JP2008169084A - Method for producing carbon microsphere - Google Patents

Method for producing carbon microsphere Download PDF

Info

Publication number
JP2008169084A
JP2008169084A JP2007004260A JP2007004260A JP2008169084A JP 2008169084 A JP2008169084 A JP 2008169084A JP 2007004260 A JP2007004260 A JP 2007004260A JP 2007004260 A JP2007004260 A JP 2007004260A JP 2008169084 A JP2008169084 A JP 2008169084A
Authority
JP
Japan
Prior art keywords
hydrocarbon gas
carbon
cracking furnace
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007004260A
Other languages
Japanese (ja)
Inventor
Masakatsu Tsuchiya
正勝 土屋
Kazuo Yoshikawa
和男 吉川
Mitsuharu Miura
光治 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2007004260A priority Critical patent/JP2008169084A/en
Publication of JP2008169084A publication Critical patent/JP2008169084A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method producing a carbon microsphere having reduced flocculation, and in which the distribution width of flocculated grains is narrow and shows sharp distribution properties at a low cost. <P>SOLUTION: In the method where a hydrocarbon gas is thermally decomposed, so as to produce a carbon microsphere, a hydrocarbon gas is fed to an external heat type cracking furnace 17 where heating is controlled to two stages together with air, the concentration of the hydrocarbon gas to be fed to the prestage region in the external heat type cracking furnace is set to 10 to 50 vol%, the flow rate of the hydrocarbon gas is set to 0.02 to 4.0 m/sec, the temperature of the prestage region in the external heat type cracking furnace is controlled to ≤900°C, and the temperature of the poststage region is controlled to 1,000 to 1,400°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子ペーパーやブラックマトリックスに用いられる黒色微粒子からなる黒色顔料、あるいはPTC素子や半導体封止材、リチウム二次電池の負極材などに好適に用いられる炭素微小球、特に、炭素微小球の凝集が少なく、かつ凝集粒子の分布幅が狭くシャープな分布性状を示す炭素微小球を低コストで製造する技術に関する。   The present invention relates to a black pigment composed of black fine particles used for electronic paper and black matrix, or a carbon microsphere suitably used for a PTC element, a semiconductor encapsulant, a negative electrode material for a lithium secondary battery, and more particularly a carbon microsphere. The present invention relates to a technique for producing low-cost carbon microspheres having a small aggregate size and a narrow distribution width of aggregated particles and exhibiting sharp distribution properties.

微細な炭素微小球としてはカーボンブラックが知られている。カーボンブラックはタイヤ用をはじめゴムの補強材として大量に消費されており、その他に着色剤、顔料、塗料などの用途に広く使用されている。カーボンブラックの種類としては、一般的に製法から分類され、原料炭化水素の不完全燃焼法と熱分解法とに大別される。   Carbon black is known as a fine carbon microsphere. Carbon black is consumed in large quantities as a reinforcing material for rubber, including tires, and is widely used for other applications such as colorants, pigments, and paints. The types of carbon black are generally classified according to the production method, and are roughly classified into an incomplete combustion method of raw material hydrocarbons and a thermal decomposition method.

このうち、不完全燃焼法の1つであるオイルファーネス法は原料に石炭系や石油系の炭化水素原料油を用い、特殊な反応炉に液状あるいはガス状の燃料と多量の空気を導入し、完全燃焼して形成した高温燃焼ガス中に炭化水素原料油を噴射して霧状に連続供給して、一部の原料油を燃焼させるとともに、残りの大部分の炭化水素原料油をカーボンブラックと水素に熱分解するものである。   Of these, the oil furnace method, one of the incomplete combustion methods, uses coal-based or petroleum-based hydrocarbon feedstock as the raw material, introduces liquid or gaseous fuel and a large amount of air into a special reactor, The hydrocarbon feedstock is injected into the high-temperature combustion gas formed by complete combustion and continuously supplied in the form of a mist to burn a portion of the feedstock, and the remaining most of the hydrocarbon feedstock is carbon black. It is pyrolyzed to hydrogen.

このオイルファーネス法により製造されるオイルファーネスブラックは、広範囲に亘る粒子性状のカーボンブラックを製造することができ、また大量生産が容易であるので、カーボンブラック生産の主流となっている。   The oil furnace black produced by this oil furnace method is capable of producing a carbon black having a particle property over a wide range and is easily mass-produced.

そして、ゴム用ファーネスブラックは粒子径により品種分類されており、その粒子径はSAF級カーボンブラックの11〜19nmから、SRF級カーボンの61〜100nmまで広範に亘っている。   And, the furnace black for rubber is classified according to the particle diameter, and the particle diameter ranges widely from 11 to 19 nm of SAF grade carbon black to 61 to 100 nm of SRF grade carbon.

また、オイルファーネスブラックは、その生成過程から微球状の基本粒子が不規則な鎖状に枝分かれした複雑な凝集構造を呈しており、通常、数個から数十個の基本粒子が融着結合した三次元構造体からなり、この三次元構造体をストラクチャーと称し、DBP吸収量でその大きさを評価している。   Oil furnace black has a complex agglomeration structure in which fine spherical basic particles are branched in an irregular chain from the formation process, and usually several to several tens of basic particles are fusion-bonded. It consists of a three-dimensional structure. This three-dimensional structure is called a structure, and its size is evaluated by the DBP absorption amount.

