JPH08336508A - Detection of respiration - Google Patents

Detection of respiration

Info

Publication number
JPH08336508A
JPH08336508A JP16714295A JP16714295A JPH08336508A JP H08336508 A JPH08336508 A JP H08336508A JP 16714295 A JP16714295 A JP 16714295A JP 16714295 A JP16714295 A JP 16714295A JP H08336508 A JPH08336508 A JP H08336508A
Authority
JP
Japan
Prior art keywords
respiration
heartbeat
detector
heart
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16714295A
Other languages
Japanese (ja)
Other versions
JP3122757B2 (en
Inventor
Junichiro Fujimoto
潤一郎 藤本
Tatsuo Miyaji
達生 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP07167142A priority Critical patent/JP3122757B2/en
Publication of JPH08336508A publication Critical patent/JPH08336508A/en
Application granted granted Critical
Publication of JP3122757B2 publication Critical patent/JP3122757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To measure the period of respiration without feeling abnormality due to addition or trammels as performing an ordinary office job by detecting a sound or motion generated from the heart and taking out the information of respiration from the information of the envelope of a synchronized signal. CONSTITUTION: This method is equipped with a detector 1 consisting of an acceleration sensor which detects the sound or motion generated from the heart. The detector is loaded on one or more points on a body, and a signal on one side from the detector 1 is inputted to a heartbeat measuring part 2 and the one on the other side to a respiration measuring part 3. The respiration measuring part 3 finds out two maximum values that exist at an interval of around one second by a peak detecting part 4. Thence, a curve is obtained by using the height and time of a peak, for example, linear interpolation by a linear interpolation part 9. After such processing is completed, second data with respect to a heartbeat is substituted for first data with respect to the heartbeat, and the second data with respect to the heartbeat is found again. The curve of respiration is found by repeating such measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加速度センサ−を用い
た心拍計によって、呼吸の計測を行えるような検出方式
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method capable of measuring respiration by a heart rate meter using an acceleration sensor.

【0002】[0002]

【従来の技術】近年の業務の電子化や、操作の複雑化に
よって、人間にストレスがたまり、支障をきたすなど問
題が発生している。そこで、人間にたまるストレスを計
測し、環境にフィ−ドバックするための研究がされてお
り、計測の為のパラメ−タの一つとして、心拍や呼吸の
周期の変化が着目されている。従来、心拍の計測は心電
図を用いるのが一般的であって、安定したデ−タが得ら
れることから広く使われている。しかし、この方法は、
体表上に電極を付けねばならないこと、計測用のケ−ブ
ルが必要であることなどから、測定の為の姿勢、環境が
必要であり、通常の業務をしながら心拍を計測すること
には適していない。
2. Description of the Related Art Recently, due to computerization of work and complication of operations, stress has been generated on human beings, causing problems. Therefore, studies have been conducted to measure the stress accumulated in humans and to feed back to the environment. As one of the parameters for the measurement, changes in heartbeat and respiratory cycle have been noted. Conventionally, an electrocardiogram is generally used to measure a heartbeat, and it is widely used because stable data can be obtained. However, this method
Since the electrodes must be attached on the body surface and a cable for measurement is required, a posture and environment for measurement are required. Not suitable.

【0003】そこで、先に本出願人は、加速度検出器を
使った心拍計の提案を行った。この心拍計は、1cmx2
cmx0.5cm程度の小さな加速度検出子を体上の一点
に、固定し、この部分の加速度を無線によって、測定機
へ飛ばすような利用が可能である。加速度を検出するこ
とは、心臓の弁の動き等によって生ずる体の振動を検出
することであり、人体の運動、発声などの影響が大きい
と言う欠点がある半面、検出子が小型であること、無線
であることからこれは非常に使いやすいというメリット
がある。
Therefore, the present applicant has previously proposed a heart rate monitor using an acceleration detector. This heart rate monitor is 1 cm x 2
It is possible to use by fixing a small acceleration detector of about cm x 0.5 cm to a point on the body and wirelessly transmitting the acceleration of this portion to a measuring machine. Detecting the acceleration is to detect the vibration of the body caused by the movement of the valve of the heart, etc., which has the drawback of being greatly affected by the movement of the human body, vocalization, etc. On the other hand, the detector is small, Being wireless, it has the advantage of being very easy to use.

