JP2007302520A - Carbon microsphere and its manufacturing method - Google Patents

Carbon microsphere and its manufacturing method Download PDF

Info

Publication number
JP2007302520A
JP2007302520A JP2006133323A JP2006133323A JP2007302520A JP 2007302520 A JP2007302520 A JP 2007302520A JP 2006133323 A JP2006133323 A JP 2006133323A JP 2006133323 A JP2006133323 A JP 2006133323A JP 2007302520 A JP2007302520 A JP 2007302520A
Authority
JP
Japan
Prior art keywords
dst
particle
gas
carbon
δdst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133323A
Other languages
Japanese (ja)
Other versions
JP4826901B2 (en
Inventor
Kazuo Yoshikawa
和男 吉川
Mitsuharu Miura
光治 三浦
Masakatsu Tsuchiya
正勝 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2006133323A priority Critical patent/JP4826901B2/en
Publication of JP2007302520A publication Critical patent/JP2007302520A/en
Application granted granted Critical
Publication of JP4826901B2 publication Critical patent/JP4826901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon microsphere having large particle size in which the size of particle agglomerates is made small and the width of a particle size distribution of the particle agglomerates is made narrow and which can be used suitably as, for example, a black fine particle to be used in electronic paper or a black matrix, a PTC element, a semiconductor sealant, an anode material of a lithium secondary battery or the like. <P>SOLUTION: The carbon microsphere has 150-450 nm arithmetical mean primary particle diameter measured by an electron microscope and such an agglomerated particle characteristic that the ratio ΔDst/Dst of the half-value width ΔDst indicating the distribution characteristics of particle agglomerates to the Stokes mode diameter Dst of particle agglomerates, which are measured by a disc centrifuge (DCF), is 0.40-0.85, and satisfies an expression: N<SB>2</SB>SA<6,000/(Dst×1.85)+5 (wherein N<SB>2</SB>SA is the specific surface area measured by adsorbing nitrogen; and Dst is the Stokes mode diameter of particle agglomerates). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子ペーパーやブラックマトリックスに用いられる黒色微粒子からなる黒色顔料、あるいはPTC素子や半導体封止材、リチウム二次電池の負極材などに好適に用いられる、球状粒子の凝集が少なく単一球に近い粒子形状を有し、更に凝集粒子の分布幅が狭くシャープな分布性状を示す炭素微小球に関する。   The present invention is a black pigment consisting of black fine particles used for electronic paper and black matrix, or a single agglomeration of spherical particles which is suitably used for PTC elements, semiconductor encapsulants, negative electrode materials for lithium secondary batteries, etc. The present invention relates to a carbon microsphere having a particle shape close to a sphere, and having a narrow distribution width of aggregated particles and a sharp distribution property.

微細な炭素微小球としてはカーボンブラックが知られている。カーボンブラックはタイヤ用をはじめゴムの補強材として大量に消費されており、その他に着色剤、顔料、塗料などの用途に広く使用されている。カーボンブラックの種類としては、一般的に製法から分類され、原料炭化水素の不完全燃焼法と熱分解法とに大別される。   Carbon black is known as a fine carbon microsphere. Carbon black is consumed in large quantities as a reinforcing material for rubber, including tires, and is widely used for other applications such as colorants, pigments, and paints. The types of carbon black are generally classified according to the production method, and are roughly classified into an incomplete combustion method of raw material hydrocarbons and a thermal decomposition method.

このうち、不完全燃焼法の1つであるオイルファーネス法は原料に石炭系や石油系の炭化水素原料油を用い、特殊な反応炉に液状あるいはガス状の燃料と多量の空気を導入し、完全燃焼して形成した高温燃焼ガス中に炭化水素原料油を噴射して霧状に連続供給して、一部の原料油を燃焼させるとともに、残りの大部分の炭化水素原料油をカーボンブラックと水素に熱分解するものである。   Of these, the oil furnace method, one of the incomplete combustion methods, uses coal-based or petroleum-based hydrocarbon feedstock as the raw material, introduces liquid or gaseous fuel and a large amount of air into a special reactor, The hydrocarbon feedstock is injected into the high-temperature combustion gas formed by complete combustion and continuously supplied in the form of a mist to burn a portion of the feedstock, and the remaining most of the hydrocarbon feedstock is carbon black. It is pyrolyzed to hydrogen.

このオイルファーネス法により製造されるオイルファーネスブラックは、広範囲に亘る粒子性状のカーボンブラックを製造することができ、また大量生産が容易であるので、カーボンブラック生産の主流となっている。   The oil furnace black produced by this oil furnace method is capable of producing a carbon black having a particle property over a wide range and is easily mass-produced.

そして、ゴム用ファーネスブラックは粒子径により品種分類されており、その粒子径はSAF級カーボンブラックの11〜19nmから、SRF級カーボンの61〜100nmまで広範に亘っている。   And, the furnace black for rubber is classified according to the particle diameter, and the particle diameter ranges widely from 11 to 19 nm of SAF grade carbon black to 61 to 100 nm of SRF grade carbon.

また、オイルファーネスブラックは、その生成過程から微球状の基本粒子が不規則な鎖状に枝分かれした複雑な凝集構造を呈しており、通常、数個から数十個の基本粒子が融着結合した三次元構造体からなり、この三次元構造体をストラクチャーと称し、DBP吸収量でその大きさを評価している。   Oil furnace black has a complex agglomeration structure in which fine spherical basic particles are branched in an irregular chain from the formation process, and usually several to several tens of basic particles are fusion-bonded. It consists of a three-dimensional structure. This three-dimensional structure is called a structure, and its size is evaluated by the DBP absorption amount.

この凝集構造を解き、ストラクチャーを構成する個々の基本粒子に分離することは、基本粒子が強固に融着結合している関係で不可能であり、オイルファーネスブラックを利用して微細で単一な粒子形状の炭素球を得ることはできない。   It is impossible to unravel this agglomerated structure and separate it into the individual basic particles that make up the structure because the basic particles are firmly fused and bonded. A particle-shaped carbon sphere cannot be obtained.

また、炭化水素原料を熱分解して得られるサーマルブラックは、耐火れんがをチェッカー状に積んだ蓄熱室式の分解炉を用い、天然ガスを原料として炭素と水素に熱分解するもので、その特徴は大粒子径のカーボンブラックが得られることとストラクチャーの発達が小さく、DBP吸収量が小さい、すなわち、カーボンブラック粒子の凝集構造が小さい点に特徴がある。例えば、FT級カーボンブラックの算術平均一次粒子径は101〜200nm、DBP吸収量は30〜50ml/100gであり、MT級カーボンブラックの算術平均一次粒子径は180〜500nm、DBP吸収量は30〜50ml/100g程度である。したがって、粒子が結合した凝集構造が比較的に小さい、101nmを超える大粒子径の炭素球ということができる。   In addition, thermal black obtained by pyrolyzing hydrocarbon raw materials is a thermal storage chamber type cracking furnace in which refractory bricks are stacked in a checkered form, and pyrolyzes carbon and hydrogen using natural gas as raw materials. Is characterized in that carbon black having a large particle diameter can be obtained, the development of the structure is small, the DBP absorption is small, that is, the aggregate structure of the carbon black particles is small. For example, the arithmetic average primary particle diameter of FT class carbon black is 101 to 200 nm, the DBP absorption is 30 to 50 ml / 100 g, the arithmetic average primary particle diameter of MT class carbon black is 180 to 500 nm, and the DBP absorption is 30 to It is about 50 ml / 100 g. Therefore, it can be said that the aggregated structure in which the particles are bonded is relatively small, and the carbon sphere has a large particle diameter exceeding 101 nm.

一方、インキ、塗料などの顔料として有用されているチャンネルブラックは、算術平均一次粒子径が10〜20nm程度の微粒で、ストラクチャーが高く、カーボンブラックの微細粒子が多数結合した大きな凝集構造体を特徴とし、単一な粒子形状とは大きく異なるものである。   On the other hand, channel blacks that are useful as pigments for inks, paints, etc. are fine particles with an arithmetic average primary particle size of about 10 to 20 nm, a high structure, and a large aggregate structure in which many carbon black fine particles are bonded. It is very different from a single particle shape.

このような粒子性状に特徴を有するサーマルブラックをオイルファーネス法の製造技術をそのまま適用して製造することは極めて困難である。そこで、本出願人はサーマルブラック相当の粒子性状を備えるカーボンブラックの製造技術として、吸熱反応で熱分解するガス状の炭化水素を原料とし、該原料ガスを5〜50vol%の供給濃度で還元雰囲気に保持された外熱式反応炉に送入し、ガス流がレイノルズ数2300以下の層流になる状態で1400℃以上の温度で熱分解する製造方法(特許文献1)を開発した。   It is extremely difficult to produce thermal black having such particle characteristics by directly applying the oil furnace manufacturing technique. Therefore, the present applicant, as a production technique of carbon black having particle properties equivalent to thermal black, uses gaseous hydrocarbons that are thermally decomposed by an endothermic reaction as raw materials, and the raw material gas is supplied in a reducing atmosphere at a supply concentration of 5 to 50 vol%. A manufacturing method (Patent Document 1) was developed in which a gas stream was fed into an externally heated reactor held in a reactor and pyrolyzed at a temperature of 1400 ° C. or higher in a laminar flow with a Reynolds number of 2300 or less.

