,000〜
1,100℃である条件下で行われる。また、場合によ
っては、後述する実施例で採用した熱分解温度のいずれ
かの値または950℃を下限値とし、後述する実施例で
採用した熱分解温度のいずれかの値または1,200℃
を上限値とする熱分解温度を採用することもできる。前
記熱分解温度が前記範囲内であると、この発明の目的を
効率的に達成することができる。具体的には、炭素質粒
子の生成量の低下がなく、黒鉛粒子の結晶化度を良好な
値に維持することができる。前記熱分解処理は、たとえ
ば、電気炉あるいは燃焼炉中に反応管を配置する構成を
有するところの、気相成長炭素繊維を製造するのに用い
られてきた従来から公知の装置を用いて行うことができ
る。
In the thermal decomposition treatment of the present invention, the thermal decomposition temperature is usually 950 to 1,200 ° C., preferably 98.
0 to 1,150 ° C., particularly preferably 1,000 to
It is carried out under conditions that are 1100 ° C. Further, in some cases, any value of the thermal decomposition temperatures adopted in the examples described below or 950 ° C. is set as a lower limit value, and any value of the thermal decomposition temperatures adopted in the examples described below or 1,200 ° C.
It is also possible to adopt a thermal decomposition temperature having an upper limit of. When the thermal decomposition temperature is within the above range, the object of the present invention can be efficiently achieved. Specifically, the production amount of carbonaceous particles does not decrease, and the crystallinity of the graphite particles can be maintained at a good value. The thermal decomposition treatment is performed using a conventionally known apparatus that has been used for producing a vapor-grown carbon fiber, for example, which has a structure in which a reaction tube is arranged in an electric furnace or a combustion furnace. You can

【0034】前記熱分解処理の結果、炭素質粒子を得る
ことができる。
As a result of the thermal decomposition treatment, carbonaceous particles can be obtained.

【0035】前記炭素質粒子は、直径が0.3〜3μm
である球状粒子が鎖状に結合してなる構造を有する。炭
素質粒子の構造は、SEMにより、個々の粒子の大きさ
や繋がり状態を観察することができる。炭素質粒子にお
いては、個々の球状粒子が強固に結合している。
The carbonaceous particles have a diameter of 0.3 to 3 μm.
Which has a structure in which spherical particles are bound in a chain. With respect to the structure of the carbonaceous particles, the size and connection state of individual particles can be observed by SEM. In the carbonaceous particles, the individual spherical particles are firmly bonded.

【0036】前記炭素質粒子は、触媒金属を、触媒金属
源成分として遷移金属化合物を用いた場合には遷移金属
を、通常100〜10,000ppm含有し、好ましく
は200〜2,000ppm含有している。また、場合
によっては、後述する実施例における遷移金属の含有量
のいずれかの値または100ppmを下限値とし、後述
する実施例における遷移金属の含有量のいずれかの値ま
たは10,000ppmを上限値とする範囲内で遷移金
属を含有している。
The carbonaceous particles generally contain 100 to 10,000 ppm, preferably 200 to 2,000 ppm of a transition metal when a transition metal compound is used as a catalyst metal source component. There is. Further, in some cases, any value of the transition metal content in the examples described below or 100 ppm is set as the lower limit value, and any value of the transition metal content in the examples described below or 10,000 ppm is set as the upper limit value. The transition metal is contained within the range.

【0037】前記触媒金属の含有量は、炭素質粒子を燃
焼し、残渣酸化物を定量することにより測定することが
できる。炭素質粒子が触媒金属を前記範囲内で含有する
と、この発明の目的を効果的に達成することができる。
具体的には、炭素質粒子を高温熱処理で黒鉛化する際
に、粒子の黒鉛化度を高める。金属以外に硫黄等がさら
に少量含まれると良いことがある。
The content of the catalyst metal can be measured by burning the carbonaceous particles and quantifying the residual oxide. When the carbonaceous particles contain the catalyst metal within the above range, the object of the present invention can be effectively achieved.
Specifically, when graphitizing carbonaceous particles by high-temperature heat treatment, the degree of graphitization of particles is increased. In addition to metals, it may be desirable to contain a small amount of sulfur and the like.