【0004】一方、呼吸の検出は呼吸ベルトを胸にまい
てその伸縮によって、呼吸曲線を得るもの、マスク状の
物を付けて呼吸から直接測定する物があるが(真島英信
「整理学」(文光堂))、これも、心電図と同様に、通
常の業務に付いていながら計測をすることができないと
いう問題がある。
On the other hand, breathing is detected by putting a breathing belt around the chest and obtaining a breathing curve by stretching the breathing belt, or by attaching a mask-like object and measuring directly from the breathing (Majima Hidenobu "Sogaku" ( Bunkodo)), like the electrocardiogram, there is a problem that you can not measure while attending to normal work.

【0005】加速度センサ−を使って呼吸の測定を試み
たものとして、例えば、特開平02−163283に記
載されてたものが知られている。これは、呼吸に関連し
て往復動する生体の表面に加速度センサを装着し、加速
度センサから出力される信号に基づいて生体の呼吸を検
出することにより、センサ部分の装着状態によって影響
を受けず、正確に呼吸を検出する。上腹部の表面は呼吸
に関連して往復動し、その表面の往復動に伴って加速度
センサの板ばねが歪みを受けて、板ばねの歪みが半導体
歪みゲ−ジにより検出される。加速度センサからは、被
検者の上腹部の表面の往復動に対応する信号が出力され
る。加速度センサから供給された信号に基づいて呼吸を
検出し、単位時間当たりの呼吸数および呼吸波形をCT
Rディスプレイ装置等の表示器に表示させるというもの
である。しかし、体は呼吸によってのみ動くものではな
く、それ以外の動きの方が圧倒的に多い。従って、その
検出器から出てくる信号は、体の動きであって、呼吸に
よる動きはその中にほんのわずかな信号として埋もれて
いることになる。精度良く呼吸は取り出せないという欠
点がある。
As an attempt to measure respiration using an acceleration sensor, for example, the one described in Japanese Patent Laid-Open No. 02-163283 is known. This is because the accelerometer is attached to the surface of the living body that reciprocates in relation to respiration, and the respiration of the living body is detected based on the signal output from the acceleration sensor, so that it is not affected by the mounting state of the sensor part. , Accurately detect breathing. The surface of the upper abdomen reciprocates in association with breathing, the leaf spring of the acceleration sensor is distorted due to the reciprocal movement of the surface, and the strain of the leaf spring is detected by the semiconductor strain gauge. The acceleration sensor outputs a signal corresponding to the reciprocal movement of the surface of the upper abdomen of the subject. Respiration is detected based on the signal supplied from the acceleration sensor, and the respiratory rate and respiratory waveform per unit time are computed by CT.
It is displayed on a display device such as an R display device. However, the body does not move only by breathing, but other movements are predominant. Therefore, the signal coming out of the detector is the movement of the body, and the movement caused by respiration is buried in it as a very small signal. There is a drawback that breathing cannot be taken out accurately.