この凝集構造を解き、ストラクチャーを構成する個々の基本粒子に分離することは、基本粒子が強固に融着結合している関係で不可能であり、オイルファーネスブラックを利用して微細で単一な粒子形状の炭素球を得ることはできない。   It is impossible to unravel this agglomerated structure and separate it into the individual basic particles that make up the structure because the basic particles are firmly fused and bonded. A particle-shaped carbon sphere cannot be obtained.

また、炭化水素原料を熱分解して得られるサーマルブラックは、耐火れんがをチェッカー状に積んだ蓄熱室式の分解炉を用い、天然ガスを原料として炭素と水素に熱分解するもので、その特徴は大粒子径のカーボンブラックが得られることとストラクチャーの発達が小さく、DBP吸収量が小さい、すなわち、カーボンブラック粒子の凝集構造が小さい点に特徴がある。例えば、FT級カーボンブラックの算術平均一次粒子径は101〜200nm、DBP吸収量は30〜50ml/100gであり、MT級カーボンブラックの算術平均一次粒子径は180〜500nm、DBP吸収量は30〜50ml/100g程度である。したがって、粒子が結合した凝集構造が比較的に小さい、101nmを超える大粒子径の炭素球ということができる。   In addition, thermal black obtained by pyrolyzing hydrocarbon raw materials is a thermal storage chamber type cracking furnace in which refractory bricks are stacked in a checkered form, and pyrolyzes carbon and hydrogen using natural gas as raw materials. Is characterized in that carbon black having a large particle diameter can be obtained, the development of the structure is small, the DBP absorption is small, that is, the aggregate structure of the carbon black particles is small. For example, the arithmetic average primary particle diameter of FT class carbon black is 101 to 200 nm, the DBP absorption is 30 to 50 ml / 100 g, the arithmetic average primary particle diameter of MT class carbon black is 180 to 500 nm, and the DBP absorption is 30 to It is about 50 ml / 100 g. Therefore, it can be said that the aggregated structure in which the particles are bonded is relatively small, and the carbon sphere has a large particle diameter exceeding 101 nm.

一方、インキ、塗料などの顔料として有用されているチャンネルブラックは、算術平均一次粒子径が10〜20nm程度の微粒で、ストラクチャーが高く、カーボンブラックの微細粒子が多数結合した大きな凝集構造体を特徴とし、単一な粒子形状とは大きく異なるものである。   On the other hand, channel blacks that are useful as pigments for inks, paints, etc. are fine particles with an arithmetic average primary particle size of about 10 to 20 nm, a high structure, and a large aggregate structure in which many carbon black fine particles are bonded. It is very different from a single particle shape.

このような粒子性状に特徴を有するサーマルブラックをオイルファーネス法の製造技術をそのまま適用して製造することは極めて困難である。そこで、本出願人はサーマルブラック相当の粒子性状を備えるカーボンブラックの製造技術として、吸熱反応で熱分解するガス状の炭化水素を原料とし、該原料ガスを5〜50vol%の供給濃度で還元雰囲気に保持された外熱式反応炉に送入し、ガス流がレイノルズ数2300以下の層流になる状態で1400℃以上の温度で熱分解する製造方法(特許文献1)を開発した。   It is extremely difficult to produce thermal black having such particle characteristics by directly applying the oil furnace manufacturing technique. Therefore, the present applicant, as a production technique of carbon black having particle properties equivalent to thermal black, uses gaseous hydrocarbons that are thermally decomposed by an endothermic reaction as raw materials, and the raw material gas is supplied in a reducing atmosphere at a supply concentration of 5 to 50 vol%. A manufacturing method (Patent Document 1) was developed in which a gas stream was fed into an externally heated reactor held in a reactor and pyrolyzed at a temperature of 1400 ° C. or higher in a laminar flow with a Reynolds number of 2300 or less.

しかし、この製造技術により得られたカーボンブラックは線流速が速いために生成粒子が衝突合体し比表面積が低い性状となるものの凝集体が発達し易い性状を呈する。また、この製造方法は熱分解温度が高いうえに、低温ではカーボンブラックの生成収率が低いという難点もある。その改良技術として常温で液体または固体の炭化水素原料を加熱気化して、該気化した炭化水素原料ガスをキャリアーガスとともに0.01〜2.0vol%のガス濃度で無酸素雰囲気に保持された外熱式熱分解炉に導入し、1000〜1400℃の温度に加熱して熱分解させるカーボンブラックの製造方法(特許文献2)を提案した。この方法により算術平均一次粒子径が160〜500nm、DBP吸収量が40ml/100g以下のサーマルブラック相当の粒子性状を備えたカーボンブラックを製造することができる。しかしながら、ガス濃度が低いために生産性が低いうえに、粒子凝集体の粒度分布がブロード化する難点がある。   However, the carbon black obtained by this manufacturing technique has a property that the aggregated particles are easily developed although the produced particles collide and have a low specific surface area because the linear flow velocity is high. In addition, this production method has a high thermal decomposition temperature and a low carbon black production yield at low temperatures. As an improvement technique, a liquid or solid hydrocarbon raw material is heated and vaporized at room temperature, and the vaporized hydrocarbon raw material gas is kept in an oxygen-free atmosphere at a gas concentration of 0.01 to 2.0 vol% together with a carrier gas. A method for producing carbon black (Patent Document 2) was proposed, which was introduced into a thermal pyrolysis furnace and thermally decomposed by heating to a temperature of 1000 to 1400 ° C. By this method, carbon black having particle properties equivalent to thermal black having an arithmetic average primary particle size of 160 to 500 nm and a DBP absorption of 40 ml / 100 g or less can be produced. However, since the gas concentration is low, the productivity is low, and the particle size distribution of the particle aggregate is broadened.