しかし、この製造技術により得られたカーボンブラックは線流速が速いために生成粒子が衝突合体し比表面積が低い性状となるものの、凝集体が発達し易い性状を呈する。
また、この製造方法は熱分解温度が高いうえに、低温ではカーボンブラックの生成収率が低いという難点もある。その改良技術として常温で液体または固体の炭化水素原料を加熱気化して、該気化した炭化水素原料ガスをキャリアーガスとともに0.01〜2.0vol%のガス濃度で無酸素雰囲気に保持された外熱式熱分解炉に導入し、1000〜1400℃の温度に加熱して熱分解させるカーボンブラックの製造方法(特許文献2)を提案した。この方法により算術平均一次粒子径が160〜500nm、DBP吸収量が40/100g以下のサーマルブラック相当の粒子性状を備えたカーボンブラックを製造することができる。しかしながら、ガス濃度が低いために生産性が低いうえに、粒子凝集体の粒度分布がブロード化する難点がある。
However, the carbon black obtained by this production technique has a property that the aggregated particles are easily developed although the produced particles collide and the specific surface area is low due to the high linear flow velocity.
In addition, this production method has a high thermal decomposition temperature and a low carbon black production yield at low temperatures. As an improvement technique, a liquid or solid hydrocarbon raw material is heated and vaporized at room temperature, and the vaporized hydrocarbon raw material gas is kept in an oxygen-free atmosphere at a gas concentration of 0.01 to 2.0 vol% together with a carrier gas. A method for producing carbon black (Patent Document 2) was proposed, which was introduced into a thermal pyrolysis furnace and thermally decomposed by heating to a temperature of 1000 to 1400 ° C. By this method, carbon black having particle properties equivalent to thermal black having an arithmetic average primary particle size of 160 to 500 nm and a DBP absorption of 40/100 g or less can be produced. However, since the gas concentration is low, the productivity is low, and the particle size distribution of the particle aggregate is broadened.

そこで、本出願人は更に研究を進め、粒子凝集体の粒度分布のブロード化を抑制し、基本粒子の粒子径の分布幅が狭く、ばらつきも小さい炭素微小球を開発して特許文献3として提案した。すなわち、特許文献3には電子顕微鏡による算術平均粒子径dnが20〜150nmであって、そのばらつき度合いを示すs/dnが0.1〜0.3(但し、sはdnの標準偏差)であり、粒子凝集体の大きさを示すストークスモード径Dstと算術平均粒子径dnとの比Dst/dnが1.2以下の粒子性状を備える炭素微小球とその製造方法が開示されている。
特開平07−034001号公報 特開平10−168337号公報 特開2004−211012号公報
Therefore, the present applicant has further researched and proposed a carbon microsphere which is designed to suppress the broadening of the particle size distribution of the particle aggregates and to develop a carbon microsphere with a narrow particle size distribution width and small variation. did. That is, in Patent Document 3, the arithmetic average particle diameter dn measured by an electron microscope is 20 to 150 nm, and s / dn indicating the degree of variation is 0.1 to 0.3 (where s is a standard deviation of dn). There are disclosed carbon microspheres having particle properties in which the ratio Dst / dn of Stokes mode diameter Dst indicating the size of particle aggregates to arithmetic average particle diameter dn is 1.2 or less, and a method for producing the same.
JP 07-034001 A Japanese Patent Laid-Open No. 10-168337 JP 2004-211012 A

特許文献3の製造方法は、水素ガスをキャリアーガスとして、原料炭化水素ガスは水素ガスとともに熱分解炉に供給され、この混合ガスを比較的低温で緩やかに熱分解させて、粒度分布がシャープで粒子凝集構造が小さく、実質的に単一な球状形態の炭素微小球を製造するものである。   In the production method of Patent Document 3, hydrogen gas is used as a carrier gas, and raw material hydrocarbon gas is supplied to a pyrolysis furnace together with hydrogen gas. This mixed gas is slowly pyrolyzed at a relatively low temperature, and the particle size distribution is sharp. A carbon microsphere having a small particle aggregation structure and a substantially single spherical shape is produced.

しかし、この方法は粒子径の算術平均径が20〜150nmとMT級サーマルブラックに比べて小粒子であって、より大粒なものが得難い難点がある。そのうえ、水素ガスにより原料炭化水素ガスの熱分解反応を抑制して、炭素粒子の融着結合の機会を減少させることにより、粒子凝集体の形成を阻止するものであるから、熱分解反応が円滑かつ完全に進行し難い難点があり、得られた炭素微小球の表面にはタール状の未分解の炭素質分が残留する問題がある。この未分解の炭素質分の残留は用途によっては致命的となる場合があるほか炭素微小球の生成収率が低いという問題もある。また、炭素微小球表面において、水素雰囲気であるために、炭素化過程における脱水素反応の進行も妨げられるので、比表面積の大きな炭素微小球となり、用途によっては表面活性が大きすぎが故に、適当でない場合も考えられる。   However, this method has a difficulty that it is difficult to obtain a larger particle having an arithmetic average particle diameter of 20 to 150 nm, which is smaller than that of MT grade thermal black. In addition, the thermal decomposition reaction of the raw material hydrocarbon gas is suppressed by hydrogen gas, and the formation of particle aggregates is prevented by reducing the chance of fusion bonding of carbon particles. In addition, there is a problem that it is difficult to proceed completely, and there is a problem that tar-like undecomposed carbonaceous matter remains on the surface of the obtained carbon microspheres. Residue of the undecomposed carbonaceous matter may be fatal depending on the use, and there is a problem that the yield of carbon microspheres is low. In addition, since the hydrogen atmosphere is on the surface of the carbon microsphere, the progress of the dehydrogenation reaction in the carbonization process is also hindered, so the carbon microsphere has a large specific surface area. If not, it can be considered.

本発明は上記の問題点を解消し、基本となる一次粒子が大粒子径で粒子凝集体の分布幅も狭く、比表面積の小さい炭素微小球を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide carbon microspheres having a primary particle having a large particle diameter, a narrow particle aggregate distribution width, and a small specific surface area.

なお、この炭素微小球は、例えば電子ペーパーやブラックマトリックスに用いられる黒色微粒子からなる黒色顔料、あるいはPTC素子や半導体封止材、リチウム二次電池の負極材などとして好適に用いることができる。   The carbon microspheres can be suitably used, for example, as a black pigment made of black fine particles used for electronic paper or black matrix, a PTC element, a semiconductor encapsulant, a negative electrode material for a lithium secondary battery, or the like.

この目的を達成するための本発明の請求項1に係る炭素微小球は、電子顕微鏡による算術平均一次粒子径dnが150〜450nm、ディスクセントリフュージ装置(DCF)により測定した粒子凝集体のストークスモード径Dstと粒子凝集体の分布性状を示す半値幅ΔDstとの比ΔDst/Dstが0.40〜0.85の凝集粒子性状を有し、窒素吸着比表面積(NSA)と粒子凝集体のストークスモード径Dstとが、NSA<6000/(Dst×1.85)+5の関係を充足することを構成上の特徴とする。 In order to achieve this object, the carbon microsphere according to claim 1 of the present invention has an arithmetic average primary particle diameter dn of 150 to 450 nm by an electron microscope, and a Stokes mode diameter of a particle aggregate measured by a disk centrifuging apparatus (DCF). The ratio ΔDst / Dst between Dst and the half-value width ΔDst indicating the distribution property of the particle aggregate has an aggregate particle property of 0.40 to 0.85, the nitrogen adsorption specific surface area (N 2 SA) and the Stokes of the particle aggregate A structural feature is that the mode diameter Dst satisfies the relationship of N 2 SA <6000 / (Dst × 1.85) +5.

また、本発明の請求項2に係る炭素微小球は、電子顕微鏡による算術平均一次粒子径dnが450nmを超え1000nm以下、ディスクセントリフュージ装置(DCF)により測定した粒子凝集体のストークスモード径Dstと粒子凝集体の分布性状を示す半値幅ΔDstとの比ΔDst/Dstが0.80を超える凝集粒子性状を有し、窒素吸着比表面積(NSA)と粒子凝集体のストークスモード径Dstとが、NSA<6000/(Dst×1.85)+5の関係を充足することを構成上の特徴とする。 In addition, the carbon microsphere according to claim 2 of the present invention has an arithmetic average primary particle size dn measured by an electron microscope of more than 450 nm and 1000 nm or less, and a Stokes mode diameter Dst of the particle aggregate measured by a disk centrifuging device (DCF) and particles. The ratio ΔDst / Dst to the half-value width ΔDst indicating the distribution property of the aggregate has an aggregate particle property exceeding 0.80, and the nitrogen adsorption specific surface area (N 2 SA) and the Stokes mode diameter Dst of the particle aggregate are A structural feature is that the relationship of N 2 SA <6000 / (Dst × 1.85) +5 is satisfied.