【0038】前記熱分解処理によると、炭素質粒子以外
に気相成長炭素繊維を副生する。前記熱分解処理の反応
物中における気相成長炭素繊維の含量としては通常30
重量%以下であり、好ましくは20重量%以下である。
気相成長炭素繊維の含量が前記範囲内にあると、電池の
負極としたときの密度を高めることができる。
According to the thermal decomposition treatment, vapor-grown carbon fibers are produced as by-products in addition to carbonaceous particles. The content of vapor grown carbon fiber in the reaction product of the thermal decomposition treatment is usually 30.
It is not more than 20% by weight, preferably not more than 20% by weight.
When the content of the vapor grown carbon fiber is within the above range, the density of the negative electrode of the battery can be increased.

【0039】この発明における熱処理は、N2 ガスや希
ガス中で数分〜数十分間、通電加熱、誘電加熱等によ
り、通常2,000℃以上、好ましくは2,500〜
3,000℃の熱処理温度である条件下で行うことがで
きる。また、場合によっては、後述する実施例で採用し
た熱処理温度のいずれかの値または2,000℃を下限
値とし、後述する実施例で採用した熱処理温度のいずれ
かの値または3,000℃を上限値とする熱分解温度を
採用することもできる。この熱処理により、前記炭素質
粒子が黒鉛化し、前記黒鉛粒子が得られる。
The heat treatment in the present invention is usually 2,000 ° C. or higher, preferably 2,500 ° C. or more by conducting heating, dielectric heating or the like in N 2 gas or a rare gas for several minutes to several tens of minutes.
It can be carried out under the condition that the heat treatment temperature is 3,000 ° C. In some cases, any value of the heat treatment temperatures used in the examples described below or 2,000 ° C. is set as a lower limit value, and any value of the heat treatment temperatures used in the examples described below or 3,000 ° C. is set. It is also possible to adopt a thermal decomposition temperature that is the upper limit value. By this heat treatment, the carbonaceous particles are graphitized to obtain the graphite particles.

【0040】この発明の黒鉛粒子の製造方法によると、
この発明の前記黒鉛粒子を、効率よく簡便に、しかも副
生物である気相成長炭素繊維の割合を低く抑えることが
できる。
According to the method for producing graphite particles of the present invention,
The graphite particles of the present invention can be efficiently and simply used, and the proportion of vapor-grown carbon fibers, which is a by-product, can be suppressed low.

【0041】−リチウムイオン2次電池− この発明のリチウムイオン2次電池は、前記黒鉛粒子を
用いて形成された負極を備えてなる。
—Lithium Ion Secondary Battery— The lithium ion secondary battery of the present invention comprises a negative electrode formed using the graphite particles.

【0042】前記負極は、たとえば、前記黒鉛粒子と熱
可塑性樹脂とをプレス等により一体成形することにより
形成することができる。
The negative electrode can be formed, for example, by integrally molding the graphite particles and the thermoplastic resin by pressing or the like.

【0043】前記熱可塑性樹脂としては、特に制限はな
くそれ自体公知の樹脂を用いることができるが、たとえ
ばポリエチレンなどのポリオレフィン、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポリアミ
ド、ポリカーボネート、ポリテトラフルオロエチレンな
どのフッ素樹脂、ポリオキシメチレン、ポリフェニレン
オキサイド、酢酸ビニル、ポリビニルアセタール、AB
S樹脂、ポリイミド、ポリアクリロニトリル、フェノー
ル樹脂などを挙げることができる。特にポリオレフィ
ン、フッ素樹脂等が好適である。
The thermoplastic resin is not particularly limited and may be a resin known per se. For example, polyolefin such as polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyamide, polycarbonate, polytetrafluoroethylene and other fluorine may be used. Resin, polyoxymethylene, polyphenylene oxide, vinyl acetate, polyvinyl acetal, AB
Examples thereof include S resin, polyimide, polyacrylonitrile, and phenol resin. Polyolefin, fluororesin, etc. are particularly preferable.

【0044】リチウムイオン2次電池は、前記負極の外
に、さらに正極、溶剤、電解質などを有してなる。
The lithium-ion secondary battery further comprises a positive electrode, a solvent, an electrolyte and the like in addition to the negative electrode.