【0006】また、心拍と呼吸の両方を測定するものも
ある(特開平03−4834)。これは、入浴者の生体
機能音が浴槽の湯水を媒体として伝播する位置に、所要
数の測定用音センサを臨設し、センサに生体機能音を表
示する電気的出力装置を接続することにより、入浴しな
がら生体機能音を気軽に測定できるようにする。浴槽に
入浴者が入ることで、その生体機能音が、人体より浴槽
内の湯水を介して測定用音センサに達するので、測定用
音センサの出力信号を処理することにより、心音、肺呼
吸音等を、労せずして自然に測定できる、というもので
ある。その方法では、何よりも、浴槽の中に入らないと
測定できない欠点があるので、ここで述べているような
オフィスでの作業中の計測はできない。
There is also one that measures both heartbeat and respiration (Japanese Patent Laid-Open No. 03-4834). This is because by installing a required number of sound sensors for measurement in a position where the bather's biofunction sound propagates using hot water in the bathtub as a medium, and connecting an electrical output device that displays the biofunction sound to the sensor, Make it easy to measure biological function sounds while taking a bath. When a bather enters the bathtub, the biological function sound reaches the sound sensor for measurement from the human body through the hot and cold water in the bathtub.By processing the output signal of the sound sensor for measurement, heart sounds and pulmonary breathing sounds are processed. It is possible to measure such things naturally without labor. Above all, this method has a drawback that it cannot be measured unless it is put in a bathtub, so that it is impossible to perform measurement while working in an office as described here.

【0007】[0007]

【発明が解決しようとする課題】本発明は以上の問題点
に鑑みなされたものであり、その目的とするところは、
通常のオフィス業務をしながら付加や束縛による異様さ
を感じることなく、呼吸の周期を計測するもので特に、
加速度心拍計の信号から呼吸信号をえられるような抽出
方法を提供することである。
The present invention has been made in view of the above problems, and its object is to:
It measures the cycle of breathing without feeling strangeness due to addition or restraint while performing normal office work, especially
An object of the present invention is to provide an extraction method by which a respiratory signal can be obtained from the signal of the accelerometer.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の呼吸検出方法は、体上の1点以上の点
において、心臓が発生する音または動きを検出する検出
子を装着し、心臓の1周期以上に相当する該検出子から
の出力信号を調べ、心臓が発する初期信号の極大値、及
びまたは、極小値を複数連結するような処理をすること
によって周期信号の包絡線の情報を作り、この包絡線情
報から呼吸の情報を取り出すようにしたことを特徴とす
るものである。
In order to achieve the above object, a respiration detecting method according to a first aspect of the present invention includes a detector for detecting a sound or a motion generated by the heart at one or more points on the body. Envelope of the periodic signal by wearing it, examining the output signal from the detector corresponding to one or more cycles of the heart, and performing processing to connect a plurality of maximum values and / or minimum values of the initial signal emitted by the heart. The feature is that line information is created and respiration information is extracted from this envelope information.

【0009】[0009]