前記した請求項1の炭素微小球の製造方法は、炭化水素ガスを不活性キャリアーガスとともに、外熱式反応炉に導入し、炉内温度を1000℃〜1400℃、炭化水素ガス濃度を10〜50vol%、炭化水素ガスの線流速を0.02〜4.0m/secの条件で熱分解することを構成上の特徴とする。   In the method for producing carbon microspheres according to claim 1, the hydrocarbon gas is introduced into the externally heated reactor together with the inert carrier gas, the furnace temperature is 1000 ° C. to 1400 ° C., and the hydrocarbon gas concentration is 10 to 10. It is a structural feature that pyrolysis is performed under the conditions of 50 vol% and a linear flow rate of hydrocarbon gas of 0.02 to 4.0 m / sec.

また、前記した請求項2の炭素微小球の製造方法は、請求項3の製造方法に加え、外熱式反応炉後段部分から、再度炭化水素ガスの原料ガスを導入することを構成上の特徴とする。   The method for producing carbon microspheres according to claim 2 is characterized in that, in addition to the production method according to claim 3, the hydrocarbon gas source gas is introduced again from the rear stage portion of the external heating reactor. And

本発明の炭素微小球は球状粒子の凝集が少なく、更に凝集粒子の分布幅が狭くシャープな分布、比表面積の小さな性状を備えているので、例えば電子ペーパーやブラックマトリックスに用いられる黒色微粒子からなる黒色顔料、あるいはPTC素子や半導体封止材、リチウム二次電池の負極材などとして直接用いたり、或いは表面処理や加熱処理など目的に応じて適宜な手法により処理を施して好適に用いることができる。   The carbon microspheres of the present invention are composed of black fine particles used for, for example, electronic paper and black matrix, because they have little aggregation of spherical particles, and also have a narrow distribution width, sharp distribution, and small specific surface area. It can be suitably used as a black pigment, or directly used as a PTC element, a semiconductor encapsulant, a negative electrode material of a lithium secondary battery, or after being treated by an appropriate method such as surface treatment or heat treatment. .

本発明に係る第1の炭素微小球は、その基本粒子径が従来の炭素微小球に比べて大きく、電子顕微鏡により測定した算術平均一次粒子径dnが150〜450nmであることを特徴とするもので従来得られているサーマルブラック並の算術平均一次粒子径を前提とする。なお、電子顕微鏡による算術平均一次粒子径dn(nm)は次の方法によって測定する。   The first carbon microsphere according to the present invention has a basic particle size larger than that of a conventional carbon microsphere, and an arithmetic average primary particle size dn measured by an electron microscope is 150 to 450 nm. And the arithmetic average primary particle size comparable to that of thermal black obtained in the past. In addition, the arithmetic average primary particle diameter dn (nm) by an electron microscope is measured by the following method.

サンプルを超音波分散機により周波数28kHzで30秒間クロロホルムに分散させたのち、分散試料をカーボン支持膜に固定する(例えば「粉体物性図説」粉体工学研究会編p68(c) “水面膜法”による)。これを電子顕微鏡で直接倍率10000倍、総合倍率100000倍に撮影し、得られた写真からランダムに1000個の炭素粒子の直径を計測し、14nmごとに区分して作成したヒストグラムから算術平均一次粒子径を求める。   After the sample is dispersed in chloroform for 30 seconds at a frequency of 28 kHz by an ultrasonic disperser, the dispersed sample is fixed to a carbon support membrane (for example, “Powder Physical Properties”, edited by the Powder Engineering Society p68 (c) “Water surface membrane method” "by). This was directly photographed with an electron microscope at a magnification of 10,000 times and a total magnification of 100,000 times, and the diameter of 1000 carbon particles was randomly measured from the obtained photo, and the arithmetic average primary particles were divided from each 14 nm and created. Find the diameter.

更に、本発明の炭素微小球は粒子凝集体の分布幅が狭く、シャープな粒度分布を有しており、粒子凝集体の分布性状を示す半値幅ΔDstとDstとの比ΔDst/Dstが0.40〜0.85の凝集粒子性状を有していることを特徴とする。なお、ストークスモード径Dst(nm)およびその半値幅ΔDst(nm)は次の方法により測定する。   Further, the carbon microspheres of the present invention have a narrow particle aggregate distribution width and a sharp particle size distribution, and the ratio ΔDst / Dst between the half-value width ΔDst and Dst indicating the distribution property of the particle aggregate is 0.00. It has an aggregate particle property of 40 to 0.85. The Stokes mode diameter Dst (nm) and its half-value width ΔDst (nm) are measured by the following method.

乾燥した炭素微小球を少量の界面活性剤を含む20vol%エタノール水溶液と混合して炭素分濃度0.1kg/mの分散液を作成し、これを超音波で十分に分散させて試料とする。ディスクセントリフュージ装置(英国Joyes Lobel社製)を100 s−1の回転数に設定し、スピン液(2wt%グリセリン水溶液、25℃)を0.015dm加えた後、0.001dmのバッファー液(20vol%エタノール水溶液、25℃)を注入する。次いで、温度25℃の炭素分散液0.0005dmを注射器で加えた後、遠心沈降を開始し、同時に記録計を作動させて図1に示す分布曲線(横軸;炭素分散液を注射器で加えてからの経過時間、縦軸;炭素試料の遠心沈降に伴い変化した特定点での吸光度)を作成する。この分布曲線より各時間Tを読み取り、次式(数1)に代入して各時間に対応するストークス相当径を算出する。 The dried carbon microspheres are mixed with a 20 vol% aqueous ethanol solution containing a small amount of a surfactant to prepare a dispersion having a carbon content of 0.1 kg / m 3 , and this is sufficiently dispersed with ultrasound to prepare a sample. . Set disk centrifuge apparatus (manufactured by UK Joyes Lobel Ltd.) to the speed of 100 s -1, spin solution (2 wt% glycerine aqueous solution, 25 ° C.) a After addition 0.015dm 3, 0.001dm 3 of buffer solution ( 20 vol% ethanol aqueous solution, 25 ° C.). Next, after adding 0.0005 dm 3 of carbon dispersion liquid at a temperature of 25 ° C. with a syringe, centrifugal sedimentation was started, and simultaneously the recorder was operated, and the distribution curve (horizontal axis; carbon dispersion liquid was added with a syringe). Elapsed time, vertical axis; absorbance at a specific point changed with centrifugal sedimentation of the carbon sample). Each time T is read from this distribution curve and substituted into the following equation (Equation 1) to calculate the Stokes equivalent diameter corresponding to each time.

数1において、ηはスピン液の粘度(0.935×10-3Pa・s)、Nはディスク回転スピード(100s−1)、rは炭素分散液注入点の半径(0.0456m)、rは吸光度測定点までの半径(0.0482m)、ρCBは炭素の密度(kg/m)、ρはスピン液の密度(1.00178kg/m)である。 In Equation 1, η is the viscosity of the spin liquid (0.935 × 10 −3 Pa · s), N is the disk rotation speed (100 s −1 ), r 1 is the radius of the carbon dispersion injection point (0.0456 m), r 2 is the absorbance radius to the measurement point (0.0482m), ρ CB is the density of carbon (kg / m 3), ρ 1 is the density of the spin fluid (1.00178kg / m 3).

このようにして得られたストークス相当径と吸光度の分布曲線(図2)における最大頻度のストークス相当径をストークスモード径Dst(nm)、最大頻度に対し50%の頻度が得られる大小2点のストークス相当径の差(半値幅)をΔDst(nm)とする。   The maximum Stokes equivalent diameter in the Stokes equivalent diameter and absorbance distribution curve (FIG. 2) thus obtained is the Stokes mode diameter Dst (nm). The difference (half-value width) of the Stokes equivalent diameter is taken as ΔDst (nm).

従来得られているサーマルブラック級のカーボンブラックは、この粒子凝集体のストークスモード径Dstと粒子凝集体の分布性状を示す半値幅ΔDstとの比ΔDst/Dstが0.90を越えるものであって、本発明の炭素微小球は粒子凝集体の分布性状を示す半値幅ΔDstとDstとの比ΔDst/Dstが0.40〜0.85の凝集粒子性状を有し、粒子径分布がシャープな性状を示すものである。なお、比ΔDst/Dstが0.40を下回るものは本発明に係る製造方法では確認されていない。なお、粒子の独立性を示す指標である粒子凝集体のストークスモード径Dstと算術平均一次粒子径dnとの比は、サーマルブラックと同程度の1.20〜1.3が特に望ましいが1.20〜2.0の値でもよい。   Conventionally obtained thermal black grade carbon black has a ratio ΔDst / Dst of the Stokes mode diameter Dst of the particle aggregate to the half width ΔDst indicating the distribution property of the particle aggregate exceeding 0.90. The carbon microspheres of the present invention have an aggregated particle property in which the ratio ΔDst / Dst of the half-value width ΔDst to Dst indicating the distribution property of the particle aggregate is 0.40 to 0.85, and the particle size distribution is sharp. Is shown. In addition, what the ratio (DELTA) Dst / Dst is less than 0.40 is not confirmed by the manufacturing method which concerns on this invention. The ratio between the Stokes mode diameter Dst of the particle aggregate, which is an index indicating the independence of the particles, and the arithmetic average primary particle diameter dn is particularly preferably 1.20 to 1.3, which is about the same as that of thermal black. A value of 20 to 2.0 may be used.