【0045】正極としては、リチウムイオン2次電池に
おける正極材料としてそれ自体公知のものを用いて形成
することができるが、たとえばLiCoO2 ・V2
5 、Lix MnO5 ・V25 などを用いて形成するこ
とができる。
The positive electrode can be formed by using a material known per se as a positive electrode material in a lithium ion secondary battery. For example, LiCoO 2 .V 2 O
5 , Li x MnO 5 .V 2 O 5 or the like can be used.

【0046】溶剤としては、たとえばエチレンカーボネ
ート、プロピレンカーボネート、ジエチルカーボネー
ト、アセトニトリル、テトラヒドロフラン、2−メチル
テトラヒドロフラン、ジオキソラン、スルホラン、アニ
ソール、γ−ブチロラクトン、1,2−ジエトキシエタ
ン、およびこれらの二種以上の混合物あるいは少量の添
加物を配合した前記各種の溶媒などを挙げることができ
る。
Examples of the solvent include ethylene carbonate, propylene carbonate, diethyl carbonate, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, sulfolane, anisole, γ-butyrolactone, 1,2-diethoxyethane, and two or more of these. Examples thereof include the above-mentioned various solvents containing a mixture of the above or a small amount of additives.

【0047】電解質としては、特に制限はないがたとえ
ば、LiClO4 、LiPF6 、LiBF4 、LiAs
6 などを挙げることができる。
The electrolyte is not particularly limited, but examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , LiAs.
F 6 and the like can be mentioned.

【0048】リチウムイオン2次電池の形態としては、
特に制限はなく目的に応じて適宜決定することができ、
たとえばボタン型であってもよく、あるいは筒型、角
型、複数のセルを積層するなどして組み合わせた大型電
池であってもよい。
The form of the lithium ion secondary battery is as follows.
There is no particular limitation and it can be appropriately determined according to the purpose,
For example, it may be of a button type, or may be of a cylindrical type, a rectangular type, or a large-sized battery formed by stacking a plurality of cells.

【0049】この発明のリチウムイオン2次電池は、充
放電容量が大きく高電圧であり、充放電効率に優れ、し
かも安全である。このため、この発明のリチウムイオン
2次電池は、各種分野において好適に使用することがで
きる。
The lithium ion secondary battery of the present invention has a large charge / discharge capacity and a high voltage, is excellent in charge / discharge efficiency, and is safe. Therefore, the lithium ion secondary battery of the present invention can be suitably used in various fields.

【0050】[0050]

【実施例】以下、この発明の実施例について説明する。
なお、この発明は以下の実施例に何ら限定されるもので
はなく、この発明の目的を害しない範囲内において適宜
変更を加えることができる。
Embodiments of the present invention will be described below.
It should be noted that the present invention is not limited to the following embodiments, and can be appropriately modified within a range not impairing the object of the present invention.

【0051】(実施例1)フェロセン5gをベンゼン1
00mlに溶解した。この溶液を気化させ、水素ガスと
混合して、直径85mm、加熱長1,200mmのアル
ミナ製反応管に供給した。この反応管内において1,0
50℃で熱分解処理を行った。
Example 1 5 g of ferrocene was added to 1 part of benzene.
It was dissolved in 00 ml. This solution was vaporized, mixed with hydrogen gas, and supplied to an alumina reaction tube having a diameter of 85 mm and a heating length of 1,200 mm. 1,0 in this reaction tube
A thermal decomposition treatment was performed at 50 ° C.

【0052】なお、前記溶液の供給量は2.48ml/
minであり、水素ガスの供給量は4.95mol%で
あり、混合ガス中の組成は、フェロセン1.1mol
%、ベンゼン49.4mol%、水素49.5mol%
であり、全体のガス流量は室温で1,27リットル/m
inであり、ガスの平均滞留時間は55秒であった。
The amount of the solution supplied was 2.48 ml /
min, the supply amount of hydrogen gas was 4.95 mol%, and the composition in the mixed gas was 1.1 mol of ferrocene.
%, Benzene 49.4 mol%, hydrogen 49.5 mol%
And the total gas flow rate is 1,27 l / m at room temperature.
in, and the average residence time of the gas was 55 seconds.