【作用】本発明者らは、体上の1点以上の点に検出子を
装着し、心臓が発生する音または動きを検出した場合、
呼吸と同じ周期でパルス状波形列の振幅が変化させられ
ることを発見した。図3は、加速度心拍の信号の一例を
示し、図4は、その心拍を計測した時の呼吸の曲線の一
例を示す。この呼吸曲線は、従来の方法で、胸にベルト
をまいて、その伸縮から求めたものである。心拍と呼吸
曲線の両者を比較すると明らかなように、心拍信号の振
幅が、呼吸曲線の逆相で変調されている。その原因は次
のように考えられる。心臓の弁などが閉じたときに、ス
テップ状の動きが発生し、これが、体内を伝わり、検出
子1へ達してインパルス応答状の波形となる。隣合った
波形は、同じ弁の閉鎖でありながら、波形は違っている
のは、呼吸の影響であって、呼吸によって心臓から検出
器までの器官の減衰特性が変化し、それによって器官の
振動や音に対する減衰の状態に変化が起こったと考えら
れる。そこで、この事実を用いて心拍信号列から呼吸を
検出する方法を考案した。すなわち、本発明において
は、心臓が発生する音または動きを検出する検出子を、
体上の1点以上の点に装着する。該検出子の出力信号と
して、心臓の1周期以上の信号を調べ、心臓が発する初
期信号の極大値または及び極小値を複数連結するような
処理をすることによって、周期信号の包絡線の情報を作
り、この包絡線情報から、呼吸の情報を取り出す。
The present inventors attach the detectors to one or more points on the body and detect the sound or movement generated by the heart,
It was discovered that the amplitude of the pulsed waveform train was changed in the same cycle as breathing. FIG. 3 shows an example of an acceleration heartbeat signal, and FIG. 4 shows an example of a breathing curve when the heartbeat is measured. This breathing curve is obtained by stretching a belt around the chest by a conventional method. As is clear from comparing both the heartbeat and the respiration curve, the amplitude of the heartbeat signal is modulated in the opposite phase of the respiration curve. The cause is considered as follows. When the heart valve or the like is closed, a step-like movement is generated, which is transmitted through the body and reaches the detector 1 to form an impulse response-like waveform. Adjacent waveforms have the same valve closure but different waveforms due to the effects of respiration, which changes the damping characteristics of the organ from the heart to the detector, which in turn causes vibrations of the organ. It is considered that there was a change in the state of attenuation of the sound. Therefore, we devised a method to detect respiration from the heartbeat signal sequence using this fact. That is, in the present invention, a detector for detecting the sound or motion generated by the heart is
Wear on one or more points on the body. As an output signal of the detector, a signal of one or more cycles of the heart is examined, and by processing such that a plurality of maximum values or minimum values of the initial signal emitted by the heart are connected, the information of the envelope of the cycle signal is obtained. Create and extract breathing information from this envelope information.

【0010】[0010]

【実施例】以下、本発明の一実施例について説明する。
図1は実施例に係る呼吸検出方法を実施できるシステム
のブロックダイヤグラムの概略構成図、図2は同システ
ムで初期化として実行される極大値算出処理のフローチ
ャート、図3は同システムで検出された検出子信号を示
すグラフ、図4は従来の方法で求めた呼吸曲線を示すグ
ラフ、図5は同システムを用いて求めた呼吸曲線を示す
グラフである。
An embodiment of the present invention will be described below.
FIG. 1 is a schematic configuration diagram of a block diagram of a system capable of implementing the respiratory detection method according to the embodiment, FIG. 2 is a flowchart of a maximum value calculation process executed as initialization in the system, and FIG. 3 is detected in the system. FIG. 4 is a graph showing a detector signal, FIG. 4 is a graph showing a respiration curve obtained by a conventional method, and FIG. 5 is a graph showing a respiration curve obtained using the same system.

【0011】図1において、本システムでは、心臓が発
生する音または動きを検出する加速度センサからなる検
出子1を備えている。この検出子1は、体上の1点以上
の点に装着する。この検出子1からの信号を2分し、一
方は心拍計測部2へ入力し、他方は呼吸計測部3へ入力
する。上記心拍計測部2は、従来公知の加速度センサか
らの信号を用いて心拍を計測する従来公知のものを採用
できる。例えば、「平成5年度人間感覚計測応用技術の
研究開発」依託研究成果報告書第2編生理的影響計測技
術の研究開発529ペ−ジ等に記載のものなどを採用で
きる。
In FIG. 1, the present system is provided with a detector 1 which is an acceleration sensor for detecting a sound or movement generated by the heart. The detector 1 is attached to one or more points on the body. The signal from the detector 1 is divided into two, one is input to the heartbeat measuring unit 2 and the other is input to the respiration measuring unit 3. The heartbeat measuring section 2 may be a conventionally known one that measures a heartbeat using a signal from a conventionally known acceleration sensor. For example, those described in “R & D of human sensation measurement application technology in 1993” commissioned research result report, second edition, R & D of physiological effect measurement technology, page 529, etc. can be adopted.