一般に粒子に表面に凹凸がなく、真球であると仮定すると、窒素吸着比表面積(NSA)と粒径は以下の様な関係式で表すことが出来る。
SA(m/g)=6000/{算術平均一次粒径(nm)×比重(g/cm)}
一方、本発明の炭素微小球は、窒素吸着比表面積(NSA)とストークスモード径Dst(nm)において下式の関係となり、
SA<6000/(Dst×1.85)+5
表面の凹凸が小さい理想の球体性状に近い性状を呈したものとなる。
In general, assuming that the particle has no irregularities on the surface and is a true sphere, the nitrogen adsorption specific surface area (N 2 SA) and the particle size can be expressed by the following relational expression.
N 2 SA (m 2 / g) = 6000 / {arithmetic average primary particle size (nm) × specific gravity (g / cm 3 )}
On the other hand, the carbon microspheres of the present invention have the following relationship in the nitrogen adsorption specific surface area (N 2 SA) and the Stokes mode diameter Dst (nm):
N 2 SA <6000 / (Dst × 1.85) +5
It has a property close to an ideal spherical property with small surface irregularities.

従って、本発明の炭素微小球は、前記した粒子径分布がシャープな性状の凝集粒子径(Dstモード径)であるうえに、比較的単球状かつ真球状に近似した性状と表面の凹凸が小さい性状すなわち比表面積の小さなものである。なお、ΔDst/Dstの値が大きくて、分布幅がブロードな場合には、凝集粒子径Dstモード径よりも小さな粒子が多くなり比表面積の大きな値をとることがある。また、水素ガスをキャリアーガスとする方法にて炭素微小球を製造する場合には、炭素化過程における脱水素反応の進行が妨げられため、表面の凹凸の多いすなわち比表面積の大きな炭素微小球となるために下式の関係となる。
SA<6000/(Dst×1.85)+5
Therefore, the carbon microspheres of the present invention have an agglomerated particle diameter (Dst mode diameter) with a sharp particle size distribution as described above, and have properties that are relatively monospherical and approximate to a true sphere, and small surface irregularities. It has a small property, that is, a specific surface area. When the value of ΔDst / Dst is large and the distribution width is broad, particles smaller than the aggregated particle diameter Dst mode diameter increase and the specific surface area may take a large value. In addition, when carbon microspheres are produced by a method using hydrogen gas as a carrier gas, the progress of the dehydrogenation reaction in the carbonization process is hindered. In order to become, it becomes the relationship of the following formula.
N 2 SA <6000 / (Dst × 1.85) +5

なお、比表面積、真比重は次のようにして測定する。
・比表面積(NSA); m/g
窒素を吸着ガスとしてASTM D3037-78 “Standard Methods of Testing Carbon Black SurfaceArea by Nitrogen Adsorption”Method Bによる。なお、この方法による IRB#5の測定値は80.3m/gであった。
The specific surface area and true specific gravity are measured as follows.
Specific surface area (N 2 SA); m 2 / g
According to ASTM D3037-78 “Standard Methods of Testing Carbon Black Surface Area by Nitrogen Adsorption” Method B with nitrogen as the adsorption gas. The measured value of IRB # 5 by this method was 80.3 m 2 / g.

・真比重または炭素の密度((kg/m))
日本工業規格「ファインセラミックス粉末の粒子密度測定方法(JIS R1620−1995)」に準拠し、ピクノメータ法により測定を行うことにより求めたものである。即ち、まず200℃の空気浴中にて1時間乾燥した後、デシケータ中にて室温まで冷却した試料を準備する。続いて約4g程度の試料を比重瓶に採取し、少量の1−ブタノール中に完全に浸漬してから、5Torr(6.65×10Pa)以下の真空下で気泡発生が認められなくなるまで減圧脱気する。次いで比重瓶中に1−ブタノールを予め定められた液量まで満たし、そのときの質量を測定する。真比重値は次式により算出される。
(真比重値)=ρ×(mP2−mP1)/[(mP4−mP1)−(mP3−mP2)]
ただし、上式において、
ρ:測定温度における浸液(1−ブタノール)の比重
P1:測定容器(比重瓶)の質量
P2:測定容器に試料を入れたときの質量
P3:試料と浸液を測定容器の規定量入れたときの質量
P4:浸液を測定容器の規定量入れたときの質量である。
なお、測定は室温(20〜30℃)にて実施し、浸液の比重は下に示す文献値を直線内挿することにより求め、これを上記真比重値の計算に用いた。
(20℃における1−ブタノールの比重)=0.8096(30℃における1−ブタノールの比重)=0.8021
-True specific gravity or carbon density ((kg / m 3 ))
In accordance with the Japanese Industrial Standard “Method for Measuring Particle Density of Fine Ceramics Powder (JIS R1620-1995)”, it is obtained by measuring by a pycnometer method. That is, after first drying in an air bath at 200 ° C. for 1 hour, a sample cooled to room temperature in a desiccator is prepared. Subsequently, a sample of about 4 g is collected in a specific gravity bottle, completely immersed in a small amount of 1-butanol, and then no bubbles are observed under a vacuum of 5 Torr (6.65 × 10 2 Pa) or less. Degas under vacuum. Next, 1-butanol is filled in the specific gravity bottle to a predetermined liquid amount, and the mass at that time is measured. The true specific gravity value is calculated by the following equation.
(True specific gravity value) = ρ 1 × (m P2 −m P1 ) / [(m P4 −m P1 ) − (m P3 −m P2 )]
However, in the above formula,
ρ 1 : Specific gravity of immersion liquid (1-butanol) at measurement temperature
m P1 : Mass of the measurement container (specific gravity bottle) m P2 : Mass when the sample is put in the measurement container m P3 : Mass when the sample and the immersion liquid are put in the specified amount of the measurement container m P4 : The immersion liquid is the measurement container This is the mass when a specified amount of is added.
The measurement was performed at room temperature (20 to 30 ° C.), and the specific gravity of the immersion liquid was obtained by linearly interpolating the literature values shown below, and this was used for the calculation of the true specific gravity value.
(Specific gravity of 1-butanol at 20 ° C.) = 0.8096 (Specific gravity of 1-butanol at 30 ° C.) = 0.8021

本発明に係る第2の炭素微小球は、第1の炭素微小球に対して更に粒子径の大きい炭素微小球、すなわち、電子顕微鏡による算術平均一次粒子径dnが450nmを超える炭素球を対象とし、ディスクセントリフュージ装置(DCF)により測定した粒子凝集体のストークスモード径Dstと粒子凝集体の分布性状を示す半値幅ΔDstとの比ΔDst/Dstが0.80を超える凝集粒子性状を有することを特徴とする。   The second carbon microsphere according to the present invention is intended for a carbon microsphere having a larger particle diameter than the first carbon microsphere, that is, a carbon sphere having an arithmetic average primary particle diameter dn of more than 450 nm by an electron microscope. The ratio ΔDst / Dst of the Stokes mode diameter Dst of the particle aggregate measured by a disc centrifuging apparatus (DCF) to the half-value width ΔDst indicating the distribution property of the particle aggregate has an aggregated particle property exceeding 0.80. And

算術平均一次粒子径dnが大きくなると粒子凝集体の分布も広くなり易く、dnが450nmを超える大粒子径において、粒子凝集体の分布性状を示すΔDst/Dstの値が0.80を超える凝集粒子性状を備えたものである。但し、算術平均一次粒子径dnは1000nm以下であり、ΔDst/Dstは1.10以下であることが望ましい。なお、算術平均一次粒子径dnは1000nmを上回るものが本発明に係る製造方法では確認されていないため除外した。また、粒子の独立性を示す指標である粒子凝集体のストークスモード径Dstと算術平均一次粒子径dnとの比は、サーマルブラックと同程度の1.20〜1.3が特に望ましいが1.20〜2.0の値でもよい。   When the arithmetic average primary particle diameter dn is increased, the distribution of particle aggregates is likely to be widened, and in a large particle diameter where dn exceeds 450 nm, the aggregated particles having a value of ΔDst / Dst exceeding 0.80 indicating the distribution properties of the particle aggregates. It has properties. However, it is desirable that the arithmetic average primary particle diameter dn is 1000 nm or less and ΔDst / Dst is 1.10 or less. The arithmetic average primary particle diameter dn was excluded because it was not confirmed by the production method according to the present invention that the average particle diameter dn exceeded 1000 nm. Further, the ratio between the Stokes mode diameter Dst of the particle aggregate, which is an index indicating the independence of the particles, and the arithmetic average primary particle diameter dn is particularly preferably 1.20 to 1.3 which is the same as that of the thermal black. A value of 20 to 2.0 may be used.