【0053】30分後に前記溶液および水素ガスの供給
を停止した。その結果、33gの炭素質粒子が得られ
た。この炭素質粒子は、鉄の超微粒子を250ppm含
有していた。
After 30 minutes, the supply of the solution and hydrogen gas was stopped. As a result, 33 g of carbonaceous particles were obtained. The carbonaceous particles contained 250 ppm of ultrafine iron particles.

【0054】その後、この炭素質粒子を黒鉛容器に入
れ、N2 雰囲気下、2,800℃で10分間熱処理し
た。その結果、黒鉛粒子が得られた。
Then, the carbonaceous particles were placed in a graphite container and heat-treated at 2,800 ° C. for 10 minutes in an N 2 atmosphere. As a result, graphite particles were obtained.

【0055】得られた黒鉛粒子は、結晶層間距離(d
002 )が0.3367nmであり、C軸方向の結晶子の
大きさ(Lc )が82nmであった。また、BET比表
面積が2.1m2 /gであった。さらに、マイクロトラ
ックにより測定した粒度分布曲線における50%径が2
4.43μmであり、10%径が5.63μm、90%
径が80.37μmであった。得られた黒鉛粒子をSE
M写真で観察したところ、0.3〜1μmの粒子同士が
炭素で鎖状に固着されているのが確認された。なお、得
られた黒鉛粒子には、副生物として直径2μm前後の気
相成長炭素繊維が約15重量%含まれていた。
The obtained graphite particles have a crystal interlayer distance (d
002 ) was 0.3367 nm, and the crystallite size (L c ) in the C-axis direction was 82 nm. The BET specific surface area was 2.1 m 2 / g. Furthermore, the 50% diameter in the particle size distribution curve measured by Microtrac is 2
4.43 μm, 10% diameter 5.63 μm, 90%
The diameter was 80.37 μm. SE obtained graphite particles
As a result of observation with an M photograph, it was confirmed that particles of 0.3 to 1 μm were fixed to each other in a chain shape with carbon. The obtained graphite particles contained about 15% by weight of vapor grown carbon fiber having a diameter of about 2 μm as a by-product.

【0056】次に、この黒鉛粒子をPVDFと共にNM
Pに混合し、これをニッケルメッシュ上に塗布し、乾燥
することにより電極を形成した。得られた電極を用い、
この電極の対極参照極にLi薄膜を用い、1MのLiC
lO4 とエチレンカーボネート(EC)およびジエチル
カーボネート(DEC)とを1:1の割合で含有する電
解液を用いて、ガラスセルリチウムイオン2次電池を製
造した。
Next, the graphite particles were NM together with PVDF.
An electrode was formed by mixing with P, coating this on a nickel mesh, and drying. Using the obtained electrode,
Using a Li thin film as the counter reference electrode of this electrode, 1M LiC
A glass cell lithium ion secondary battery was manufactured using an electrolytic solution containing 10 4 and ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 1: 1.

【0057】得られたリチウムイオン2次電池につき、
3電極法で試験した。その結果を表1に示した。
Regarding the obtained lithium ion secondary battery,
It tested by the three-electrode method. The results are shown in Table 1.

【0058】(実施例2)実施例1において、熱処理分
解温度を1,100℃に、溶液の供給量を2.98ml
/minに、水素ガスの供給量を0.43リットル/m
inにそれぞれ変え、窒素ガスを0.08リットル/m
inの供給量で添加した外は、実施例1と同様にして黒
鉛粒子を調製し、リチウムイオン2次電池を製造した。
その結果を表1に示した。
Example 2 In Example 1, the heat treatment decomposition temperature was set to 1,100 ° C., and the solution supply amount was 2.98 ml.
/ Min, the hydrogen gas supply rate is 0.43 liters / m
nitrogen gas 0.08 liter / m
Graphite particles were prepared in the same manner as in Example 1 except that the amount of in was added, and a lithium ion secondary battery was manufactured.
The results are shown in Table 1.

【0059】なお、混合ガス中の組成は、フェロセン
1.1mol%、ベンゼン49.4mol%、水素3
3.7mol%、窒素6.7mol%であった。また、
得られた黒鉛粒子には、副生物である気相成長炭素繊維
が含まれていなかった。
The composition of the mixed gas is as follows: ferrocene 1.1 mol%, benzene 49.4 mol%, hydrogen 3
It was 3.7 mol% and nitrogen 6.7 mol%. Also,
The obtained graphite particles did not contain a vapor-grown carbon fiber as a by-product.