そこで、本出願人は更に研究を進め、粒子凝集体の粒度分布のブロード化を抑制し、基本粒子の粒子径の分布幅が狭く、ばらつきも小さい炭素微小球を開発して特許文献3として提案した。すなわち、特許文献3には電子顕微鏡による算術平均粒子径dnが20〜150nmであって、そのばらつき度合いを示すs/dnが0.1〜0.3(但し、sはdnの標準偏差)であり、粒子凝集体の大きさを示すストークスモード径Dstと算術平均粒子径dnとの比Dst/dnが1.2以下の粒子性状を備える炭素微小球と、炭化水素ガスを水素ガスとともに熱分解炉の予熱帯域に導入し、引き続く加熱帯域において炭化水素ガス濃度0.01〜40vol%、レイノルズ数1〜20、温度1100〜1300℃の条件で熱分解した後、得られた炭素球を更に無酸素雰囲気中で600〜2000℃の温度で熱処理するその製造方法が開示されている。
特開平07−034001号公報 特開平10−168337号公報 特開2004−211012号公報
Therefore, the present applicant has further researched and proposed a carbon microsphere which is designed to suppress the broadening of the particle size distribution of the particle aggregates and to develop a carbon microsphere with a narrow particle size distribution width and small variation. did. That is, in Patent Document 3, the arithmetic average particle diameter dn measured by an electron microscope is 20 to 150 nm, and s / dn indicating the degree of variation is 0.1 to 0.3 (where s is a standard deviation of dn). There are carbon microspheres having particle properties in which the ratio Dst / dn of Stokes mode diameter Dst and arithmetic mean particle diameter dn indicating the size of the particle aggregate is 1.2 or less, and pyrolysis of hydrocarbon gas together with hydrogen gas After introduction into the preheating zone of the furnace and pyrolysis under the conditions of hydrocarbon gas concentration of 0.01 to 40 vol%, Reynolds number of 1 to 20 and temperature of 1100 to 1300 ° C. in the subsequent heating zone, the obtained carbon spheres are further removed. A manufacturing method for the heat treatment at a temperature of 600 to 2000 ° C. in an oxygen atmosphere is disclosed.
JP 07-034001 A Japanese Patent Laid-Open No. 10-168337 JP 2004-211012 A

これらの方法は炭化水素ガスの燃焼を防止し、熱分解反応を制御するためにアルゴン、ヘリウムなどの不活性ガス雰囲気中、あるいは窒素、水素などの非酸化性雰囲気中、すなわち無酸素雰囲気中で熱分解反応を行っている。   These methods prevent combustion of hydrocarbon gas and control the thermal decomposition reaction in an inert gas atmosphere such as argon or helium, or in a non-oxidizing atmosphere such as nitrogen or hydrogen, that is, in an oxygen-free atmosphere. A thermal decomposition reaction is performed.

しかし、この熱分解反応を酸素を含む雰囲気中、例えば空気中で行うことができれば、製造コスト上有利になることは明らかである。そこで、発明者らは酸素を含む雰囲気中で炭化水素ガスを熱分解して炭素微小球を製造する方策について研究した。そして、熱分解する温度条件を調整して、原料炭化水素ガスの濃度、ガス流速を特定することにより、熱分解する雰囲気として空気中でも可能であることを見出した。   However, if this thermal decomposition reaction can be performed in an oxygen-containing atmosphere, for example, in air, it is clear that the manufacturing cost is advantageous. Thus, the inventors have studied a method for producing carbon microspheres by pyrolyzing hydrocarbon gas in an atmosphere containing oxygen. And it discovered that it was possible also in the air as an atmosphere to thermally decompose by adjusting the temperature conditions to thermally decompose and specifying the density | concentration of raw material hydrocarbon gas, and a gas flow rate.

すなわち、本発明はこの知見に基いて完成したもので、その目的は炭素微小球の凝集が少なく、かつ凝集粒子の分布幅が狭くシャープな分布性状を示す炭素微小球を、特別な雰囲気を必要とせずに空気中で炭化水素ガスを熱分解することにより、低コストで製造することのできる製造方法を提供することにある。   In other words, the present invention has been completed based on this finding, and its purpose is to have a special atmosphere for carbon microspheres that have little aggregation of carbon microspheres and have a narrow distribution width of the aggregated particles and a sharp distribution property. The object is to provide a production method that can be produced at low cost by thermally decomposing hydrocarbon gas in air.

上記の目的を達成するための本発明に係る炭素微小球の製造方法は、炭化水素ガスを熱分解して炭素微小球を製造する方法において、炭化水素ガスを空気とともに2段階に加熱制御した外熱式分解炉に供給して、外熱式分解炉の前段領域に供給する炭化水素ガスの濃度を10〜50vol%、炭化水素ガスの流速を0.02〜4.0m/secに設定し、外熱式分解炉の前段領域の温度を900℃以下に制御し、後段領域の温度を1000〜1400℃に制御することを特徴とする。   The method for producing carbon microspheres according to the present invention for achieving the above object is a method for producing carbon microspheres by pyrolyzing hydrocarbon gas, wherein the hydrocarbon gas is heated and controlled in two stages together with air. Supplying to the thermal cracking furnace, setting the concentration of hydrocarbon gas to be supplied to the upstream region of the external heating cracking furnace to 10 to 50 vol%, and the flow rate of hydrocarbon gas to 0.02 to 4.0 m / sec, The temperature of the front | former area | region of an external heating type cracking furnace is controlled to 900 degrees C or less, and the temperature of a back | latter stage area | region is controlled to 1000-1400 degreeC.

本発明によれば、球状粒子の凝集が少なく、かつ凝集粒子の分布幅が狭くシャープな分布性状を示し、電子ペーパーやブラックマトリックス、PTC素子や半導体封止材、あるいはリチウム二次電池の負極材などに好適に使用される炭素微小球を低コストで製造する
ことが可能となる。
According to the present invention, there is little agglomeration of spherical particles, and the distribution width of the agglomerated particles is narrow and shows a sharp distribution property. Electronic paper, black matrix, PTC element, semiconductor encapsulant, or negative electrode material for lithium secondary battery It is possible to produce carbon microspheres that are preferably used for such as low cost.

炭化水素ガスには、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの単環式芳香族炭化水素、ナフタレン、アントラセンなどの多環式芳香族炭化水素、および天然ガス、都市ガス、液化天然ガス、液化石油ガスなどを用いることができ、原料炭化水素が常温で液体または固体の場合には、加熱気化してガス状で使用される。   Hydrocarbon gases include aliphatic hydrocarbons such as methane, ethane, propane, butane, ethylene, propylene, and butadiene, monocyclic aromatic hydrocarbons such as benzene, toluene, and xylene, and polycyclic aromatics such as naphthalene and anthracene. A group hydrocarbon, natural gas, city gas, liquefied natural gas, liquefied petroleum gas, and the like can be used. When the raw material hydrocarbon is liquid or solid at room temperature, it is vaporized by heating and used in a gaseous state.

図1は、本発明の炭素微小球の製造方法に適用される装置の全体構成を例示した説明図である。図1において、11は炭化水素の原料ガス(例えばメタンガス)が充填されたガスボンベ、12はキャリアーガスである空気を供給するためのブロワあるいはガスボンベで、13は流量計である。なお、14は炭化水素ガスに代えて常温で液状の炭化水素原料を使用する場合の原料タンクで15は加熱装置である。   FIG. 1 is an explanatory view illustrating the overall configuration of an apparatus applied to the carbon microsphere manufacturing method of the present invention. In FIG. 1, 11 is a gas cylinder filled with a hydrocarbon source gas (for example, methane gas), 12 is a blower or gas cylinder for supplying air as a carrier gas, and 13 is a flow meter. In addition, 14 is a raw material tank in the case of using a hydrocarbon raw material liquid at normal temperature instead of hydrocarbon gas, and 15 is a heating device.

17は外熱式分解炉で、18は外熱式分解炉17を所定の温度に制御するための加熱装置であり、例えば高周波誘導加熱や抵抗加熱、あるいは燃焼ガスを流すなどの適宜な加熱方式が適用される。   17 is an external heating type cracking furnace, and 18 is a heating device for controlling the external heating type cracking furnace 17 to a predetermined temperature. For example, an appropriate heating method such as high-frequency induction heating, resistance heating, or flowing a combustion gas. Applies.

図2は本発明の炭素微小球の製造方法に適用される17の外熱式分解炉を例示した模式図で、外熱式分解炉17は前段領域17−1と後段領域17−2に区画されている。そして、前段領域17−1は加熱装置18−1および制御器19−1により所定の温度に制御され、後段領域17−2は加熱装置18−2および制御器19−2により所定の温度に制御される。   FIG. 2 is a schematic view illustrating 17 external heat cracking furnaces applied to the carbon microsphere manufacturing method of the present invention. The external heat cracking furnace 17 is divided into a front stage region 17-1 and a rear stage region 17-2. Has been. The front region 17-1 is controlled to a predetermined temperature by the heating device 18-1 and the controller 19-1, and the rear region 17-2 is controlled to a predetermined temperature by the heating device 18-2 and the controller 19-2. Is done.

原料である炭化水素ガスは空気をキャリアーガスとして外熱式分解炉17の前段領域17−1に供給され、引きつづく後段領域17−2を経て炭素微小球に熱分解する。この場合、前段領域17−1に供給する炭化水素ガスと空気の混合ガス中の炭化水素ガスの濃度を10〜50vol%に設定し、また炭化水素ガスの流速を0.02〜4.0m/secに設定する。   The hydrocarbon gas as the raw material is supplied to the front stage region 17-1 of the external heating type cracking furnace 17 using air as a carrier gas, and then thermally decomposed into carbon microspheres through the subsequent stage region 17-2. In this case, the concentration of the hydrocarbon gas in the mixed gas of hydrocarbon gas and air supplied to the upstream region 17-1 is set to 10 to 50 vol%, and the flow rate of the hydrocarbon gas is set to 0.02 to 4.0 m / Set to sec.

炭化水素ガスの濃度を10〜50vol%に設定するのは、10vol%を下回る場合にはガス流速を低くする必要があり、反応管壁への粉末の付着が顕著となる。また、50vol%を上回る場合には均一な反応が進みにくくなり、シャープな粒子分布が得られ難い上に反応管内を閉塞する現象を招くためである。   The concentration of the hydrocarbon gas is set to 10 to 50 vol%. When the concentration is less than 10 vol%, the gas flow rate needs to be lowered, and the adhesion of the powder to the reaction tube wall becomes remarkable. Moreover, when it exceeds 50 vol%, it is difficult for a uniform reaction to proceed, and it is difficult to obtain a sharp particle distribution and causes a phenomenon that the reaction tube is blocked.

また、炭化水素ガスの流速を0.02〜4.0m/secに設定するのは、0.02m
/secを下回ると反応管壁への粉末の付着が顕著となるので閉塞を引き起こし易く、一方、4.0m/secを越えると炭化水素ガスの流れが不均一化して粒度分布が幅広いものとなるうえに、炭化水素ガスの十分な炉内滞留時間が得られず、熱分解反応が十分に進行せず、未燃分が多くなるためである。なお、炭化水素ガスの流速の設定は供給する炭化水素ガスの流量の変更に加えて、管径の異なる反応管を外熱式分解炉17に内挿することによっても行うことができる。
The hydrocarbon gas flow rate is set to 0.02 to 4.0 m / sec.
If it is less than / sec, powder adheres to the reaction tube wall and becomes prone to clogging. On the other hand, if it exceeds 4.0 m / sec, the flow of hydrocarbon gas becomes uneven and the particle size distribution becomes wide. In addition, the sufficient residence time of the hydrocarbon gas in the furnace cannot be obtained, the thermal decomposition reaction does not proceed sufficiently, and the amount of unburned fuel increases. The flow rate of the hydrocarbon gas can be set by changing the flow rate of the hydrocarbon gas to be supplied and inserting a reaction tube having a different tube diameter into the external heating cracking furnace 17.

外熱式分解炉の前段領域17−1に供給された炭化水素ガスの一部は空気により燃焼するので急激に温度上昇が生じる。また流速も急激に増大し、滞留時間が短くなるので生成する炭素微小球は微粒化し易くなる。この影響を排除するために、前段領域の温度を900℃以下に制御する。   A part of the hydrocarbon gas supplied to the front region 17-1 of the external heat cracking furnace burns with air, so that the temperature rises rapidly. In addition, the flow rate increases rapidly and the residence time is shortened, so that the generated carbon microspheres are easily atomized. In order to eliminate this influence, the temperature of the preceding region is controlled to 900 ° C. or lower.

次いで、外熱式分解炉の後段領域17−2においては滞留時間を十分にとり炭素粒子を成長させて大粒化を図るために温度を1000〜1400℃に制御する。なお、後段領域の長さは滞留時間との兼ね合いで適宜の長さに設計する。   Next, in the rear region 17-2 of the external heat cracking furnace, the temperature is controlled to 1000 to 1400 ° C. in order to allow sufficient residence time to grow the carbon particles and increase the size. Note that the length of the rear region is designed to an appropriate length in consideration of the residence time.

外熱式分解炉の炉内温度は熱電対もしくは放射温度計で検出して制御器19−1および制御器19−2で所定の温度に制御し、熱分解後の炭素微小球を含む分解ガスは冷却管20で冷却したのち、捕集室23で炭素微小球を分離捕集したのち、水槽24を経由して燃焼装置25で分解ガスを完全燃焼させて系外に排出される。   The internal temperature of the external thermal cracking furnace is detected by a thermocouple or a radiation thermometer, and controlled to a predetermined temperature by the controller 19-1 and the controller 19-2, and the cracked gas containing carbon microspheres after pyrolysis After cooling with the cooling pipe 20, the carbon microspheres are separated and collected in the collection chamber 23, and then the combustion gas is completely burned by the combustion device 25 via the water tank 24 and discharged out of the system.

このようにして、本発明の炭素微小球の製造方法によれば炭素微小球の凝集が少なく、かつ凝集粒子の分布幅が狭くシャープな分布性状を示す炭素微小球を低コストで製造することが可能となる。   In this way, according to the method for producing carbon microspheres of the present invention, it is possible to produce carbon microspheres that exhibit a sharp distribution property with a narrow aggregated particle distribution width and a sharp distribution property, with less aggregation of carbon microspheres. It becomes possible.

そして、具体的には一次粒子径dnが100〜450nm、アグリゲートのストークスモード径Dstが200〜600nm、その分布幅ΔDst/Dstが0.40〜0.85の粒子特性を有する炭素微小球を製造することができるので、これらの炭素微小球は電子ペーパーやブラックマトリックス、PTC素子や半導体封止材、あるいはリチウム二次電池の負極材などとして好適に使用することができる。   Specifically, carbon microspheres having particle characteristics of a primary particle diameter dn of 100 to 450 nm, an aggregate Stokes mode diameter Dst of 200 to 600 nm, and a distribution width ΔDst / Dst of 0.40 to 0.85 are obtained. Since they can be produced, these carbon microspheres can be suitably used as an electronic paper, a black matrix, a PTC element, a semiconductor encapsulant, or a negative electrode material for a lithium secondary battery.

なお、これらの粒子特性は下記の方法により測定される。
一次粒子径dn(nm);
サンプルを超音波分散機により周波数28kHzで30秒間クロロホルムに分散させたのち、分散試料をカーボン支持膜に固定する(例えば「粉体物性図説」粉体工学研究会編p68(c) “水面膜法”による)。これを電子顕微鏡で直接倍率10000倍、総合倍率100000倍に撮影し、得られた写真からランダムに1000個の炭素粒子の直径を計測し、14nmごとに区分して作成したヒストグラムから算術平均一次粒子径を求める。
These particle characteristics are measured by the following method.
Primary particle diameter dn (nm);
After the sample is dispersed in chloroform for 30 seconds at a frequency of 28 kHz by an ultrasonic disperser, the dispersed sample is fixed to a carbon support membrane (for example, “Powder Physical Properties”, edited by the Powder Engineering Society p68 (c) “Water surface membrane method” "by). This was photographed directly with an electron microscope at a magnification of 10,000 times and a total magnification of 100,000 times, and the diameter of 1000 carbon particles was randomly measured from the obtained photo, and the arithmetic average primary particles were created from a histogram created by dividing each 14 nm. Find the diameter.

アグリゲートのストークスモード径Dst、半値幅ΔDst(nm);
乾燥した炭素微小球を少量の界面活性剤を含む20vol%エタノール水溶液と混合して炭素分濃度0.1kg/mの分散液を作成し、これを超音波で十分に分散させて試料とする。ディスクセントリフュージ装置(英国Joyes Lobel社製)を100 s−1の回転数に設定し、スピン液(2wt%グリセリン水溶液、25℃)を0.015dm加えた後、0.001dmのバッファー液(20vol%エタノール水溶液、25℃)を注入する。次いで、温度25℃の炭素分散液0.0005dmを注射器で加えた後、遠心沈降を開始し、同時に記録計を作動させて図3に示す分布曲線(横軸;炭素分散液を注射器で加えてからの経過時間、縦軸;炭素試料の遠心沈降に伴い変化した特定点での吸光度)を作成する。この分布曲線より各時間Tを読み取り、次式(数1)に代入して各時間に対応するストークス相当径を算出する。
Stokes mode diameter Dst and half width ΔDst (nm) of the aggregate;
The dried carbon microspheres are mixed with a 20 vol% aqueous ethanol solution containing a small amount of a surfactant to prepare a dispersion having a carbon content of 0.1 kg / m 3 , and this is sufficiently dispersed with ultrasound to prepare a sample. . A disc centrifuging device (manufactured by Joyes Robert, UK) was set to a rotation speed of 100 s −1 , and 0.015 dm 3 of spin solution (2 wt% glycerin aqueous solution, 25 ° C.) was added, and then a buffer solution of 0.001 dm 3 ( 20 vol% ethanol aqueous solution, 25 ° C.). Next, after adding 0.0005 dm 3 of carbon dispersion liquid at a temperature of 25 ° C. with a syringe, centrifugal sedimentation was started, and simultaneously the recorder was operated, and the distribution curve shown in FIG. 3 (horizontal axis; carbon dispersion liquid was added with a syringe). Elapsed time, vertical axis; absorbance at a specific point changed with centrifugal sedimentation of the carbon sample). Each time T is read from this distribution curve and substituted into the following equation (Equation 1) to calculate the Stokes equivalent diameter corresponding to each time.

Figure 2008169084
Figure 2008169084

数1において、ηはスピン液の粘度(0.935×10-3Pa・s)、Nはディスク回転スピード(100s−1)、rは炭素分散液注入点の半径(0.0456m)、rは吸光度測定点までの半径(0.0482m)、ρCBは炭素の密度(kg/m)、ρはスピン液の密度(1.00178kg/m)である。 In Equation 1, η is the viscosity of the spin liquid (0.935 × 10 −3 Pa · s), N is the disk rotation speed (100 s −1 ), r 1 is the radius of the carbon dispersion injection point (0.0456 m), r 2 is the absorbance radius to the measurement point (0.0482m), ρ CB is the density of carbon (kg / m 3), ρ 1 is the density of the spin fluid (1.00178kg / m 3).

このようにして得られたストークス相当径と吸光度の分布曲線(図4)における最大頻度のストークス相当径をストークスモード径Dst(nm)、最大頻度に対し50%の頻度が得られる大小2点のストークス相当径の差(半値幅)をΔDst(nm)とする。   The maximum Stokes equivalent diameter in the Stokes equivalent diameter and absorbance distribution curve thus obtained (FIG. 4) is the Stokes mode diameter Dst (nm). The difference (half-value width) of the Stokes equivalent diameter is taken as ΔDst (nm).

以下、本発明を比較例と対比して具体的に説明する。   Hereinafter, the present invention will be specifically described in comparison with comparative examples.

実施例1〜4
図2に示した外熱式熱分解炉17(内径145mm、長さ1500mmの不透明石英管)を用いて炭素微小球を製造した。そのうち、外熱式熱分解炉17の前段領域17−1は長さ850mm、加熱装置18−1は長さ250mm、また、後段領域17−2の長さは650mm、加熱装置18−2の長さは150mmとして、それぞれ制御器19-1および制御器19−2により所定の温度に制御した。なお、炉内温度は加熱装置18−1および18−2の各中央位置A、Bで検出した。
Examples 1-4
Carbon microspheres were manufactured using the external heat type pyrolysis furnace 17 (an opaque quartz tube having an inner diameter of 145 mm and a length of 1500 mm) shown in FIG. Among them, the front region 17-1 of the external heating type pyrolysis furnace 17 is 850 mm long, the heating device 18-1 is 250 mm long, the rear region 17-2 is 650 mm long, and the heating device 18-2 is long. The length was set to 150 mm, and the temperature was controlled to a predetermined temperature by the controller 19-1 and the controller 19-2. The furnace temperature was detected at the central positions A and B of the heating devices 18-1 and 18-2.

炭化水素ガスとしてブタンあるいはメタンを使用し、空気とともに炭化水素ガス濃度およびガス流速を変えて外熱式熱分解炉17の前段領域17−1に供給した。また、この際、前段領域17−1および後段領域17−2を異なる温度に制御して炭素微小球を製造した。   Butane or methane was used as the hydrocarbon gas, and the hydrocarbon gas concentration and the gas flow rate were changed together with the air, and the resultant was supplied to the upstream region 17-1 of the external heat pyrolysis furnace 17. At this time, carbon microspheres were manufactured by controlling the front region 17-1 and the rear region 17-2 at different temperatures.

比較例1〜4
実施例と同じ外熱式熱分解炉17を用いて、後段領域17−2の加熱装置18−2のみにより加熱して、すなわち、2段階に温度制御することなく炭化水素ガスを供給して熱分解した。炭化水素ガスにはブタンあるいはメタンを使用し、窒素または空気とともに炭化水素ガス濃度およびガス流速を変えて供給し、異なる温度で熱分解して炭素微小球を製造した。
Comparative Examples 1-4
Using the same external heating type pyrolysis furnace 17 as in the embodiment, heating is performed only by the heating device 18-2 in the rear region 17-2, that is, hydrocarbon gas is supplied and heated without temperature control in two steps. Disassembled. Butane or methane was used as the hydrocarbon gas, and it was supplied with nitrogen or air while changing the hydrocarbon gas concentration and gas flow rate, and pyrolyzed at different temperatures to produce carbon microspheres.

これらの炭素微小球の粒子特性を測定して、製造条件とともに表1に示した。   The particle characteristics of these carbon microspheres were measured and are shown in Table 1 together with the production conditions.

Figure 2008169084
Figure 2008169084

表1より、外熱式分解炉に供給する炭化水素ガス濃度、炭化水素ガス流速を特定するとともに分解炉の前段領域と後段領域の温度条件を2段階に設定して、空気雰囲気中で熱分解して製造した実施例1〜4の炭素微小球は、比較例1〜3の窒素雰囲気中で前段領域と後段領域の2段階に温度制御することなく熱分解して得られた炭素微小球と同等の粒子特性を有している。   From Table 1, the hydrocarbon gas concentration and hydrocarbon gas flow rate to be supplied to the externally heated cracking furnace are specified, and the temperature conditions in the front and rear zones of the cracking furnace are set in two stages to perform thermal cracking in an air atmosphere. The carbon microspheres of Examples 1 to 4 produced as described above were carbon microspheres obtained by thermal decomposition without temperature control in two stages of the former region and the latter region in the nitrogen atmosphere of Comparative Examples 1 to 3. Has equivalent particle characteristics.

すなわち、本発明の製造方法によれば、空気雰囲気中でも窒素雰囲気中と変わらぬ粒子特性の炭素微小球を製造できることが分かる。なお、空気雰囲気中で熱分解した比較例4は、熱分解条件が本発明で特定した温度条件を外れるため粒子特性が劣ることが認められる。   That is, according to the production method of the present invention, it can be seen that carbon microspheres having particle characteristics that are the same as in a nitrogen atmosphere can be produced even in an air atmosphere. In addition, it is recognized that the comparative example 4 thermally decomposed in the air atmosphere is inferior in particle characteristics because the thermal decomposition conditions deviate from the temperature conditions specified in the present invention.

本発明の炭素微小球の製造方法に適用される装置の全体構成を例示した説明図である。It is explanatory drawing which illustrated the whole structure of the apparatus applied to the manufacturing method of the carbon microsphere of this invention. 本発明の炭素微小球の製造方法に適用される外熱式分解炉を模式的に示した図である。It is the figure which showed typically the external heating type cracking furnace applied to the manufacturing method of the carbon microsphere of this invention. Dst測定時における炭素微小球の分散液を加えてからの経過時間と炭素微小球の遠心沈降による吸光度の変化を示した分布曲線である。It is the distribution curve which showed the elapsed time after adding the dispersion liquid of the carbon microsphere at the time of Dst measurement, and the change of the light absorbency by centrifugal sedimentation of the carbon microsphere. Dst測定時に得られたストークス相当径と吸光度の関係を示す分布曲線である。It is a distribution curve which shows the relationship between the Stokes equivalent diameter obtained at the time of Dst measurement, and a light absorbency.

符号の説明Explanation of symbols

11 炭化水素ガスボンベ
12 空気ボンベ
13 流量計
14 液状炭化水素原料タンク
15 加熱装置
16 圧力計
17 外熱式分解炉
17−1 外熱式分解炉の前段領域
17−2 外熱式分解炉の後段領域
18 加熱装置
18−1 前段領域の加熱装置
18−2 後段領域の加熱装置
19−1 前段加熱装置の制御器
19−2 後段加熱装置の制御器
20 冷却管
21 バルブ
22 真空ポンプ
23 捕集室
24 水槽
25 燃焼装
DESCRIPTION OF SYMBOLS 11 Hydrocarbon gas cylinder 12 Air cylinder 13 Flowmeter 14 Liquid hydrocarbon raw material tank 15 Heating device 16 Pressure gauge 17 External heating type cracking furnace 17-1 Front stage area of external heating type cracking furnace 17-2 Rear stage area of external heating type cracking furnace 18 Heating device 18-1 Heating device 18-2 in the former stage Heating device 19-2 in the latter stage region 19-1 Controller 19-2 in the former stage heating device Controller 20 in the latter stage heating device Cooling pipe 21 Valve 22 Vacuum pump 23 Collection chamber 24 Water tank 25 Combustion equipment

Claims (1)

炭化水素ガスを熱分解して炭素微小球を製造する方法において、炭化水素ガスを空気とともに2段階に加熱制御した外熱式分解炉に供給して、外熱式分解炉の前段領域に供給する炭化水素ガスの濃度を10〜50vol%、炭化水素ガスの流速を0.02〜4.0m/secに設定し、外熱式分解炉の前段領域の温度を900℃以下に制御し、後段領域の温度を1000〜1400℃に制御することを特徴とする炭素微小球の製造方法。   In a method for producing carbon microspheres by pyrolyzing hydrocarbon gas, the hydrocarbon gas is supplied to an externally heated cracking furnace that is heated and controlled in two stages together with air, and is supplied to a preceding stage of the externally heated cracking furnace. The concentration of the hydrocarbon gas is set to 10 to 50 vol%, the flow rate of the hydrocarbon gas is set to 0.02 to 4.0 m / sec, the temperature of the front stage region of the external heating type cracking furnace is controlled to 900 ° C. or less, and the rear stage region The method of manufacturing the carbon microsphere characterized by controlling the temperature of 1000-1400 degreeC.
JP2007004260A 2007-01-12 2007-01-12 Method for producing carbon microsphere Pending JP2008169084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004260A JP2008169084A (en) 2007-01-12 2007-01-12 Method for producing carbon microsphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004260A JP2008169084A (en) 2007-01-12 2007-01-12 Method for producing carbon microsphere

Publications (1)

Publication Number Publication Date
JP2008169084A true JP2008169084A (en) 2008-07-24

Family

ID=39697536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004260A Pending JP2008169084A (en) 2007-01-12 2007-01-12 Method for producing carbon microsphere

Country Status (1)

Country Link
JP (1) JP2008169084A (en)

Similar Documents

Publication Publication Date Title
Ono et al. Influence of furnace temperature and residence time on configurations of carbon black
US11149148B2 (en) Secondary heat addition to particle production process and apparatus
Choi et al. Formation of shell‐shaped carbon nanoparticles above a critical laser power in irradiated acetylene
Chang et al. Effect of CO2 on the characteristics of soot derived from coal rapid pyrolysis
TWI588092B (en) Method for producing titanium carbide fine particles
Dewa et al. Evolution of size distribution and morphology of carbon nanoparticles during ethylene pyrolysis
JP2005243410A (en) Negative electrode material for lithium secondary battery and manufacturing method thereof
CN106661344A (en) Process for controlling the porosity of carbon blacks
JP4315365B2 (en) Method for producing carbon microspheres
JPH10140033A (en) Production of carbon black
JP2006152490A (en) Carbon nanofiber excellent in dispersibility in resin and method for producing the same
JP3859057B2 (en) Carbon black production equipment
CN102642824B (en) Graphite nano-carbon fiber and method of producing same
JP4826901B2 (en) Carbon microspheres and method for producing the same
JP2008169084A (en) Method for producing carbon microsphere
JP2009013006A (en) Composite carbon sphere and method for manufacturing the same
JP5007875B2 (en) Carbon microsphere production equipment
JP4487017B1 (en) Method and apparatus for producing biomass carbon black using biomass as raw material
JP2009167288A (en) Carbon black production apparatus
JP5532281B2 (en) Method for producing carbon microspheres
TWI640473B (en) Method and apparatus for removing boron
JP2011173743A (en) Method for manufacturing carbon nanotube
JP3400498B2 (en) Method for producing carbon black
JP2582879B2 (en) Manufacturing method of furnace carbon black
JP5530605B2 (en) Carbon black production furnace