また、本発明に係る第2の炭素微小球は、窒素吸着比表面積(NSA)とストークスモード径Dst(nm)において下式の関係となり、
SA<6000/(Dst×1.85)+5
但し、NSA≧6000/(Dst×1.85}
1.85は、炭素微小球の真比重である。
表面の凹凸が小さい理想の球体性状に近い性状を呈したものとなる。
Further, the second carbon microsphere according to the present invention has the following relationship in the nitrogen adsorption specific surface area (N 2 SA) and the Stokes mode diameter Dst (nm):
N 2 SA <6000 / (Dst × 1.85) +5
However, N 2 SA ≧ 6000 / (Dst × 1.85}
1.85 is the true specific gravity of the carbon microsphere.
It has a property close to an ideal spherical property with small surface irregularities.

従って、本発明の炭素微小球は、前記した粒子径分布がシャープな性状の凝集粒子径(Dstモード径)であるうえに、比較的単球状かつ真球状に近似した性状と表面の凹凸が小さい性状すなわち比表面積の小さなものである。なお、ΔDst/Dstの値が大きくて、分布幅がブロードな場合には、凝集粒子径Dstモード径よりも小さな粒子が多くなり比表面積の大きな値をとることがある。また、水素ガスをキャリアーガスとする方法にて炭素微小球を製造する場合には、炭素化過程における脱水素反応の進行が妨げられため、表面の凹凸の多いすなわち比表面積の大きな炭素微小球となるために下式の関係となる。
SA≧6000/{(Dst−80)×1.85}+5
Therefore, the carbon microspheres of the present invention have an agglomerated particle diameter (Dst mode diameter) with a sharp particle size distribution as described above, and have properties that are relatively monospherical and approximate to a true sphere, and small surface irregularities. It has a small property, that is, a specific surface area. When the value of ΔDst / Dst is large and the distribution width is broad, particles smaller than the aggregated particle diameter Dst mode diameter increase and the specific surface area may take a large value. In addition, when carbon microspheres are produced by a method using hydrogen gas as a carrier gas, the progress of the dehydrogenation reaction in the carbonization process is hindered. In order to become, it becomes the relationship of the following formula.
N 2 SA ≧ 6000 / {(Dst-80) × 1.85} +5

このような粒子性状を有する本発明の炭素微小球は、例えば、電気泳動方式の電子ペーパー用の黒色顔料微粒子として用いた場合には、凝集粒子の粒度分布がシャープであるため、泳動媒体中における電気泳動速度の不均一性が生じ難くなるので、表示の不鮮明性が防止され、鮮明性が向上する。   When the carbon microspheres of the present invention having such particle properties are used as, for example, black pigment fine particles for electrophoretic electronic paper, the aggregated particles have a sharp particle size distribution. Since non-uniformity of the electrophoresis speed is less likely to occur, display blurring is prevented and the sharpness is improved.

また、例えば、ブラックマトリックス用の黒色顔料として用いた場合には、凝集粒子の粒度分布がブロードであると粒子間の隙間が多くなるので遮光性が悪化することになるが、本発明の炭素微粒子によれば粒度分布がシャープなため遮光性の悪化を効果的に防止することができる。   In addition, for example, when used as a black pigment for a black matrix, if the particle size distribution of the aggregated particles is broad, the gaps between the particles are increased, so that the light shielding property is deteriorated. According to this, since the particle size distribution is sharp, it is possible to effectively prevent the deterioration of the light shielding property.

その他、本発明の炭素微小球によれば、例えばPTC素子や半導体封止材、リチウム二次電池の負極材などの黒色顔料やゴムおよび樹脂の充填材などとして好適に使用することができ、広い産業分野で極めて有用である。   In addition, according to the carbon microspheres of the present invention, for example, it can be suitably used as a filler for black pigments, rubbers and resins such as PTC elements, semiconductor encapsulants, and negative electrode materials for lithium secondary batteries, and the like. It is extremely useful in the industrial field.

この炭素微小球は原料となる炭化水素をガス化して、水素ガスを除く不活性なキャリアーガスとともに外熱式の加熱炉に送入して、炭化水素ガスを熱分解することにより製造される。   These carbon microspheres are produced by gasifying hydrocarbons as raw materials, feeding them into an externally heated furnace together with an inert carrier gas excluding hydrogen gas, and pyrolyzing the hydrocarbon gas.

炭化水素ガスには、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの単環式芳香族炭化水素、ナフタレン、アントラセンなどの多環式芳香族炭化水素、および天然ガス、都市ガス、液化天然ガス、液化石油ガスなどを用いることができ、原料炭化水素が常温で液体または固体の場合には、加熱気化して、ガス状で使用される。   Hydrocarbon gases include aliphatic hydrocarbons such as methane, ethane, propane, butane, ethylene, propylene, and butadiene, monocyclic aromatic hydrocarbons such as benzene, toluene, and xylene, and polycyclic aromatics such as naphthalene and anthracene. Group hydrocarbons, natural gas, city gas, liquefied natural gas, liquefied petroleum gas, etc. can be used. When the raw material hydrocarbon is liquid or solid at room temperature, it is vaporized by heating and used in a gaseous state .

不活性なキャリアーガスには水素ガスを除く、炭化水素ガスの熱分解時に安定で反応しない不活性なガスが用いられ、例えば、窒素、アルゴン、ヘリウム、ネオン、キセノン、クリプトンなどのガスが例示される。好ましくは、窒素ガス、アルゴンガス、ヘリウムガスが好適である。   As the inert carrier gas, an inert gas that is stable and does not react at the time of thermal decomposition of hydrocarbon gas is used except hydrogen gas, and examples thereof include gases such as nitrogen, argon, helium, neon, xenon, krypton, etc. The Nitrogen gas, argon gas, and helium gas are preferable.

この場合、不活性なキャリアーガスは、炭化水素ガスの熱分解反応が促進するので、より低温即ち1000〜1400での熱分解が可能となる。また、表面の凹凸の少なくて比表面積の小さな炭素微小球となる。また、生成収率も向上して生産効率が良くなる。更に、本発明の炭素微小球は粒子径が大きくするために、線流速を遅くして粒子を成長させ、かつ、熱分解反応を相対的に緩やかな条件下で行う。一方、水素ガスをキャリアーガスに用いると炭化水素ガスの熱分解反応が抑制されるので、炭素微小球表面において、炭素化過程における脱水素反応の進行も妨げられて、表面の凹凸の多くて比表面積の大きな炭素微小球となる。更に、生成収率も低下して生産効率が悪くなる。また、炭化水素が高分子化した未分解の分解過程にあるタール状の炭素分が残留し易くなり、用途によっては熱処理を行う必要があり、これも生産効率が悪くなる。そのうえ、しかしながら、線流速を遅くする場合には、一層タール状の炭素分が残留し易くなる。   In this case, since the inert carrier gas promotes the thermal decomposition reaction of the hydrocarbon gas, thermal decomposition at a lower temperature, that is, 1000 to 1400 is possible. Moreover, it becomes a carbon microsphere with few surface irregularities and a small specific surface area. In addition, the production yield is improved and the production efficiency is improved. Furthermore, since the carbon microspheres of the present invention have a large particle diameter, the linear flow velocity is slowed to grow the particles, and the thermal decomposition reaction is performed under relatively mild conditions. On the other hand, when hydrogen gas is used as the carrier gas, the thermal decomposition reaction of hydrocarbon gas is suppressed, so that the progress of the dehydrogenation reaction in the carbonization process is hindered on the surface of the carbon microsphere, and the surface unevenness is large. It becomes a carbon microsphere with a large surface area. In addition, the production yield is lowered and the production efficiency is deteriorated. In addition, tar-like carbon components in an undecomposed decomposition process in which hydrocarbons are polymerized are likely to remain, and depending on the application, it is necessary to perform heat treatment, which also deteriorates production efficiency. In addition, however, when the linear flow rate is slowed, tar-like carbon content tends to remain.

原料炭化水素ガスを不活性なキャリアーガスとともに外熱式の加熱炉に供給して、熱分解することにより本発明の炭素微小球は製造されるが、この場合に、熱分解時の温度、炉内を通過する炭化水素ガスの線速度、炭化水素ガスと不活性なキャリアーガスの比率(原料濃度)などを調整することにより、炭素微小球の算術平均一次粒子径dn、粒子凝集体のストークスモード径Dstと半値幅ΔDstとDstとの比ΔDst/Dstなどを制御することができる。   The carbon microspheres of the present invention are manufactured by supplying raw material hydrocarbon gas together with an inert carrier gas to an external heating furnace and pyrolyzing. In this case, the temperature during the pyrolysis, the furnace By adjusting the linear velocity of hydrocarbon gas passing through the inside, the ratio (raw material concentration) of hydrocarbon gas and inert carrier gas, the arithmetic average primary particle diameter dn of carbon microspheres, the Stokes mode of particle aggregates A ratio ΔDst / Dst between the diameter Dst and the half-value width ΔDst and Dst can be controlled.

例えば、請求項1の炭素微小球は熱分解時の温度を1000〜1400℃、好ましくは1050℃〜1350℃に保つ、炉内を通過する炭化水素ガスの原料濃度を10〜50vol%、線速度を0.02〜4.0m/sec、好ましくは0.04〜2.0m/secに設定することにより製造することができる。   For example, the carbon microspheres according to claim 1 maintain the temperature during pyrolysis at 1000 to 1400 ° C., preferably 1050 ° C. to 1350 ° C., the raw material concentration of hydrocarbon gas passing through the furnace is 10 to 50 vol%, and the linear velocity Can be produced by setting 0.02 to 4.0 m / sec, preferably 0.04 to 2.0 m / sec.