【0060】(実施例3)実施例1において、熱処理分
解温度を1,000℃に、溶液の供給量を5.0ml/
minに、水素ガスの供給量を0.63リットル/mi
nに、またこれらの供給時間を80分にそれぞれ変えた
外は、実施例1と同様にして黒鉛粒子を調製し、リチウ
ムイオン2次電池を製造した。その結果を表1に示し
た。
Example 3 In Example 1, the heat treatment decomposition temperature was set to 1,000 ° C. and the solution supply amount was set to 5.0 ml /
The supply amount of hydrogen gas is 0.63 liters / mi per min.
Graphite particles were prepared in the same manner as in Example 1 except that the supply time was changed to n and the supply time was changed to 80 minutes to manufacture a lithium ion secondary battery. The results are shown in Table 1.

【0061】なお、混合ガス中の組成は、フェロセン
1.5mol%、ベンゼン65.3mol%、水素3
3.2mol%であった。また、得られた黒鉛粒子に
は、副生物として直径2μm前後の気相成長炭素繊維が
約5重量%含まれていた。
The composition of the mixed gas was as follows: ferrocene 1.5 mol%, benzene 65.3 mol%, hydrogen 3
It was 3.2 mol%. Further, the obtained graphite particles contained about 5% by weight of vapor grown carbon fiber having a diameter of about 2 μm as a by-product.

【0062】(比較例1)実施例1において、水素ガス
の代わりに窒素ガスを用いた外は実施例1と同様にして
黒鉛粒子を調製し、リチウムイオン2次電池を製造し
た。その結果を表1に示した。
Comparative Example 1 Graphite particles were prepared in the same manner as in Example 1 except that nitrogen gas was used instead of hydrogen gas to manufacture a lithium ion secondary battery. The results are shown in Table 1.

【0063】(比較例2)実施例3において、フェロセ
ンが添加されていないベンゼンのみの溶液を用いた外は
実施例3と同様にして黒鉛粒子を調製し、リチウムイオ
ン2次電池を製造した。その結果を表1に示した。
Comparative Example 2 Graphite particles were prepared in the same manner as in Example 3 except that a solution of benzene alone to which ferrocene was not added was used to produce a lithium ion secondary battery. The results are shown in Table 1.

【0064】(比較例3)特開平6−84517号公報
に記載された気相成長炭素繊維(2μm)を用いた外は
実施例1と同様にしてリチウムイオン2次電池を製造し
た。その結果を表1に示す。
Comparative Example 3 A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the vapor grown carbon fiber (2 μm) described in JP-A-6-84517 was used. Table 1 shows the results.

【0065】(比較例4)平均直径2μmの合成高純度
黒鉛粉(エスイーシー(株)製、SPG−2)を用いた
外は実施例1と同様にしてリチウムイオン2次電池を製
造した。その結果を表1に示す。
(Comparative Example 4) A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that synthetic high-purity graphite powder (SPG-2, manufactured by SEC) having an average diameter of 2 µm was used. Table 1 shows the results.

【0066】(実施例4)実施例1において調製した黒
鉛粒子を、5重量%のPVDFと共にNMP(N−メチ
ルピロリドン)と混合してスラリーとした。これを10
μm厚の銅箔上に塗布後、乾燥、プレスすることにより
負極を形成した。また同様に、コバルト酸リチウム粒子
にアセチレンブラックの5重量%とPVDFの5重量%
との混合物を20μm厚のアルミニウム箔上に塗布、乾
燥、プレスすることにより正極を形成した。さらに、1
MのLiPF6 とエチレンカーボネート(EC)および
ジエチルカーボネート(DEC)とを1:1の割合で含
有する電解液を用いて、単3円筒型リチウムイオン2次
電池を製造した。
(Example 4) The graphite particles prepared in Example 1 were mixed with 5% by weight of PVDF and NMP (N-methylpyrrolidone) to prepare a slurry. This is 10
After coating on a copper foil having a thickness of μm, it was dried and pressed to form a negative electrode. Similarly, 5% by weight of acetylene black and 5% by weight of PVDF were added to the lithium cobalt oxide particles.
A positive electrode was formed by applying the mixture of and on an aluminum foil having a thickness of 20 μm, drying and pressing. In addition, 1
A single 3 cylindrical lithium ion secondary battery was manufactured using an electrolyte solution containing M LiPF 6 and ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 1: 1.