【0012】上記呼吸計測部3では、まず最初に、ピー
ク検出部4で、図2のフロ−チャートに示すような簡単
な最大値を見つけるル−チンによって心拍の間隔を大ざ
っぱに調べておく。特別な環境でない限り、通常心拍は
1秒に1から2拍程度であるから、最初に1秒程度のデ
−タをメモリに取り込み、最大値のル−チンを通して、
1秒近い間隔で存在する2つの最大値を見つける。その
時間的に前にある方を第1の心拍の最大値、後のものを
第2の心拍の最大値と呼ぶことにする。この時、最大値
をメモリ5に記憶しておき、この値を、以後の実時間で
行う検索の時にピ−クを求めるためのしきい値として使
う。
In the respiration measuring unit 3, first, the peak detecting unit 4 roughly checks the intervals of heartbeats by a routine for finding a simple maximum value as shown in the flow chart of FIG. Unless there is a special environment, the normal heart rate is about 1 to 2 beats per second, so the data of about 1 second is first stored in the memory, and the maximum routine is used.
Find the two maximums that are close to one second apart. The one that is earlier in time will be called the maximum value of the first heartbeat, and the one that is later in time will be called the maximum value of the second heartbeat. At this time, the maximum value is stored in the memory 5, and this value is used as a threshold value for obtaining a peak in the subsequent search performed in real time.

【0013】心臓の1周期におおまかに2つの大きな振
動があることが知られている。厳密にはもっとあるが、
振幅が小さくノイズが大きいため、これを検出しにくい
ことから、ここでは代表的な2つについて述べる。1周
期内の心臓の三尖弁と僧帽弁の閉鎖によって生じる振動
を第1波、半月弁の閉鎖で生じるものを第2波と呼ぶこ
とにする。一般的には図3のごとく第1波aが大きく、
第2波bが小さい。しかし、単に極大値のみを計測して
いると第1波aと第2波bを間違えることがあるため、
あらかじめ1秒あまりのデ−タから、第1波aの間隔の
初期値を求める時に、第1波aの大きさも調べておくと
よい。一番良いのは、 第2波の高さ+(第1波の高さ−第2波の高さ) 位の大きさである。そのあたりをしきい値として、つぎ
の第1波を探索するようにする。第1波の求め方は、2
種類あって、しきい値を越える最初のピ−クとしてもよ
いし、しきい値を越える決められた時間内での最大値で
もよい。勿論、負側のピ−ク、つまり極小値を求める時
は、最大値の代りにに最小値を見つければよい。これ
は、必ずしも最初のピ−クが次のピ−クよりも大きいと
は限らないからで、発明者たちの実験によれば、どちら
を使っても、呼吸の曲線が得られることが分かってい
る。
It is known that there are roughly two large vibrations in one cycle of the heart. Strictly more, but
Since the amplitude is small and the noise is large, it is difficult to detect this. Therefore, two typical ones will be described here. The vibration caused by the closure of the tricuspid valve and mitral valve of the heart within one cycle is called the first wave, and the vibration caused by the closure of the meniscus valve is called the second wave. Generally, the first wave a is large as shown in FIG.
The second wave b is small. However, if only the maximum value is measured, the first wave a and the second wave b may be mistaken.
When the initial value of the interval of the first wave a is obtained from the data of more than 1 second in advance, it is preferable to check the magnitude of the first wave a as well. The best size is the height of the second wave + (height of the first wave-height of the second wave). With this value as a threshold, the next first wave is searched. How to find the first wave is 2
Depending on the type, it may be the first peak that exceeds the threshold value, or the maximum value within a predetermined time that exceeds the threshold value. Of course, when the peak on the negative side, that is, the minimum value is obtained, the minimum value may be found instead of the maximum value. This is because the first peak is not always larger than the second peak, and our experiments have shown that either one produces a breathing curve. There is.

【0014】また、上記時間間隔は、時間間隔計測部6
で計測し、時間間隔記憶部7へ格納しておいて、第1の
心拍が見つかった時点で第2の心拍の探索は時間間隔記
憶部7に格納された値より、予備時間記憶部8に記憶さ
れている予備的な時間分だけ少し前から最大値探索を行
う。予備時間としては25ms程度前からが適当である。
第2の心拍が見つかった時に、その間隔を時間間隔記憶
部7へ再度格納しておき次のピ−ク探索に使う。
The above-mentioned time interval is the time interval measuring unit 6
Is measured and stored in the time interval storage unit 7, and when the first heartbeat is found, the second heartbeat is searched for in the spare time storage unit 8 from the value stored in the time interval storage unit 7. The maximum value search is performed a little before the stored preliminary time. It is appropriate that the preliminary time is about 25 ms.
When the second heartbeat is found, the interval is stored again in the time interval storage unit 7 and used for the next peak search.

【0015】次に、直線補間部9で、以上のようにして
得られたピ−クの高さと時刻を使い、例えば直線補間に
よって曲線を得る。具体的には、第1の心拍のピ−クが
時刻x1で、大きさまたは高さy1が得られ、今、第2
心拍のピ−クで同様に、x2、y2が求められたとする
と、次のような式に当てはめ、直線補間をしてx1とx
2間のデ−タを作っておく。 y=(y1−y2)・x/(x1−x2)+y1−(y
1−y2)・x1/(x1−x2) 勿論、直線補間が必須のことではなく、どの様な補間で
もよいが、一番簡単に実施できることから、ここでは、
直線補間で説明している。
Next, the linear interpolation unit 9 uses the height and time of the peak thus obtained to obtain a curve by linear interpolation, for example. Specifically, the peak of the first heartbeat is time x1, and the size or height y1 is obtained.
Similarly, if x2 and y2 are obtained in the peak of the heartbeat, the following equation is applied and linear interpolation is performed to obtain x1 and x2.
Make data for two. y = (y1-y2) * x / (x1-x2) + y1- (y
1-y2) · x1 / (x1-x2) Of course, linear interpolation is not essential, and any kind of interpolation may be used, but since it is the easiest to implement, here,
It is explained by linear interpolation.

【0016】以上の処理が終わると、第2の心拍に関す
るデ−タを第1の心拍のデ−タに置き換え、再び第2の
心拍のデ−タを求める。これを繰り返して計測をする。
こうして出力された信号は、呼吸の曲線を表している。
必須ではないが、出来上がった信号を、図1に示すよう
にロ−パスフィルタ部10に加え、遮断周波数0.5H
zで滑らかにするとさらに、呼吸曲線に近くなる。勿論
0.5Hzにこだわるものではない。このようにして、
実施例に従って、一つ一つ計算してグラフに表すと図5
のようになり、図4の呼吸曲線と近い曲線が得られる。
その例では心拍波形の負側の包絡線で曲線を求めたが、
これに限るものではなく、正側、あるいはその両方のデ
−タから曲線を作ってもよいことはいうまでもない。
After the above processing is completed, the data relating to the second heartbeat is replaced with the data relating to the first heartbeat, and the data relating to the second heartbeat is obtained again. Repeat this to measure.
The signal thus output represents a breathing curve.
Although not essential, the resulting signal is added to the low-pass filter unit 10 as shown in FIG.
Smoothing with z further approximates the breathing curve. Of course, it doesn't stick to 0.5 Hz. In this way,
FIG. 5 is a graph showing the results calculated one by one according to the embodiment.
Then, a curve similar to the breathing curve of FIG. 4 is obtained.
In that example, the curve was obtained with the negative envelope of the heartbeat waveform,
It is needless to say that the curve is not limited to this, and a curve may be created from data on the positive side or both.

【0017】[0017]

【発明の効果】請求項1の発明によれば、心臓が発生す
る音または動きを検出する検出子を装着し、心臓の1周
期以上に相当する該検出子からの出力信号を調べ、呼吸
によって心臓から検出器までの器官の減衰特性が呼吸の
影響で変化して心拍信号の振幅が呼吸曲線の逆相で変調
されるのを利用し、心臓が発する初期信号の極大値、及
びまたは、極小値を複数連結するような処理をすること
によって周期信号の包絡線の情報を作ってこの包絡線情
報から呼吸の情報を取り出すので、上記検出子からの信
号を用いて呼吸の情報を検出することができる。しか
も、体上には検出子を装着するだけで計測が行えるの
で、通常のオフィス業務をしながら付加や束縛による異
様さを感じることなく、呼吸の周期を計測することがで
きる。
According to the first aspect of the present invention, a detector for detecting a sound or movement generated by the heart is attached, and an output signal from the detector corresponding to one or more cycles of the heart is examined, and breathing is performed. Utilizing the fact that the attenuation characteristic of the organ from the heart to the detector changes due to the influence of respiration and the amplitude of the heartbeat signal is modulated with the opposite phase of the respiratory curve, and the maximum value and / or the minimum value of the initial signal emitted by the heart are used. Since information on the envelope of the periodic signal is created by processing such that multiple values are connected and respiratory information is extracted from this envelope information, detect respiratory information using the signal from the detector. You can Moreover, since the measurement can be performed only by mounting the detector on the body, it is possible to measure the breathing cycle without feeling any strangeness due to addition or restraint during normal office work.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る呼吸検出方法を実施できるシステ
ムのブロックダイヤグラムの概略構成図。
FIG. 1 is a schematic configuration diagram of a block diagram of a system capable of implementing a respiratory detection method according to an embodiment.

【図2】同システムで初期化として実行される極大値算
出処理のフローチャート。
FIG. 2 is a flowchart of a maximum value calculation process executed as initialization in the system.

【図3】同システムで検出された検出子信号を示すグラ
フ。
FIG. 3 is a graph showing a detector signal detected by the system.

【図4】従来の方法で求めた呼吸曲線を示すグラフ。FIG. 4 is a graph showing a respiratory curve obtained by a conventional method.

【図5】同システムを用いて求めた呼吸曲線を示すグラ
フ。
FIG. 5 is a graph showing a respiratory curve obtained using the same system.

【符号の説明】[Explanation of symbols]

1 検出子 2 心拍計測部 3 呼吸計測部 4 ピーク検出部 5 最大値メモリ 6 時間間隔計測部 7 時間間隔記憶部 8 予備時間記憶部 9 直線補間部 10 ローパスフィルタ部 1 Detector 2 Heartbeat measuring unit 3 Respiration measuring unit 4 Peak detecting unit 5 Maximum value memory 6 Time interval measuring unit 7 Time interval storing unit 8 Preliminary time storing unit 9 Linear interpolation unit 10 Low pass filter unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】体上の1点以上の点において、心臓が発生
する音または動きを検出する検出子を装着し、心臓の1
周期以上に相当する該検出子からの出力信号を調べ、心
臓が発する初期信号の極大値、及びまたは、極小値を複
数連結するような処理をすることによって周期信号の包
絡線の情報を作り、この包絡線情報から呼吸の情報を取
り出すようにしたことを特徴とする呼吸検出方法。
1. A detector for detecting sounds or movements generated by the heart is attached at one or more points on the body, and
Examining the output signal from the detector corresponding to a period or more, the maximum value of the initial signal emitted by the heart, and, or, to create information on the envelope of the periodic signal by performing a process such as connecting a plurality of minimum values, A respiratory detection method characterized in that respiratory information is extracted from the envelope information.
JP07167142A 1995-06-09 1995-06-09 Respiration detector Expired - Lifetime JP3122757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07167142A JP3122757B2 (en) 1995-06-09 1995-06-09 Respiration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07167142A JP3122757B2 (en) 1995-06-09 1995-06-09 Respiration detector

Publications (2)

Publication Number Publication Date
JPH08336508A true JPH08336508A (en) 1996-12-24
JP3122757B2 JP3122757B2 (en) 2001-01-09

Family

ID=15844208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07167142A Expired - Lifetime JP3122757B2 (en) 1995-06-09 1995-06-09 Respiration detector

Country Status (1)

Country Link
JP (1) JP3122757B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183312A (en) * 2000-12-14 2002-06-28 Teijin Ltd Own health care support system and device
WO2011148766A1 (en) * 2010-05-26 2011-12-01 Sharp Kabushiki Kaisha Method and system for reliable inspiration-to-expiration ratio extraction from acoustic physiological signal
JP2017123951A (en) * 2016-01-13 2017-07-20 株式会社島津製作所 Imaging device and imaging method
US11116454B2 (en) 2018-07-19 2021-09-14 Shimadzu Corporation Imaging device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146519B2 (en) * 2016-07-06 2017-06-14 セイコーエプソン株式会社 Biological information measuring device, biological information measuring method, and biological information measuring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222627A (en) * 1985-07-19 1987-01-30 株式会社日本自動車部品総合研究所 Respiration number measuring apparatus
JPS6437933A (en) * 1987-08-04 1989-02-08 Colin Electronics Method and apparatus for monitoring respiration rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222627A (en) * 1985-07-19 1987-01-30 株式会社日本自動車部品総合研究所 Respiration number measuring apparatus
JPS6437933A (en) * 1987-08-04 1989-02-08 Colin Electronics Method and apparatus for monitoring respiration rate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183312A (en) * 2000-12-14 2002-06-28 Teijin Ltd Own health care support system and device
WO2011148766A1 (en) * 2010-05-26 2011-12-01 Sharp Kabushiki Kaisha Method and system for reliable inspiration-to-expiration ratio extraction from acoustic physiological signal
JP2017123951A (en) * 2016-01-13 2017-07-20 株式会社島津製作所 Imaging device and imaging method
US11116454B2 (en) 2018-07-19 2021-09-14 Shimadzu Corporation Imaging device and method

Also Published As

Publication number Publication date
JP3122757B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP6131404B2 (en) Method and instrument for measuring information indicative of cardiac dysfunction and abnormality
Yang et al. Pulse transit time measurement using seismocardiogram, photoplethysmogram, and acoustic recordings: Evaluation and comparison
US10178964B2 (en) Heart monitoring system
US5682898A (en) Respiration rate measuring apparatus
US10092268B2 (en) Method and apparatus to monitor physiologic and biometric parameters using a non-invasive set of transducers
US7137955B2 (en) Methods and systems for distal recording of phonocardiographic signals
TWI583352B (en) Method and system for monitoring stress
US20040158162A1 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
US8282567B2 (en) Method and system for determination of pulse rate
JP2007007075A (en) Blood pressure measuring apparatus
ES2802259T3 (en) Procedure and apparatus for determining information indicative of cardiac dysfunction
JP2009112625A (en) Cardiotachometer
CN108309353A (en) Heart rate auxiliary for carrying out phase determination in ultrasonic cardiography
CN106572804A (en) Method and apparatus for measuring blood pressure using an acoustic signal
CN109222917A (en) Pulse wave sensor, sensor array and pulse wave measurement method
WO2014030174A2 (en) Automated evaluation of arterial stiffness for a non-invasive screening
JPH08336508A (en) Detection of respiration
JPWO2019201689A5 (en)
JP4680411B2 (en) Arterial blood pressure measuring method and arterial blood pressure measuring device
JP5488913B2 (en) Central blood pressure measurement device, cardiac load measurement device, central blood pressure measurement method, and cardiac load measurement method
CN103747724A (en) Method, device and system for determining the moment at which status of artery switches from open to closed and vice versa for artery of interest under changing pressure
JPH08336509A (en) Detection of respiration
JP2509828B2 (en) Respiratory wave measuring device
JPH08317919A (en) Sound oscillation evaluating device
JP2829389B2 (en) Respiration detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term