算術平均一次粒子径dnは、温度を上げると小さくすることができる。また、粒子凝集体のストークスモード径Dstは、原料濃度を上げると大きくすることができる。更に、粒子凝集体のストークスモード径Dstと半値幅ΔDstとDstとの比ΔDst/Dstは、線速度を小さくすると小さくなり、また、シャープな粒子分布状態とすることができる。これらの条件を適宜設定して製造する。   The arithmetic average primary particle diameter dn can be reduced by increasing the temperature. Further, the Stokes mode diameter Dst of the particle aggregate can be increased by increasing the raw material concentration. Furthermore, the ratio ΔDst / Dst between the Stokes mode diameter Dst and the half-value width ΔDst and Dst of the particle aggregate decreases as the linear velocity decreases, and a sharp particle distribution state can be obtained. These conditions are set as appropriate.

熱分解温度は、1000℃を下まわる場合には炭化水素ガスの原料ガスが炭化せずに、液滴のまま炉外に出てしまい、炭素微小球粉末が得られない。1400℃を上まわる場合には、原料炭化水素ガスの炭素化反応が早いためにシャープな粒子分布が得られ難い。また、線流速は4.0m/secを上まわると原料ガスの流れは均一性が低下して粒度分布の幅広いものとなるうえに、原料ガスの充分な滞留時間が得られず熱分解反応の進行が充分でないために未燃分(炭素化が不十分な反応中間体)が多くなる。0.02m/secを下まわると、反応管壁への粉末の付着が顕著となり、経路閉塞を引き起こし易くなり製造困難となる。炭化水素の原料ガスの全ガス量に占める濃度は、10〜50vol%が適当である。10vol%を下回る場合には、線流速を低くする必要があるものの反応管壁への粉末の付着が顕著となる。また、50vol%を上まわる場合には、均一な反応が進みにくくなりシャープな粒子分布が得られ難いうえに反応管内を閉塞する現象を招く。   When the thermal decomposition temperature is lower than 1000 ° C., the hydrocarbon gas raw material gas is not carbonized and goes out of the furnace as droplets, and carbon microsphere powder cannot be obtained. When the temperature exceeds 1400 ° C., it is difficult to obtain a sharp particle distribution because the carbonization reaction of the raw material hydrocarbon gas is fast. Moreover, when the linear flow rate exceeds 4.0 m / sec, the flow of the raw material gas becomes less uniform and the particle size distribution becomes wide, and a sufficient residence time of the raw material gas cannot be obtained and the thermal decomposition reaction is not performed. Since the progress is not sufficient, unburned content (reaction intermediate with insufficient carbonization) increases. If it falls below 0.02 m / sec, the adhesion of the powder to the reaction tube wall becomes remarkable, and it becomes easy to cause clogging of the path, making it difficult to manufacture. 10-50 vol% is suitable for the density | concentration to the total gas amount of the raw material gas of hydrocarbon. When it is less than 10 vol%, the powder adheres to the reaction tube wall, although it is necessary to reduce the linear flow velocity. On the other hand, if it exceeds 50 vol%, it is difficult for a uniform reaction to proceed, and it is difficult to obtain a sharp particle distribution, and the reaction tube is blocked.

更に請求項2の炭素微小球で450nmを越えるの大粒化を達成するために、炭化水素ガスの原料ガスの熱分解時の温度を1000〜1400℃、好ましくは1050℃〜1350℃に保つ、炉内を通過する炭化水素ガスの原料濃度を10〜50vol%、線速度を0.02〜4.0m/sec、好ましくは0.04〜2.0m/secに設定したうえに、炭化水素ガスの原料ガスが外熱式反応炉内の加熱帯を通過した後に、再度炭化水素ガスの原料ガスを導入する方法により製造される。最初に導入した炭化水素ガスの原料ガスは熱分解により、炭素微小球は算術平均一次粒子径が150〜450nmのものが生成するものの、炭素微小球の生成に伴い炭化水素ガスの原料濃度は希薄となり、粒成長に必要なカーボンが供給され難い条件となる。そこで、ヒーター出口後に再度炭化水素ガスの原料ガスを導入することにより粒子径成長が継続することとなる。再度導入する炭化水素ガスの原料ガスの量は、最初に導入した炭化水素ガスの原料ガス量に対し、50%から100%に調整する。一次粒子径に応じてその割合を随時変更するものとする。   Furthermore, in order to achieve a particle size exceeding 450 nm with the carbon microspheres according to claim 2, a furnace in which the temperature at the time of pyrolysis of the raw material gas of hydrocarbon gas is maintained at 1000 to 1400 ° C, preferably 1050 ° C to 1350 ° C. The raw material concentration of the hydrocarbon gas passing through the inside is set to 10 to 50 vol%, the linear velocity is set to 0.02 to 4.0 m / sec, preferably 0.04 to 2.0 m / sec. After the raw material gas has passed through the heating zone in the external heating reactor, it is manufactured by a method of introducing the raw material gas of hydrocarbon gas again. The hydrocarbon gas source gas introduced first is thermally decomposed to produce carbon microspheres with an arithmetic average primary particle size of 150 to 450 nm. However, the concentration of hydrocarbon gas feedstock is dilute with the formation of carbon microspheres. Thus, it is difficult to supply carbon necessary for grain growth. Thus, by introducing the hydrocarbon gas source gas again after the heater exit, the particle size growth will continue. The amount of the hydrocarbon gas source gas to be reintroduced is adjusted from 50% to 100% with respect to the amount of the hydrocarbon gas source gas initially introduced. The ratio is changed as needed according to the primary particle size.

図3は本発明の炭素微小球を製造するための装置の全体構成を例示した説明図である。図3において、11は炭化水素の原料ガス(例えばメタンガス)が充填されたガスボンベ、12は不活性なキャリアーガス(例えば窒素ガス)が充填されたガスボンベであり、13は流量計である。14は液体炭化水素原料を貯蔵した原料タンクで、例えばトルエン等を液状で貯蔵している。15は液体炭化水素原料を予熱するための装置であり、予熱することで、液体原料ガスが気化する。加熱炉17は原料である炭化水素ガスを熱分解して炭素微小球に転化するための加熱炉であり、例えば内径145mm、長さ1500mmの不透明石英管であり、その外側に外熱加熱用の熱発生源18を設置する。外熱方式としては、高周波誘導加熱方式や、電熱加熱方式、更には燃焼ガスを流す方式が適用される。加熱炉17内は予め真空ポンプ22によって脱酸素するか不活性ガスにより置換する。   FIG. 3 is an explanatory view illustrating the overall configuration of an apparatus for producing the carbon microspheres of the present invention. In FIG. 3, 11 is a gas cylinder filled with a hydrocarbon source gas (for example, methane gas), 12 is a gas cylinder filled with an inert carrier gas (for example, nitrogen gas), and 13 is a flow meter. Reference numeral 14 denotes a raw material tank that stores a liquid hydrocarbon raw material, and stores, for example, toluene in a liquid state. 15 is an apparatus for preheating the liquid hydrocarbon raw material, and the liquid raw material gas is vaporized by preheating. The heating furnace 17 is a heating furnace for thermally decomposing hydrocarbon gas as a raw material and converting it into carbon microspheres. For example, the heating furnace 17 is an opaque quartz tube having an inner diameter of 145 mm and a length of 1500 mm. A heat generation source 18 is installed. As the external heating method, a high frequency induction heating method, an electrothermal heating method, or a method of flowing a combustion gas is applied. The inside of the heating furnace 17 is previously deoxygenated by a vacuum pump 22 or is replaced with an inert gas.

加熱炉17内には、混合ガスの流速を制御するために、反応管径が異なる例えばムライト製、炭化珪素製などの耐熱性管を内挿できるようになっている。また、原料ガス11、キャリアーガス12の流量を任意に変更することでも同様のことが出来る。算術一次平均粒子径が450nmを上回るの炭素微小球を製造する場合には、ヒーター出口後に原料ガスを挿入する。炉内温度は熱電対もしくは放射温度計で検出して温度調節器19で所定の温度に制御している。熱分解後の炭素微小球を含む分解ガスは冷却管20で冷却したのち、捕集室23で炭素微小球を分離捕集したのち、水槽24を経由して燃焼装置25で分解ガスを完全燃焼させて系外に排出される。   In the heating furnace 17, in order to control the flow rate of the mixed gas, heat-resistant tubes made of, for example, mullite or silicon carbide having different reaction tube diameters can be inserted. The same can be done by arbitrarily changing the flow rates of the source gas 11 and the carrier gas 12. In the case of producing carbon microspheres having an arithmetic primary average particle diameter exceeding 450 nm, a raw material gas is inserted after the heater exit. The temperature in the furnace is detected by a thermocouple or a radiation thermometer and controlled to a predetermined temperature by a temperature controller 19. The cracked gas containing the carbon microspheres after pyrolysis is cooled by the cooling pipe 20, and after separating and collecting the carbon microspheres in the collection chamber 23, the cracked gas is completely burned by the combustion device 25 via the water tank 24. Are discharged outside the system.