【0067】得られたリチウムイオン2次電池につき試
験した結果、初期充放電容量が800mA、初回充放電
効率が95%、平均放電電圧3.8V、250サイクル
後の容量保持率が87%であった。
As a result of testing the obtained lithium ion secondary battery, the initial charge / discharge capacity was 800 mA, the initial charge / discharge efficiency was 95%, the average discharge voltage was 3.8 V, and the capacity retention rate after 250 cycles was 87%. It was

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【発明の効果】この発明によると、前記従来における問
題を解決することができる。また、この発明によると、
結晶性、すなわち結晶層間距離(d002 )やC軸方向の
結晶子の大きさ(Lc )に優れ、電池材料として好適に
用いることができ、電池材料として用いた場合に、充填
密度が高く、充放電効率に優れた電極を形成することが
できる黒鉛粒子を提供することができる。また、この発
明によると、前記黒鉛粒子を効率よく経済的に製造する
ことができる方法を提供することができる。さらに、こ
の発明によると、充放電容量が大きく高電圧であり、充
放電効率に優れ、しかも安全なリチウムイオン2次電池
を提供することができる。
According to the present invention, the above-mentioned conventional problems can be solved. According to the invention,
It is excellent in crystallinity, that is, the distance between crystal layers (d 002 ) and the size of crystallites in the C-axis direction (L c ), and can be suitably used as a battery material. When used as a battery material, the packing density is high. It is possible to provide graphite particles capable of forming an electrode having excellent charge / discharge efficiency. Further, according to the present invention, it is possible to provide a method capable of efficiently and economically producing the graphite particles. Furthermore, according to the present invention, it is possible to provide a lithium-ion secondary battery that has a large charge / discharge capacity, a high voltage, excellent charge / discharge efficiency, and is safe.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/38 B01J 23/38 M 23/70 23/70 M 23/745 H01M 4/58 H01M 4/58 B01J 23/74 301M Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 23/38 B01J 23/38 M 23/70 23/70 M 23/745 H01M 4/58 H01M 4/58 B01J 23/74 301M

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 直径が0.3〜3μmである球状粒子が
鎖状に結合してなり、粒度分布曲線における50%径が
3〜60μmであり、粒度分布曲線における10%径と
50%径との比(10%径/50%径)が0.1〜0.
3であり、粒度分布曲線における90%径と50%径と
の比(90%径/50%径)が2〜6であり、結晶層間
距離(d002 )が大きくとも0.337nmであり、C
軸方向の結晶子の大きさ(Lc )が小さくとも50nm
であることを特徴とする黒鉛粒子。
1. Spherical particles having a diameter of 0.3 to 3 μm are connected in a chain shape, the 50% diameter in the particle size distribution curve is 3 to 60 μm, and the 10% diameter and the 50% diameter in the particle size distribution curve. And the ratio (10% diameter / 50% diameter) is 0.1 to 0.
3, the ratio of 90% diameter to 50% diameter (90% diameter / 50% diameter) in the particle size distribution curve is 2 to 6, and the crystal interlayer distance (d 002 ) is 0.337 nm at most. C
Even if the crystallite size (L c ) in the axial direction is small, it is 50 nm.
Graphite particles characterized by:
【請求項2】 不活性ガスの雰囲気下で、触媒金属源成
分と炭素源成分とを熱分解処理して得られるところの、
遷移金属を100〜10,000ppmの量で含有する
炭素質粒子を、熱処理することを特徴とする請求項1に
記載の黒鉛粒子の製造方法。
2. A catalyst metal source component and a carbon source component obtained by thermal decomposition treatment in an atmosphere of an inert gas,
The method for producing graphite particles according to claim 1, wherein the carbonaceous particles containing the transition metal in an amount of 100 to 10,000 ppm are heat-treated.
【請求項3】 触媒金属源成分が遷移金属化合物であ
り、炭素源成分が有機化合物である請求項2に記載の黒
鉛粒子の製造方法。
3. The method for producing graphite particles according to claim 2, wherein the catalyst metal source component is a transition metal compound and the carbon source component is an organic compound.
【請求項4】 触媒金属源成分および炭素源成分が共に
遷移金属化合物である前記請求項2に記載の黒鉛粒子の
製造方法。
4. The method for producing graphite particles according to claim 2, wherein both the catalyst metal source component and the carbon source component are transition metal compounds.
【請求項5】 不活性ガスが水素富化ガスである請求項
2〜4のいずれかに記載の黒鉛粒子の製造方法。
5. The method for producing graphite particles according to claim 2, wherein the inert gas is a hydrogen-enriched gas.
【請求項6】 熱分解処理は熱分解温度が950〜1,
200℃である請求項2〜5のいずれかに記載の黒鉛粒
子の製造方法。
6. The thermal decomposition treatment has a thermal decomposition temperature of 950 to 1,
It is 200 degreeC, The manufacturing method of the graphite particle in any one of Claims 2-5.
【請求項7】 請求項1に記載の黒鉛粒子を用いて形成
された負極を備えてなることを特徴とするリチウムイオ
ン2次電池。
7. A lithium ion secondary battery comprising a negative electrode formed by using the graphite particles according to claim 1.
JP7147383A 1995-06-14 1995-06-14 Graphite particle, its production and lithium ion secondary battery Pending JPH08337411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7147383A JPH08337411A (en) 1995-06-14 1995-06-14 Graphite particle, its production and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7147383A JPH08337411A (en) 1995-06-14 1995-06-14 Graphite particle, its production and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH08337411A true JPH08337411A (en) 1996-12-24

Family

ID=15429018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7147383A Pending JPH08337411A (en) 1995-06-14 1995-06-14 Graphite particle, its production and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH08337411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222649A (en) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd Negative electrode material for non-aqueous electrolyte secondary battery and the manufacturing method therefor, and non-aqueous electrolyte secondary battery using the method
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
JP2007302520A (en) * 2006-05-12 2007-11-22 Tokai Carbon Co Ltd Carbon microsphere and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222649A (en) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd Negative electrode material for non-aqueous electrolyte secondary battery and the manufacturing method therefor, and non-aqueous electrolyte secondary battery using the method
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
US7749659B2 (en) 2002-02-26 2010-07-06 Sony Corporation Nonaqueous electrolyte battery
JP2007302520A (en) * 2006-05-12 2007-11-22 Tokai Carbon Co Ltd Carbon microsphere and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6775577B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery including this
US9287561B2 (en) Negative electrode material for non-aqueous electrolyte secondary batteries, manufacturing method therefor, and lithium-ion secondary batteries
JP2940172B2 (en) Non-aqueous electrolyte secondary battery
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
CN107528053B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5518317B2 (en) Carbon black composite and its use
CA2889306A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014519136A (en) Nanostructured multi-component electrode material and method of making same
US11837376B2 (en) Composite conductive material having excellent dispersibility, slurry for forming lithium secondary battery electrode using the same, and lithium secondary battery
TW201336156A (en) Porous silicon based anode material formed using metal reduction
US5900335A (en) Non-aqueous secondary battery and negative electrode for non-aqueous secondary battery
JP2012523075A (en) Method for producing carbon composite material
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
EP3179541B1 (en) Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2002141062A (en) Graphite/carbon complex material for lithium secondary battery anode, its manufacturing method and lithium secondary battery
JPH08337411A (en) Graphite particle, its production and lithium ion secondary battery
JPH0589879A (en) Lithium secondary battery
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof
CN115461305A (en) Carbonaceous material, method for producing same, and electrochemical device
KR20210022237A (en) Secondary battery and preparation method thereof
WO2023037841A1 (en) Carbon material, method for producing carbon material, method for producing spherical carbon material, method for producing composite carbon material, and method for producing secondary battery
JPH1027612A (en) Negative electrode material for lithiumion secondary battery
JPH0684517A (en) Nonaqueous electrolyte secondary cell
JP2019071293A (en) Electroconductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050513