以下、本発明を具体的に例示する。   Hereinafter, the present invention will be specifically exemplified.

実施例1
図3に示した装置により、原料炭化水素ガスにメタンガスを、キャリアーガスに窒素ガスを用いて、熱分解温度を1350℃に、原料ガス濃度を20vol%に、炉内を通過するメタンの線速度を0.75m/secに設定して2時間熱分解して炭素微小球を製造した。
Example 1
With the apparatus shown in FIG. 3, methane gas is used as the source hydrocarbon gas, nitrogen gas is used as the carrier gas, the pyrolysis temperature is 1350 ° C., the source gas concentration is 20 vol%, and the linear velocity of methane passing through the furnace. Was set to 0.75 m / sec and pyrolyzed for 2 hours to produce carbon microspheres.

実施例2〜7、比較例1〜5
原料炭化水素ガスにメタンガス、プロパンガス、ブタンガス、および、トルエンを気化したトルエンガスを用いて、熱分解温度、原料ガス濃度、炉内を通過する原料炭化水素ガスの線速度を変えて、それぞれ2時間熱分解させて炭素微小球を製造した。
Examples 2-7, Comparative Examples 1-5
Using methane gas, propane gas, butane gas, and toluene gas vaporized as the raw material hydrocarbon gas, the pyrolysis temperature, the raw material gas concentration, and the linear velocity of the raw material hydrocarbon gas passing through the furnace are changed to 2 respectively. Carbon microspheres were produced by pyrolysis for a period of time.

これらの炭素微小球について、電子顕微鏡により算術平均一次粒子径dn、ディスクセントリフュージ装置により凝集体のストークスモード径Dstおよび半値幅ΔDstを測定し、また、トルエン着色透過度LT、窒素吸着比表面積(NSA)も測定した。更に、加熱炉の炉外に排出された炭素微小球の重量を測定して、収率を算出した。得られた結果を表1に示した。なお、トルエン着色透過度LTは次のようにして測定した。JIS K6218:1997の第8項B法に記載の方法により測定され、純粋なトルエンの透過率を100%としたときの試料の透過率で表示さる。数字が大きいほどトルエン汚染度が小さい、すなわち未分解芳香族炭化水素成分が少ないことを意味する。 For these carbon microspheres, the arithmetic average primary particle diameter dn was measured with an electron microscope, the Stokes mode diameter Dst and the half-value width ΔDst of the aggregate were measured with a disc centrifuging device, and the toluene coloring permeability LT, nitrogen adsorption specific surface area (N 2 SA) was also measured. Furthermore, the weight of the carbon microspheres discharged outside the furnace was measured to calculate the yield. The obtained results are shown in Table 1. In addition, toluene coloring transmittance | permeability LT was measured as follows. It is measured by the method described in Item 8B of JIS K6218: 1997, and is expressed as the transmittance of the sample when the transmittance of pure toluene is 100%. A larger number means a lower degree of toluene contamination, that is, a smaller amount of undecomposed aromatic hydrocarbon components.

(表注)
a値=6000/(Dst×1.85)+5
参考例1:特開平7−34001号の実施例11により得られたカーボンブラック粒子性状
参考例2:*1 FT級サーマルブラック市販品
参考例3:*2 MT級サーマルブラック市販品
*3 炉内経路閉塞により粉が得られず
*4 粉が得られず
(Table note)
a value = 6000 / (Dst × 1.85) +5
Reference Example 1: Properties of carbon black particles obtained in Example 11 of JP-A-7-34001 Reference Example 2: * 1 Commercial product of FT class thermal black Reference Example 3: * 2 Commercial product of MT class thermal black
* 3 Powder cannot be obtained due to blockage in the furnace path.
* 4 No powder is obtained

実施例8〜10、比較例6、7
原料炭化水素ガスにメタンガス、プロパンガスを用いて、熱分解温度、原料ガス濃度、炉内を通過する原料炭化水素ガスの線速度を変えて、更にヒーター出口後において原料ガスを再度挿入して、それぞれ2時間熱分解させて炭素微小球を製造した。
Examples 8 to 10, Comparative Examples 6 and 7
Using methane gas and propane gas as the raw material hydrocarbon gas, changing the thermal decomposition temperature, the raw material gas concentration, the linear velocity of the raw material hydrocarbon gas passing through the furnace, and further inserting the raw material gas after the heater exit, Carbon microspheres were produced by pyrolysis for 2 hours each.

表1の結果から、実施例1〜7の炭素微小球は、算術平均一次粒子径dnが150〜450nmであり、ΔDst/Dstが0.40〜0.85の範囲にあり、市販のサーマルブラックであるFTやMTより粒子径がシャープなことが分かる。また、本発明の請求項3を満たす製造方法により、本発明の請求項1の性状を呈する炭素微小球が得られる。一方、比較例1〜5は本発明の条件を満たさない製造方法であり、本発明の請求項1、2の性状を呈する炭素微小球が得られない。   From the results of Table 1, the carbon microspheres of Examples 1 to 7 have an arithmetic average primary particle diameter dn of 150 to 450 nm, ΔDst / Dst in the range of 0.40 to 0.85, and are commercially available thermal blacks. It can be seen that the particle diameter is sharper than FT and MT. Moreover, the carbon microsphere which exhibits the property of Claim 1 of this invention is obtained by the manufacturing method which satisfies Claim 3 of this invention. On the other hand, Comparative Examples 1 to 5 are production methods that do not satisfy the conditions of the present invention, and carbon microspheres exhibiting the properties of claims 1 and 2 of the present invention cannot be obtained.

なお、比較例3では線流速が0.01m/secと遅いために、生成した炭素粉末が反応管に付着して、炉外へ排出されなかった。時間の経過と共に、炉内経路の閉塞を及ぼしてしまい、結果、炭素粉末を得ることが出来なかった。また、比較例4では熱分解温度が900℃と低く、熱分解反応が円滑に進行せず、生成物は主にタール状の未分解炭化水素(未燃分)であった。さらに、キャリアーガスに水素を使用した比較例5では、熱分解が抑制され、得られた粉末表面に未分解分炭素質が多く残存し、トルエン着色透過度LTが0%であった。また、収率が10%と著しく製造効率が悪い。そのうえ、粒径に対する比表面積が大きく、凹凸が多く存在していることを示すものであった。   In Comparative Example 3, since the linear flow rate was as slow as 0.01 m / sec, the generated carbon powder adhered to the reaction tube and was not discharged out of the furnace. With the passage of time, the furnace path was blocked, and as a result, carbon powder could not be obtained. In Comparative Example 4, the pyrolysis temperature was as low as 900 ° C., and the pyrolysis reaction did not proceed smoothly, and the product was mainly tar-like undecomposed hydrocarbons (unburned content). Furthermore, in Comparative Example 5 in which hydrogen was used as the carrier gas, thermal decomposition was suppressed, a large amount of undecomposed carbonaceous matter remained on the surface of the obtained powder, and the toluene coloring transmittance LT was 0%. In addition, the yield is 10%, and the production efficiency is extremely low. In addition, the specific surface area relative to the particle size is large, indicating that there are many irregularities.

さらに、表2の結果から、実施例8〜11の炭素微小球は、算術平均一次粒子径dnが450〜1000nmであり、ΔDst/Dstが0.80〜1.05となり本発明の請求項2の性状を呈することが分かる。本発明の請求項4に係る製造方法により即ち反応炉内のヒーター出口からの原料ガス導入することにより、本発明の請求項2の性状を呈する炭素微小球が得られる。   Furthermore, from the results of Table 2, the carbon microspheres of Examples 8 to 11 have an arithmetic average primary particle diameter dn of 450 to 1000 nm and ΔDst / Dst of 0.80 to 1.05. It can be seen that the following properties are exhibited. By introducing the raw material gas from the heater outlet in the reaction furnace by the manufacturing method according to claim 4 of the present invention, carbon microspheres exhibiting the properties of claim 2 of the present invention are obtained.

比較例6では、収率が低いうえに、炭素粉末に未分解分炭素質が多く残存し、LTが10であった。また、収率が10%と著しく低いことから、製造効率が悪い。そのうえ、粒子が凝集したものであった。一方、比較例7では、キャリアーガスに水素を使用したために、熱分解が抑制され、結果得られた炭素粉末に未分解分炭素質が多く残存し、LTが0であった。また、収率が10%と著しく低いことから、製造効率が悪い。更に、粒径に対する比表面積が大きく、凹凸が多く存在していることを示すものであった。   In Comparative Example 6, the yield was low and a large amount of undecomposed carbonaceous matter remained in the carbon powder, and the LT was 10. Further, since the yield is as low as 10%, the production efficiency is poor. In addition, the particles were agglomerated. On the other hand, in Comparative Example 7, since hydrogen was used as the carrier gas, thermal decomposition was suppressed, and a large amount of undecomposed carbonaceous matter remained in the resulting carbon powder, and LT was 0. Further, since the yield is as low as 10%, the production efficiency is poor. Furthermore, the specific surface area with respect to the particle size was large, indicating that there were many irregularities.

Dst測定時における炭素微小球の分散液を加えてからの経過時間と炭素微小球の遠心沈降による吸光度の変化を示した分布曲線である。It is the distribution curve which showed the elapsed time after adding the dispersion liquid of the carbon microsphere at the time of Dst measurement, and the change of the light absorbency by centrifugal sedimentation of the carbon microsphere. Dst測定時に得られたストークス相当径と吸光度の関係を示す分布曲線である。It is a distribution curve which shows the relationship between the Stokes equivalent diameter obtained at the time of Dst measurement, and a light absorbency. 本発明の炭素微小球を製造するための装置の全体構成を例示した説明図である。It is explanatory drawing which illustrated the whole structure of the apparatus for manufacturing the carbon microsphere of this invention.

符号の説明Explanation of symbols

11 原料ガスボンベ
12 キャリアーガスボンベ
13 流量計
14 原料タンク
15 予熱ヒーター
16 圧力計
17 加熱炉(外熱式反応炉)
18 ヒーター
19 原料ガス導入口
20 温度調節器
21 冷却管
22 バルブ
23 真空ポンプ
24 捕集室
25 水槽
26 燃焼装置
27 ステンレス製配管
11 Raw material gas cylinder 12 Carrier gas cylinder 13 Flow meter 14 Raw material tank 15 Preheating heater 16 Pressure gauge 17 Heating furnace (external heating type reactor)
18 Heater 19 Source Gas Inlet 20 Temperature Controller 21 Cooling Pipe 22 Valve 23 Vacuum Pump 24 Collection Chamber 25 Water Tank 26 Combustion Device 27 Stainless Steel Piping

Claims (4)

電子顕微鏡による算術平均一次粒子径dnが150〜450nm、ディスクセントリフュージ装置(DCF)により測定した粒子凝集体のストークスモード径Dstと粒子凝集体の分布性状を示す半値幅ΔDstとの比ΔDst/Dstが0.40〜0.85の凝集粒子性状を有し、窒素吸着比表面積(NSA)と粒子凝集体のストークスモード径Dstとが、NSA<6000/(Dst×1.85)+5の関係を充足することを特徴とする炭素微小球。 Arithmetic average primary particle diameter dn by electron microscope is 150 to 450 nm, and ratio ΔDst / Dst between Stokes mode diameter Dst of particle aggregate measured by disk centrifuging apparatus (DCF) and half width ΔDst indicating distribution property of particle aggregate is It has an aggregate particle property of 0.40 to 0.85, and the nitrogen adsorption specific surface area (N 2 SA) and the Stokes mode diameter Dst of the particle aggregate are N 2 SA <6000 / (Dst × 1.85) +5 A carbon microsphere characterized by satisfying the above relationship. 電子顕微鏡による算術平均一次粒子径dnが450nmを超え1000nm以下、ディスクセントリフュージ装置(DCF)により測定した粒子凝集体のストークスモード径Dstと粒子凝集体の分布性状を示す半値幅ΔDstとの比ΔDst/Dstが0.80を超える凝集粒子性状を有し、窒素吸着比表面積(NSA)と粒子凝集体のストークスモード径Dstとが、NSA<6000/(Dst×1.85)+5の関係を充足することを特徴とする炭素微小球。 Arithmetic average primary particle diameter dn by electron microscope is more than 450 nm and not more than 1000 nm, and ratio ΔDst / of Stokes mode diameter Dst of particle aggregate measured by disk centrifuging device (DCF) and half width ΔDst indicating distribution property of particle aggregate Dst has an aggregate particle property exceeding 0.80, and the nitrogen adsorption specific surface area (N 2 SA) and the Stokes mode diameter Dst of the particle aggregate are N 2 SA <6000 / (Dst × 1.85) +5 Carbon microspheres characterized by satisfying the relationship. 炭化水素ガスを不活性キャリアーガスとともに、外熱式反応炉に導入し、炉内温度を1000℃〜1400℃、炭化水素ガス濃度を10〜50vol%、炭化水素ガスの線流速を0.02〜4.0m/secの条件で熱分解することを特徴とする、請求項1記載の炭素微小球の製造方法。   A hydrocarbon gas is introduced into an externally heated reactor together with an inert carrier gas, the furnace temperature is 1000 ° C. to 1400 ° C., the hydrocarbon gas concentration is 10 to 50 vol%, and the linear flow rate of the hydrocarbon gas is 0.02 to 0.02%. 2. The method for producing carbon microspheres according to claim 1, wherein pyrolysis is performed under a condition of 4.0 m / sec. 請求項3の製造方法に加え、外熱式反応炉後段部分から、再度炭化水素ガスの原料ガスを導入することを特徴とする、請求項2記載の炭素微小球の製造方法。


4. The method for producing carbon microspheres according to claim 2, wherein, in addition to the production method of claim 3, a hydrocarbon gas source gas is introduced again from the latter part of the external heating type reactor.


JP2006133323A 2006-05-12 2006-05-12 Carbon microspheres and method for producing the same Expired - Fee Related JP4826901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133323A JP4826901B2 (en) 2006-05-12 2006-05-12 Carbon microspheres and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133323A JP4826901B2 (en) 2006-05-12 2006-05-12 Carbon microspheres and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007302520A true JP2007302520A (en) 2007-11-22
JP4826901B2 JP4826901B2 (en) 2011-11-30

Family

ID=38836785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133323A Expired - Fee Related JP4826901B2 (en) 2006-05-12 2006-05-12 Carbon microspheres and method for producing the same

Country Status (1)

Country Link
JP (1) JP4826901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003557A (en) * 2019-12-19 2021-06-22 中国科学院化学研究所 Carbon microsphere and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834860A (en) * 1981-08-26 1983-03-01 Mitsubishi Chem Ind Ltd Concurrent production of pyrolytic carbon and carbon black
JPH0734001A (en) * 1993-07-19 1995-02-03 Tokai Carbon Co Ltd Production of carbon black
JPH08337411A (en) * 1995-06-14 1996-12-24 Nikkiso Co Ltd Graphite particle, its production and lithium ion secondary battery
JPH0952708A (en) * 1995-08-08 1997-02-25 Tokai Carbon Co Ltd Production of spherical graphite fine powder
JPH09241528A (en) * 1996-03-04 1997-09-16 Tokai Carbon Co Ltd Process and apparatus for production carbon black
JPH11349313A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Apparatus for producing carbon black and production of carbon black
JP2000001627A (en) * 1998-06-12 2000-01-07 Mitsubishi Chemicals Corp Manufacturing equipment for carbon black and production of carbon black

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834860A (en) * 1981-08-26 1983-03-01 Mitsubishi Chem Ind Ltd Concurrent production of pyrolytic carbon and carbon black
JPH0734001A (en) * 1993-07-19 1995-02-03 Tokai Carbon Co Ltd Production of carbon black
JPH08337411A (en) * 1995-06-14 1996-12-24 Nikkiso Co Ltd Graphite particle, its production and lithium ion secondary battery
JPH0952708A (en) * 1995-08-08 1997-02-25 Tokai Carbon Co Ltd Production of spherical graphite fine powder
JPH09241528A (en) * 1996-03-04 1997-09-16 Tokai Carbon Co Ltd Process and apparatus for production carbon black
JPH11349313A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Apparatus for producing carbon black and production of carbon black
JP2000001627A (en) * 1998-06-12 2000-01-07 Mitsubishi Chemicals Corp Manufacturing equipment for carbon black and production of carbon black

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003557A (en) * 2019-12-19 2021-06-22 中国科学院化学研究所 Carbon microsphere and preparation method thereof

Also Published As

Publication number Publication date
JP4826901B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP7399903B2 (en) carbon black generation system
Ono et al. Influence of furnace temperature and residence time on configurations of carbon black
KR20190138862A (en) Particle Systems and Methods
WO2017190045A1 (en) Secondary heat addition to particle production process and apparatus
Sun et al. Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis
Schur et al. Synthesis of nanotubes in the liquid phase
Jiang et al. A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes
JP4315365B2 (en) Method for producing carbon microspheres
JP4826901B2 (en) Carbon microspheres and method for producing the same
CN102642824B (en) Graphite nano-carbon fiber and method of producing same
JP6418690B2 (en) Carbon nanotube production equipment
JP4487017B1 (en) Method and apparatus for producing biomass carbon black using biomass as raw material
JP5532281B2 (en) Method for producing carbon microspheres
JP2009013006A (en) Composite carbon sphere and method for manufacturing the same
JP5007875B2 (en) Carbon microsphere production equipment
JP2008169084A (en) Method for producing carbon microsphere
JP5646890B2 (en) Carbide production equipment
JP6455988B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
JP2009167288A (en) Carbon black production apparatus
US11465084B2 (en) Method and system for recovering filler material
JPH0734001A (en) Production of carbon black
US20210147229A1 (en) Porous wall reactor for generating hydrogen and solid carbon
Ting et al. Low temperature, non-isothermal growth of carbon nanotubes
WO2023235486A1 (en) Recycled feedstocks for carbon and hydrogen production
JPH10168337A (en) Production of carbon black

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4826901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees