JPH08336387A - Sugar chain-extended protein derived from pichia yeast and dna of the protein - Google Patents

Sugar chain-extended protein derived from pichia yeast and dna of the protein

Info

Publication number
JPH08336387A
JPH08336387A JP7145005A JP14500595A JPH08336387A JP H08336387 A JPH08336387 A JP H08336387A JP 7145005 A JP7145005 A JP 7145005A JP 14500595 A JP14500595 A JP 14500595A JP H08336387 A JPH08336387 A JP H08336387A
Authority
JP
Japan
Prior art keywords
sugar chain
dna
yeast
glycoprotein
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145005A
Other languages
Japanese (ja)
Inventor
Koji Murakami
弘次 村上
Narutoshi Sugio
成俊 杉尾
Tomoyasu Ra
智靖 羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Tanabe Pharma Corp
Original Assignee
Green Cross Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Cross Corp Japan filed Critical Green Cross Corp Japan
Priority to JP7145005A priority Critical patent/JPH08336387A/en
Publication of JPH08336387A publication Critical patent/JPH08336387A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To obtain a protein manifestation system having proliferative ability equivalent to natural-type Pichia yeast strain but lying declined in or deprived of sugar chain extending ability and useful for producing glycoproteins each having sugar chain structure identical with or similar to that for ER core sugar chain common to yeast and mammal cell. CONSTITUTION: A modified Pichia yeast strain having a base sequence of the formula and also having such a DNA that part thereof coding a protein involving the sugar chain extension of a glycoprotein is modified so as to at least suppress the production of functional products from the DNA is obtained pref. by transformation of a natural-type Pichia yeast by the above-mentioned DNA. The modified sugar chain-extended DNA can be prepared by e.g. transfection of a transformation marker gene into the coding domain for a natural-type sugar chain-extended DNA obtained by amplification by PCR method from the chromosome DNA of a Pichia yeast (e.g. P.pastoris).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、組換え産物生産のため
の有効な発現系の宿主として利用され得るピキア属酵母
に由来する、糖蛋白質の糖鎖伸長に携わるタンパクおよ
びその遺伝子に関する。当該タンパクは、ピキア属酵母
を宿主とする糖蛋白質発現系において産生される糖蛋白
質における糖鎖の伸長、好ましくはα−1,6結合マン
ノースの伸長に関与するものである。また本発明は、ピ
キア属酵母に由来する、糖蛋白質の糖鎖伸長に携わるタ
ンパクの遺伝子を修飾してなるDNAおよび該DNAを
有する修飾ピキア属酵母株、該修飾ピキア属酵母株を宿
主として用いる糖蛋白質の製造方法に関する。医学上有
用な生理活性蛋白質のほとんどは糖蛋白質であるが、本
発明の修飾ピキア属酵母株を宿主とする蛋白質発現系に
よれば、酵母と哺乳類細胞とで共通するERコア糖鎖と
同一構造のMan8 GlcNAc2 糖鎖のみを有する糖
蛋白質を調製し得る。従って、本発明の修飾ピキア属酵
母株は、医薬上有用な糖蛋白質を産生するための宿主と
して有用である。
TECHNICAL FIELD The present invention relates to a protein involved in sugar chain elongation of a glycoprotein derived from a yeast of the genus Pichia, which can be used as a host for an effective expression system for recombinant product production, and a gene thereof. The protein is involved in elongation of a sugar chain in a glycoprotein produced in a glycoprotein expression system using Pichia yeast as a host, preferably elongation of α-1,6-linked mannose. The present invention also uses a DNA derived from a yeast of the genus Pichia, which is obtained by modifying a gene of a protein involved in sugar chain elongation of a glycoprotein, a modified yeast strain of the genus Pichia having the DNA, and the yeast strain of the genus modified bacterium as a host. The present invention relates to a method for producing a glycoprotein. Most of the medically useful physiologically active proteins are glycoproteins, but according to the protein expression system using the modified Pichia yeast strain of the present invention as a host, the same structure as the ER core sugar chain common to yeast and mammalian cells is used. A glycoprotein having only the Man 8 GlcNAc 2 sugar chain can be prepared. Therefore, the modified Pichia yeast strain of the present invention is useful as a host for producing a pharmaceutically useful glycoprotein.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】生体内で
機能する蛋白質の殆どは、糖鎖による修飾を受けた糖蛋
白質である。近年、糖鎖の構造については、レクチンを
用いた解析等の従来の方法に加え、HPLCやNMR、
FAB−MASを用いた新しい分析法等が開発され、次
々と新しい糖蛋白質の糖鎖構造が解明されてきている。
一方、多くの研究者によって糖鎖の機能解析の研究も盛
んとなり、糖鎖は細胞間認識、分子識別、蛋白質の構造
維持や活性への寄与、生体内でのクリアランス、分泌、
局在化など多くの生体内機構に重要な役割を担っている
ことがわかってきた。
BACKGROUND OF THE INVENTION Most proteins that function in vivo are glycoproteins modified with sugar chains. In recent years, regarding the structure of sugar chains, in addition to conventional methods such as analysis using lectins, HPLC, NMR,
New analytical methods and the like using FAB-MAS have been developed, and sugar chain structures of new glycoproteins have been elucidated one after another.
On the other hand, many researchers have also been actively engaged in research on functional analysis of sugar chains, and sugar chains contribute to cell recognition, molecular discrimination, protein structure maintenance and activity, clearance in vivo, secretion,
It has been found that it plays an important role in many in vivo mechanisms such as localization.

【0003】例えば、糖鎖構造とその機能がよく研究さ
れているヒト・エリスロポエチン〔竹内、蛋白質・核酸
・酵素、増刊「複合糖質」37, 1713 (1992) 参照〕にお
いては、エリスロポエチンに付加されているアスパラギ
ン結合型糖鎖は(図1にその機能分担モデルを示す)、
その先端部分のNeu5Ac(シアル酸)が血中クリア
ランス、分岐部分のGal/GalNAc基(ガラクト
ース/N−アセチルガラクトサミン)は受容体との結合
に関する立体的な寄与、そしてコア部分はペプチドの活
性発現維持の関与と多岐にわたる機能に関与しているこ
とが報告されている。このように糖蛋白質の糖鎖は、そ
の構造が複雑であるだけでなく機能も多岐に渡っている
ことから、特に医薬品として糖蛋白質を開発する場合に
はその構造および機能解析が重要である。
For example, in human erythropoietin [see Takeuchi, Proteins / Nucleic Acids / Enzymes, Special Issue “Glycoconjugate” 37, 1713 (1992)], where sugar chain structure and its function are well studied, it is added to erythropoietin. The asparagine-linked sugar chain (Fig. 1 shows its function sharing model),
Neu5Ac (sialic acid) at the tip portion is blood clearance, Gal / GalNAc group (galactose / N-acetylgalactosamine) at the branched portion contributes sterically to binding with the receptor, and the core portion maintains expression of peptide activity. Have been reported to be involved in various functions. As described above, the sugar chain of a glycoprotein has not only a complicated structure but also a wide variety of functions. Therefore, when developing a glycoprotein as a drug, it is important to analyze its structure and function.

【0004】ところで、微生物を用いた物質生産は、そ
の生産コストの低さや、これまで醗酵工学として培って
きた培養技術など、動物細胞を用いた物質生産に比べる
と、いくつかの点で有利である。しかしながら、微生物
においてはヒト糖蛋白質と同一の糖鎖(例えば上述した
エリスロポエチンにおいて機能している上記糖鎖)を付
加することができないという問題がある。つまり、ヒト
を含め動物細胞由来の糖蛋白質は、図1で示したような
複合型、さらに混成型およびハイマンノース型の3種類
のアスパラギン結合型糖鎖に加え、多種多様のムチン型
糖鎖を有しているが、大腸菌等の原核微生物では糖鎖付
加自体が起こらず、また真核微生物であるパン酵母( S
accharomyces cerevisiae )でも付加されるアスパラギ
ン結合型糖鎖はハイマンノース型のみで、ムチン型はマ
ンノースのみを主成分とする糖鎖しか付加されない。従
って、上述したエリスロポエチン等のように糖鎖が重要
な機能を持っている糖蛋白質の遺伝子組換え生産には、
微生物は適しておらず、実際にエリスロポエチンの生産
にはチャイニーズ・ハムスター卵巣細胞(CHO細胞)
が用いられている。
By the way, the production of a substance using a microorganism is advantageous in several points as compared with the production of a substance using an animal cell, such as a low production cost and a culture technique cultivated as fermentation technology. is there. However, there is a problem that the same sugar chain as the human glycoprotein (for example, the above-mentioned sugar chain functioning in erythropoietin) cannot be added to the microorganism. In other words, glycoproteins derived from animal cells, including humans, contain a wide variety of mucin-type sugar chains in addition to the three types of asparagine-linked sugar chains of complex type, hybrid type and high-mannose type as shown in FIG. However, glycosylation does not occur in prokaryotic microorganisms such as Escherichia coli, and baker's yeast (S
accharomyces cerevisiae) is the only asparagine-linked sugar chain added is the high-mannose type, and the mucin type is added only to the mannose-based sugar chain. Therefore, in the recombinant production of glycoproteins, such as erythropoietin described above, in which sugar chains have important functions,
Microorganisms are not suitable, and actually Chinese hamster ovary cells (CHO cells) are used to produce erythropoietin.
Is used.

【0005】これに対しパン酵母等の真核微生物の遺伝
子工学的な分子育種を行い、パン酵母細胞内で動物細胞
と同一あるいは類似の構造の糖鎖を付加させようとする
研究も行われ始めている。1994年、Schwientekらはパン
酵母でヒト由来β-1,4-galactosyltransferase遺伝子の
活性発現の成功を報告している〔Schwientek,T. andErn
st, J.F., Gene, 145, 299 (1994)〕。また、Krezdrn
らも同様の研究を進めており、同じくパン酵母でヒト由
来β-1,4-galactosyltransferase及びα-2,6-sialyltra
nsferaseの活性発現を行っている〔Krezdrn,C.H., et a
l., Eur.J.Biochem.220, 809 (1994) 〕。
[0005] On the other hand, studies have begun to carry out genetic engineering of eukaryotic microorganisms such as baker's yeast by genetic engineering to add sugar chains having the same or similar structure as those of animal cells in baker's yeast cells. There is. In 1994, Schwientek et al. Reported successful expression of human β-1,4-galactosyltransferase gene activity in baker's yeast [Schwientek, T. and Ern.
st, JF, Gene, 145, 299 (1994)]. Also, Krezdrn
Et al. Are also conducting similar research, and in the same manner, human-derived β-1,4-galactosyltransferase and α-2,6-sialyltra were also found in baker's yeast.
nsferase activity expression [Krezdrn, CH, et a
L., Eur. J. Biochem. 220, 809 (1994)].

【0006】また、一方でパン酵母由来の糖蛋白質の糖
鎖自体の改変を目的とする試みが行われている。パン酵
母由来の糖蛋白質に付加されるハイマンノース型糖鎖は
動物細胞のハイマンノース型糖鎖よりもさらにマンノー
スを多量に含む、いわゆるHyper mannosylation された
糖鎖が多数を占めており、この過剰に付加されたマンノ
ースのうち、β結合したマンノースにα-1,3結合したマ
ンノース残基を出発点として伸長するα-1,6結合マンノ
ースや外糖鎖に付加されるα-1,3結合マンノース等はパ
ン酵母特有の構造である(図2)。
[0006] On the other hand, attempts have been made to modify the sugar chain itself of the baker's yeast-derived glycoprotein. High-mannose type sugar chains added to baker's yeast-derived glycoproteins contain a larger amount of mannose than the high-mannose type sugar chains of animal cells. Among the added mannose, α-1,6-linked mannose that extends from the α-1,3-linked mannose residue of β-linked mannose and α-1,3-linked mannose added to the outer sugar chain Etc. are structures peculiar to baker's yeast (Fig. 2).

【0007】1992年、地神らはこのα-1,6結合マンノー
スの伸長の鍵酵素であると考えられているパン酵母のO
CH1遺伝子(α-1,6-mannosyltransferaseを発現す
る) のクローニングに成功した(Nakayama, K., EMBO J.
11, 2511 (1992)、図2参照〕。このOCH1遺伝子の
破壊株(△och1)の糖蛋白質には、Man8 Glc
NAc2 、Man9 GlcNAc2 、Man10GlcN
Ac2 の3種の糖鎖が付加されており、このうちMan
8 GlcNAc2 糖鎖は、哺乳類細胞で共通するERコ
ア糖鎖と同一の構造(図2中、「Ma」 で記載した構
造)で、Man9 GlcNAc2 、Man10GlcNA
2 の糖鎖は、このERコア糖鎖にα-1,3結合マンノー
スが付加された構造〔Nakanishi-Shindo,Y., Nakayama,
K.,Tanaka,A.,Toda,Y. and Jigami,Y., (1994), J.Bio
l.Chem.〕であった。さらに、△och1,mnn1二
重変異株(図2参照)を作製して末端のα-1,3結合マン
ノース転移を阻害することにより、パン酵母と哺乳類細
胞で共通するERコア糖鎖と同一構造のMan8 Glc
NAc2 糖鎖のみを生成するパン酵母宿主を作製でき
た。この△och1,mnn1二重変異株は、ハイマン
ノース型糖鎖を有する哺乳類由来の糖蛋白質を遺伝子組
換え技術により生産する際に有用な宿主となると考えら
れている〔地神芳文(1994)蛋白質・核酸・酵素, 39,65
7〕。
[0007] In 1992, Jigami et al. O of baker's yeast, which is considered to be a key enzyme for elongation of α-1,6-linked mannose.
Successful cloning of CH1 gene (expressing α-1,6-mannosyltransferase) (Nakayama, K., EMBO J.
11, 2511 (1992), see FIG. 2]. The glycoprotein of this OCH1 gene-disrupted strain (Δoch1) contains Man 8 Glc.
NAc 2 , Man 9 GlcNAc 2 , Man 10 GlcN
Ac 2 has three kinds of sugar chains added, of which Man is
The 8 GlcNAc 2 sugar chain has the same structure as the ER core sugar chain common to mammalian cells (the structure described as “Ma” in FIG. 2), Man 9 GlcNAc 2 and Man 10 GlcNA.
The sugar chain of c 2 has a structure in which α-1,3-linked mannose is added to this ER core sugar chain [Nakanishi-Shindo, Y., Nakayama,
K., Tanaka, A., Toda, Y. and Jigami, Y., (1994), J. Bio
l. Chem.]. Furthermore, by constructing a Δoch1, mnn1 double mutant (see FIG. 2) and inhibiting α-1,3-linked mannose transfer at the terminal, the same structure as the ER core sugar chain common to baker's yeast and mammalian cells Man 8 Glc
A baker's yeast host that produces only NAc 2 sugar chains could be produced. This Δoch1, mnn1 double mutant strain is considered to be a useful host when a mammalian-derived glycoprotein having a high-mannose type sugar chain is produced by gene recombination technology [Jigami Yoshifumi (1994) Protein・ Nucleic acid / enzyme, 39,65
7].

【0008】ところで、近年、メタノール資化性酵母で
あるピキア属酵母(Pichia pastoris 等)が異種蛋白発
現系の有効な宿主として注目を浴びている。ピキア属酵
母は、特にその分泌発現量がパン酵母を大きく上回って
おり、また培養技術が確立しているので工業生産に用い
られる酵母として大変好適に用いられる。しかしなが
ら、ピキア属酵母が有する糖蛋白質の糖鎖伸長機構やピ
キア属酵母によって産生される蛋白質の糖鎖構造等につ
いての研究はほとんど行われていないのが現状である。
By the way, in recent years, Pichia yeast (Pichia pastoris, etc.), which is a methanol-assimilating yeast, has been attracting attention as an effective host for a heterologous protein expression system. The Pichia yeast has a secretory expression amount far higher than that of baker's yeast, and since the culture technique has been established, it is very suitably used as a yeast for industrial production. However, at present, little research has been conducted on the sugar chain elongation mechanism of glycoproteins possessed by Pichia yeast and the sugar chain structure of proteins produced by Pichia yeast.

【0009】従って、本発明の目的は、ピキア属酵母に
由来する糖鎖伸長に携わるタンパク及びその遺伝子を提
供することである。ピキア属酵母に由来する糖鎖伸長に
携わるタンパク及びその遺伝子は、本発明によって初め
て提供されるものである。また本発明は、当該タンパク
の遺伝子の解明に基づいて、糖鎖伸長に携わるタンパク
の遺伝子の機能産物の産生が少なくとも抑制されるよう
に修飾されてなるDNA、該DNAを有することにより
天然型ピキア属酵母株に比して糖鎖伸長能が抑制されて
なる修飾ピキア属酵母株、および当該修飾ピキア属酵母
株を宿主として用いることを特徴とする糖蛋白質の製造
法を提供することを目的とする。当該修飾ピキア属酵母
株は、哺乳類由来の糖蛋白質と同一もしくは類似の糖鎖
構造を有する糖蛋白質を遺伝子組換え技術により生産す
る際に有用な宿主となり得る点で有用である。
[0009] Therefore, an object of the present invention is to provide a protein derived from a yeast of the genus Pichia and involved in sugar chain elongation and a gene thereof. The protein and its gene involved in sugar chain elongation derived from yeast of the genus Pichia are provided for the first time by the present invention. The present invention also provides, based on the elucidation of the gene of the protein, a DNA modified so as to at least suppress the production of a functional product of the gene of the protein involved in sugar chain elongation, and a natural Pichia by having the DNA. An object of the present invention is to provide a modified Pichia yeast strain in which sugar chain elongation ability is suppressed as compared with a yeast strain of the genus, and a method for producing a glycoprotein characterized by using the modified Pichia yeast strain as a host. To do. The modified yeast strain of the genus Pichia is useful in that it can serve as a useful host when a glycoprotein having the same or similar sugar chain structure as a glycoprotein of mammalian origin is produced by a gene recombination technique.

【0010】[0010]

【課題を解決するための手段】本発明者らは、ピキア属
酵母を宿主として種々の生理活性蛋白質の産生を行って
いるが、上述のように生理活性蛋白質の殆どは糖蛋白質
であることから、ピキア属酵母を組換え生産の宿主とす
る場合、糖蛋白質の糖鎖の問題は避けられない問題であ
る。そこで、かかる問題を解決すべく種々研究を重ねた
ところ、ピキア属酵母に由来する糖鎖伸長に携わるタン
パクをコードする遺伝子のクローニングに成功し、当該
タンパクがピキア属酵母を宿主とする発現系において、
糖蛋白質の糖鎖の伸長に関与していることを確認して本
発明を完成した。
[Means for Solving the Problems] The present inventors have produced various physiologically active proteins using yeast of the genus Pichia as a host. However, as described above, most of the physiologically active proteins are glycoproteins. When Pichia yeast is used as a host for recombinant production, the problem of sugar chains of glycoproteins is an unavoidable problem. Therefore, after conducting various studies to solve such a problem, a gene encoding a protein involved in sugar chain elongation derived from Pichia yeast was successfully cloned, and the protein was expressed in an expression system using the Pichia yeast as a host. ,
The present invention was completed by confirming that it is involved in the elongation of sugar chains of glycoproteins.

【0011】すなわち本発明は、ピキア属酵母に由来す
る、糖蛋白質の糖鎖伸長に携わるタンパクおよびその該
タンパクをコードする塩基配列を有するDNAに関す
る。また本発明は、当該糖蛋白質の糖鎖伸長に携わるタ
ンパクをコードするDNAの塩基配列の一部が、該DN
Aの機能産物の産生が少なくとも抑制されてなるように
修飾されてなるDNA、好ましくは糖蛋白質の糖鎖伸長
に携わるタンパクをコードするDNAに形質転換マーカ
ー遺伝子が挿入されてなるDNAに関する。さらに本発
明は、当該修飾DNAを有することにより、天然型ピキ
ア属酵母株に比して糖鎖伸長能が抑制されてなる修飾ピ
キア属酵素株、当該修飾ピキア属酵母株を宿主として用
いることを特徴とする糖蛋白質の製造方法に関する。
That is, the present invention relates to a protein derived from a yeast of the genus Pichia, which is involved in sugar chain elongation of a glycoprotein, and a DNA having a nucleotide sequence encoding the protein. Further, in the present invention, a part of the nucleotide sequence of a DNA encoding a protein involved in sugar chain elongation of the glycoprotein is the DN
The present invention relates to a DNA modified so that the production of a functional product of A is at least suppressed, preferably a DNA encoding a protein involved in sugar chain elongation of a glycoprotein and having a transformation marker gene inserted therein. Furthermore, the present invention provides a modified Pichia enzyme strain having the modified DNA, in which sugar chain elongation ability is suppressed as compared with a natural Pichia yeast strain, and using the modified Pichia yeast strain as a host. The present invention relates to a method for producing a characteristic glycoprotein.

【0012】以下、本発明について詳細に説明する。 (1)糖蛋白質の糖鎖伸長に携わるタンパク 本発明のタンパクは、原始的にはピキア属酵母によって
産生されるタンパクであり、糖蛋白質の糖鎖の伸長の最
初の段階をつかさどっており、糖鎖の伸長を制御する機
能を有することを特徴とする。
The present invention will be described in detail below. (1) Protein involved in sugar chain elongation of glycoprotein The protein of the present invention is a protein originally produced by yeast of the genus Pichia, and controls the first stage of sugar chain elongation of glycoprotein. It is characterized by having a function of controlling chain extension.

【0013】本発明のタンパクの由来となるピキア属酵
母としては、特に制限はないが、具体的には Pichia pa
storis, Pichia finlandica, Pichia trehalophila, Pi
chiakoclamae, Pichia membranaefaciens, Pichia opun
tiae, Pichia thermotolerans, Pishia salictaria, Pi
chia guercuum Pichia pijperi等が例示される。好ま
しくは Pichia pastoris( 以下、P.pastorisという) で
ある。
The yeast of the genus Pichia from which the protein of the present invention is derived is not particularly limited, but specifically, Pichia pa
storis, Pichia finlandica, Pichia trehalophila, Pi
chiakoclamae, Pichia membranaefaciens, Pichia opun
tiae, Pichia thermotolerans, Pishia salictaria, Pi
Examples include chia guercuum Pichia pijperi and the like. Pichia pastoris (hereinafter referred to as P. pastoris) is preferable.

【0014】本発明のタンパクは原始的にピキア属酵母
に由来するものであり、かつ上記機能を有するものであ
れば特に制限されないが、好ましくはN末端領域に式I
で示されるアミノ酸配列を有するタンパクであり、より
好ましくは実質的に式IIで示されるアミノ酸配列を有す
るタンパクである。
The protein of the present invention is not particularly limited as long as it is originally derived from a yeast of the genus Pichia and has the above-mentioned function, but preferably the formula I in the N-terminal region is used.
Is a protein having an amino acid sequence represented by, and more preferably a protein having an amino acid sequence substantially represented by formula II.

【0015】[0015]

【化4】 [Chemical 4]

【0016】[0016]

【化5】 Embedded image

【0017】なお、かかるアミノ酸配列は、上述の特性
を変更しない範囲で、一部が修飾(例えば、アミノ酸残
基またはペプチド鎖の置換、欠失、挿入または付加等)
されていてもよい。
The amino acid sequence is partially modified (for example, substitution, deletion, insertion or addition of amino acid residues or peptide chains) within the range in which the above characteristics are not changed.
It may be.

【0018】本発明のタンパクは、その一次構造として
例示される式II記載のアミノ酸配列が、パン酵母に由来
するα-1,6結合マンノース伸長の鍵酵素、α-1,6-manno
syltransferaseのアミノ酸配列と高い相同性(約40
%)を有し、また後述するようにそのDNAもパン酵母
に由来する該酵素をコードするOCH1遺伝子と高い相
同性(約55%)を有すること等から、ピキア属酵母に
由来するα-1,6結合マンノース伸長の鍵酵素である可能
性が高い。
In the protein of the present invention, the amino acid sequence of formula II exemplified as the primary structure is α-1,6-manno, which is a key enzyme for α-1,6-linked mannose elongation derived from baker's yeast.
High homology with the amino acid sequence of syltransferase (about 40
%), And the DNA thereof also has a high homology (about 55%) with the OCH1 gene encoding the enzyme derived from baker's yeast as described below. Therefore, α-1 derived from Pichia yeast is It is likely to be a key enzyme for the elongation of 6,6-linked mannose.

【0019】本発明のタンパクは、ピキア属酵母を常法
に従って、好ましくは該酵母の増殖に適した条件下で培
養し、培養菌体から常法により抽出、精製することによ
り製造することができる。また、本発明で例示するアミ
ノ酸配列に基づいてポリペプチド合成したり、また本発
明で例示する塩基配列に基づいて慣用の組換えDNA技
術によっても製造することができる。なお、以下説明を
簡便にするため、本発明のタンパクを糖鎖伸長タンパク
ともいう。
The protein of the present invention can be produced by culturing yeast of the genus Pichia according to a conventional method, preferably under conditions suitable for the growth of the yeast, and extracting and purifying from the cultured cells by a conventional method. . In addition, the polypeptide can be synthesized based on the amino acid sequence exemplified in the present invention, or can be produced by a conventional recombinant DNA technique based on the nucleotide sequence exemplified in the present invention. For the sake of simplicity, the protein of the present invention is also called a sugar chain elongation protein.

【0020】(2)糖鎖伸長タンパクをコードする塩基
配列を有するDNA 本発明のDNAは、前述の本発明のピキア属酵母に由来
する糖鎖伸長タンパクをコードする塩基配列を有するこ
とを特徴とするものである。かかる塩基配列は、本発明
の糖鎖伸長タンパクをコードし得る塩基配列であれば特
に制限されないが、好適には式Iで示されるアミノ酸配
列をコードする塩基配列、より好ましくは実質的に下記
式III で示される塩基配列が例示される。
(2) DNA having a base sequence encoding a sugar chain elongation protein The DNA of the present invention is characterized by having a base sequence encoding the sugar chain elongation protein derived from the yeast of the genus Pichia of the present invention. To do. The base sequence is not particularly limited as long as it is a base sequence capable of encoding the sugar chain elongation protein of the present invention, preferably a base sequence encoding the amino acid sequence represented by the formula I, more preferably substantially the following formula: The base sequence shown by III is exemplified.

【0021】[0021]

【化6】 [Chemical 6]

【0022】当該DNAは、従来公知の手法により製造
することができる。例えば、本発明で例示する塩基配列
をもとにDNA合成機を用いてその一部または全てのD
NAを合成したり、ピキア属酵母(例えばP.pastoris)
の染色体DNAを用いてPCR法で増幅させることによ
り製造することも可能である。
The DNA can be produced by a conventionally known method. For example, by using a DNA synthesizer based on the nucleotide sequences exemplified in the present invention, a part or all of D
Synthesizing NA, yeast of the genus Pichia (eg P. pastoris)
It can also be produced by amplification using the chromosomal DNA of No. 1 by the PCR method.

【0023】本発明のDNAは、ピキア属酵母によって
産生される、糖蛋白質の糖鎖伸長に携わるタンパクの遺
伝子として、本発明により初めて提供されるものであ
る。従って、本発明のDNAはピキア属酵母を宿主とす
る糖蛋白質発現系における糖蛋白質の糖鎖の構造・機能
等の機序を解明する上で極めて有用である。
The DNA of the present invention is provided for the first time by the present invention as a gene for a protein which is involved in elongation of a sugar chain of a glycoprotein produced by a yeast of the genus Pichia. Therefore, the DNA of the present invention is extremely useful for elucidating the mechanism such as the structure and function of the sugar chain of a glycoprotein in a glycoprotein expression system using Pichia yeast as a host.

【0024】本発明の糖鎖伸長タンパクは、ピキア属酵
母を宿主として産生される蛋白質のコア糖鎖にさらにα
−1,6結合マンノースを転移する働きを有し、動物細
胞由来の糖蛋白質に比べて過剰にマンノースを付加させ
てしまう。従って、本発明による糖鎖伸長タンパクの遺
伝子の解明は、ピキア属酵母を宿主として、医薬上有用
な生理活性蛋白質と同一もしくは類似の糖鎖構造を有す
る糖蛋白質を発現・産生させるために、遺伝子レベルで
ピキア属酵母が本来有する糖鎖伸長能を減弱または除去
する方法の提供にもつながる。すなわち、本発明の糖鎖
伸長タンパクが本来的に有する糖鎖伸長活性の減弱また
は除去は、本発明の糖鎖伸長タンパクをコードする塩基
配列を有するDNA(以下、糖鎖伸長DNA、もしくは
後述の修飾糖鎖伸長DNAと区別するため天然型糖鎖伸
長DNAともいう)を、該DNAが本来産生する機能産
物の産生を少なくとも抑制するように修飾することによ
って達成することができる。
The sugar chain elongation protein of the present invention further comprises α as a core sugar chain of a protein produced by using Pichia yeast as a host.
It has a function of transferring -1,6-linked mannose, and excessively adds mannose as compared with glycoprotein derived from animal cells. Therefore, the elucidation of the gene for the sugar chain elongation protein according to the present invention is carried out by using the yeast of the genus Pichia as a host to express and produce a glycoprotein having the same or similar sugar chain structure as a physiologically useful protein useful in medicine. It also leads to the provision of a method for reducing or eliminating the sugar chain elongation ability originally possessed by Pichia yeast. That is, the reduction or removal of the sugar chain elongation activity originally possessed by the sugar chain elongation protein of the present invention is carried out by DNA having a base sequence encoding the sugar chain elongation protein of the present invention (hereinafter, referred to as sugar chain elongation DNA or In order to distinguish the modified sugar chain-extended DNA from the natural sugar chain-extended DNA, it can be achieved by modifying at least the production of a functional product originally produced by the DNA.

【0025】(3)天然型糖鎖伸長DNAが修飾されて
なるDNA 本発明は、糖蛋白質の糖鎖伸長に携わるタンパクをコー
ドするDNA(天然型糖鎖伸長DNA)の修飾物、すな
わちピキア属酵母に由来する、糖蛋白質の糖鎖伸長に携
わるタンパクをコードするDNAの塩基配列の一部が、
該DNAの機能産物の産生を少なくとも抑制されるよう
に修飾されてなるDNAに関する。
(3) DNA comprising modified natural type sugar chain extended DNA The present invention relates to a modified product of a DNA (natural type sugar chain extended DNA) encoding a protein involved in sugar chain extension of a glycoprotein, that is, Pichia genus. A part of the nucleotide sequence of DNA encoding a protein involved in sugar chain elongation of glycoprotein derived from yeast is
It relates to a DNA modified so as to at least suppress the production of a functional product of the DNA.

【0026】ここで「DNAの機能産物」とは、ピキア
属酵母に由来する天然型糖鎖伸長DNAによって産生さ
れるタンパク、すなわち本発明の糖蛋白質の糖鎖伸長に
携わるタンパクをいうが、前述する当該タンパクと同一
の機能を有している限り、ここでいう機能産物に包含さ
れる。ここで「機能」とは、本発明の糖鎖伸長タンパク
が有する糖鎖合成・伸長に関する機能(活性)、具体的
には、「少なくともコア糖鎖にα−1,6結合マンノー
スを転移する」活性(本明細書において、「糖鎖伸長活
性」という。)を意味する。また「機能産物の産生が少
なくとも抑制」とは、発現せず本発明の天然型糖鎖伸長
DNAがコードするタンパクを全く産生しない場合のみ
ならず、発現しても得られる産物が本発明の天然型糖鎖
伸長DNAの機能産物と同一でなくその機能が減弱され
る場合(即ち、産物が、天然型糖鎖伸長DNAの機能産
物が有する糖鎖伸長活性を全く有しない場合および天然
型糖鎖伸長DNAの機能産物が有する糖鎖伸長活性に比
して低い活性を有する場合)をも含めて意味するもので
ある。
The term "functional product of DNA" as used herein refers to a protein produced by a natural sugar chain elongation DNA derived from a yeast of the genus Pichia, that is, a protein involved in sugar chain elongation of the glycoprotein of the present invention. As long as it has the same function as that protein, it is included in the functional product here. Here, the “function” is a function (activity) relating to sugar chain synthesis / elongation of the sugar chain elongation protein of the present invention, specifically, “transfers α-1,6-linked mannose to at least a core sugar chain”. It means an activity (in the present specification, referred to as "sugar chain elongation activity"). The term "at least suppress the production of functional products" means not only the case where the protein is not expressed and the protein encoded by the natural sugar chain-extended DNA of the present invention is not produced at all, but the product obtained by the expression is the natural product of the present invention. When the functional product of the functional sugar chain-extended DNA is not the same and its function is attenuated (that is, when the product has no sugar chain elongation activity possessed by the functional product of the natural sugar chain-extended DNA, and when the product is a natural sugar chain) (When it has a lower activity than the sugar chain elongation activity of the functional product of the extended DNA).

【0027】従って、DNAの修飾の態様は、遺伝子の
発現を不能ならしめるもの、または修飾された糖鎖伸長
DNAの発現・生成物が、天然型糖鎖伸長DNAの生成
物が本来有する糖鎖伸長活性を全く有しないか、有して
いても天然型糖鎖伸長DNAの生成物の糖鎖伸長活性に
比して減弱せしめてなるようなものであれば、特に制限
されない。具体的には、天然型糖鎖伸長DNAの塩基配
列中の少なくとも一つのヌクレオチドが欠失されている
かもしくは配列中に少なくとも一つのヌクレオチドが挿
入される態様の修飾が例示される。さらに、天然型糖鎖
伸長DNAの塩基配列中の少なくとも一つのヌクレオチ
ドが置換されることも修飾の態様に含まれる。かかる修
飾により、読み枠がずれ、あるいは塩基配列が改変され
るため、発現されないか、発現されても得られる生成物
の機能が、天然型DNA由来の生成物の機能と異なるも
のとなる。
Therefore, the modification mode of DNA is such that the expression of the gene is disabled or the expression / product of the modified sugar chain-extended DNA originally has the sugar chain of the product of the natural type sugar chain-expanded DNA. There is no particular limitation as long as it has no elongation activity or, even if it has, it is attenuated as compared with the sugar chain elongation activity of the product of the natural type sugar chain elongation DNA. Specifically, a modification is exemplified in which at least one nucleotide in the nucleotide sequence of the natural sugar chain-extended DNA is deleted or at least one nucleotide is inserted in the sequence. Furthermore, substitution of at least one nucleotide in the nucleotide sequence of the natural sugar chain-extended DNA is also included in the modification mode. Due to such modification, the reading frame is displaced or the nucleotide sequence is modified, so that the function of the product that is not expressed or that is obtained even when expressed is different from the function of the product derived from natural DNA.

【0028】好適な修飾方法としては、天然型糖鎖伸長
DNAのコード領域内に形質転換のマーカー遺伝子を挿
入する方法が挙げられる。これによると、天然型糖鎖伸
長DNAを破壊することができるとともに、導入された
形質転換のマーカー遺伝子を指標として、該修飾型糖鎖
伸長DNAを有する変異体を容易にスクリーニングする
ことができるという利点がある。また、形質転換マーカ
ー遺伝子に加えて、産生しようとする糖蛋白質の遺伝子
を挿入することもできる。これによると、該糖鎖伸長D
NAの修飾と産生しようとする糖蛋白質の発現が同時に
一度の操作で行うことができる。
[0028] A preferred modification method is a method of inserting a transformation marker gene into the coding region of the natural sugar chain-extended DNA. According to this, it is possible to destroy the natural type sugar chain-extended DNA and to easily screen the mutant having the modified type sugar chain-extended DNA by using the introduced transformation marker gene as an index. There are advantages. In addition to the transformation marker gene, the gene for the glycoprotein to be produced can be inserted. According to this, the sugar chain extension D
Modification of NA and expression of the glycoprotein to be produced can be performed simultaneously by a single operation.

【0029】用いられる形質転換マーカー遺伝子として
は、P.pastorisまたはパン酵母のHIS4遺伝子、AR
G4遺伝子、URA3遺伝子、SUC2遺伝子、G41
8耐性遺伝子等が例示される。好ましくは、HIS4遺
伝子である。また、糖蛋白質の遺伝子としては、製造し
ようとする所望の糖蛋白質のDNAであれば特に制限さ
れないが、具体的には可溶性高親和性IgE受容体α鎖
(sFcεRIα、特開平6−169776号公報)、
インターフェロンα(特開昭61−185189号公
報)、ウロキナーゼ(特開昭60−180591号公
報)、キマーゼ〔Caughey,G.H., et al.,J.Biol.Chem.
266,12956(1991) 〕、尿性トリプシンインヒビター
〔Kaumeyer,J.F., et al. ,Nucleic Acids Res. 14,78
39(1986) 〕、IGF結合蛋白質(IGF1BP3、特
表平3−505397号公報)などが例示される。
Examples of the transformation marker gene used include the HIS4 gene of P. pastoris or baker's yeast, AR
G4 gene, URA3 gene, SUC2 gene, G41
8 resistance gene etc. are illustrated. The HIS4 gene is preferred. The gene for the glycoprotein is not particularly limited as long as it is the DNA of the desired glycoprotein to be produced. Specifically, it is a soluble high-affinity IgE receptor α chain (sFcεRIα, JP-A-6-169776). ),
Interferon α (JP-A 61-185189), urokinase (JP-A 60-180591), chymase [Caughey, GH, et al., J. Biol. Chem.
266, 12956 (1991)], urinary trypsin inhibitor [Kaumeyer, JF, et al., Nucleic Acids Res. 14,78.
39 (1986)], and IGF binding protein (IGF1BP3, Japanese Patent Laid-Open No. 3-505397).

【0030】(4)修飾ピキア属酵母株 本発明の修飾ピキア属酵母株は、前述の修飾糖鎖伸長D
NAを有することに基づいて、天然型ピキア属酵母株に
比して糖鎖伸長能が抑制されてなるピキア属酵母株であ
る。すなわち、天然型糖鎖伸長DNAの代わりに上述の
修飾型糖鎖伸長DNAを有するピキア属酵母であり、天
然型糖鎖伸長DNAの機能産物の活性が減弱されるか、
または活性が発現されない。
(4) Modified yeast strain belonging to the genus Pichia The modified yeast strain belonging to the genus Pichia of the present invention comprises the above-mentioned modified sugar chain extension D.
It is a yeast strain of the genus Pichia in which the sugar chain elongation ability is suppressed as compared with a natural yeast strain of the genus Pichia based on having NA. That is, it is a yeast of the genus Pichia having the above modified sugar chain-extended DNA in place of the natural sugar chain-extended DNA, and the activity of the functional product of the natural sugar chain-extended DNA is attenuated,
Or activity is not expressed.

【0031】このような修飾ピキア属酵母株は、種々の
方法により調製することができる。例えば、天然型ピキ
ア属酵母中の天然型糖鎖伸長DNAの修飾、または天然
型ピキア属酵母株に無作為的な変異を起こさせ、天然型
ピキア属酵母株に比して糖鎖伸長活性が抑制されてなる
突然変異体を選択する方法が挙げられる。天然型糖鎖伸
長DNAの修飾により、修飾ピキア属酵母株を作成する
方法は、具体的には天然型糖鎖伸長DNAの特定座位に
おいて形質導入するDNAを部位特異的組み込み法によ
り導入することにより実施される。形質導入したDNA
は、宿主の内在性の天然型DNAに置き換わることによ
り組み込まれる。酵母宿主の標的座位内への形質導入D
NAの導入に都合のよい方法は、標的遺伝子DNA断片
の内部を欠落、あるいは選択マーカー遺伝子DNAや異
種遺伝子発現DNA断片を挿入した直鎖状DNA断片を
作製することである。これにより形質転換によって、そ
の発現生成物が糖鎖伸長活性に影響を与えるDNAの特
定部位での相同的組換えを起こすように方向付けられ
る。
Such a modified Pichia yeast strain can be prepared by various methods. For example, modification of a natural sugar chain-extending DNA in a natural Pichia yeast or random mutation in a natural Pichia yeast strain, resulting in a sugar chain elongation activity higher than that of a natural Pichia yeast strain. Examples include a method of selecting a mutant that is suppressed. A method for producing a modified Pichia yeast strain by modifying a natural sugar chain-extended DNA is specifically, a method of introducing a DNA that transduces at a specific locus of the natural sugar chain-extended DNA by a site-specific integration method. Be implemented. Transduced DNA
Are integrated by replacing the host's native native DNA. Transduction into the target locus of the yeast host D
A convenient method for introducing NA is to prepare a linear DNA fragment lacking the inside of the target gene DNA fragment or inserting a selectable marker gene DNA or a heterologous gene expressing DNA fragment. This causes transformation to direct the expression product to homologous recombination at specific sites in the DNA that affect sugar chain elongation activity.

【0032】好ましくは、本発明の修飾糖鎖伸長DNA
を用いて天然型ピキア属酵母を形質転換する方法であ
る。天然型ピキア属酵母を形質転換する方法ならびに当
該酵母細胞の培養方法は、当該分野で採用される通常の
方法を用いることができる。例えば、形質転換方法とし
ては、スフェロプラスト方法〔Creggh et al., Mol.Cel
l.Biol.,5,3376 (1985) 、米国特許第4,879,231 号〕、
塩化リチウム法〔Ito et al., Agric.Biol.Chem.,48,34
1 (1984)、欧州特許出願第312,934 号、米国特許第4,92
9,535 号〕等が用いられる。
Preferably, the modified sugar chain extension DNA of the present invention
Is a method for transforming a natural Pichia yeast. As a method for transforming the natural yeast of the genus Pichia and a method for culturing the yeast cell, an ordinary method adopted in the art can be used. For example, as a transformation method, a spheroplast method [Creggh et al., Mol. Cel
Biol., 5,3376 (1985), U.S. Pat.No. 4,879,231],
Lithium chloride method [Ito et al., Agric. Biol. Chem., 48, 34
1 (1984), European Patent Application No. 312,934, U.S. Patent No. 4,92.
No. 9,535] is used.

【0033】形質転換に用いられる天然型ピキア属酵母
由来の宿主細胞は、特に制限されないが、好ましくは唯
一の炭素源およびエネルギー源としてメタノールを効率
よく利用できるメタノール資化性酵母(methylotrophi
c)酵母である。適切なメタノール資化性酵母として
は、具体的には栄養要求性P.pastorisGTS115株
(NRRL Y−15851),P.pastorisGS190
株(NRRL Y−18014),P.pastorisPPF1
株(NRRL Y−18017)、野生型P.pastoris株
(NRRL Y−11430、NRRL Y−1143
1)等が例示される。
The host cell derived from a natural yeast of the genus Pichia used for transformation is not particularly limited, but is preferably a methanol-utilizing yeast (methylotrophi) that can efficiently utilize methanol as the sole carbon source and energy source.
c) Yeast. Examples of suitable methanol-assimilating yeasts include auxotrophic P. pastoris GTS115 strain (NRRL Y-15851) and P. pastoris GS190.
Strain (NRRL Y-18014), P. pastoris PPF1
Strain (NRRL Y-18017), wild type P. pastoris strain (NRRL Y-11430, NRRL Y-1143).
1) etc. are illustrated.

【0034】また、さらに好ましくは、少なくとも一つ
の独立栄養性マーカー遺伝子が欠失した株であり、例え
ばHIS4欠失P.pastorisGS115株(ATCC20
864)、ARG4欠失P.pastorisGS190株,HI
S4/URA3欠失P.pastorisGS4−2株,HIS4
/URA4欠失P.pastorisPPF1株(NRRL Y−
18017:米国特許第4.812.405 号参照)等が挙げら
れる。このように宿主細胞が少なくとも一つの独立栄養
性マーカー遺伝子が欠失した株である場合は、形質導入
するDNAとして、宿主細胞に欠失している独立栄養性
マーカー遺伝子を有するものを用いることが好ましい。
かかる方法によると、形質導入するDNAが取り込まれ
て糖鎖伸長DNAが修飾された形質転換体(修飾ピキア
属酵母株)を迅速かつ簡便に同定、選択することができ
る点で有用である。
Further, more preferably, a strain in which at least one autotrophic marker gene is deleted, for example, HIS4 deficient P. pastoris GS115 strain (ATCC20
864), ARG4 deficient P. pastoris GS190 strain, HI
S4 / URA3 deficient P. pastoris GS4-2 strain, HIS4
/ URA4-deficient P. pastoris PPF1 strain (NRRL Y-
18017: U.S. Pat. No. 4.812.405) and the like. Thus, when the host cell is a strain in which at least one autotrophic marker gene is deleted, it is preferable to use, as the transducing DNA, one having the autotrophic marker gene deleted in the host cell. preferable.
According to such a method, a transformant (modified Pichia yeast strain) in which transducing DNA has been incorporated and sugar chain-extended DNA has been modified can be identified and selected quickly and easily.

【0035】当該修飾ピキア属酵母株は、さらに天然培
地〔例えば、YPD培地(1%イーストエキストラク
ト,2%ペプトン,2%グルコース),YPM培地(1
%イーストエキストラクト,2%ペプトン,2%メタノ
ール)等〕などの栄養条件下で天然型ピキア属酵母株と
同等の増殖能力を保持しているという特徴を有する。こ
のことは、糖鎖伸長DNAの修飾の有無は、栄養条件下
ではピキア属酵母の生育に影響を与えないことを意味す
る。従って、本発明の修飾ピキア属酵母株は、医薬上有
用な糖蛋白質産生のための優れた宿主となる。すなわ
ち、当該酵母は天然型ピキア属酵母株に比して宿主細胞
に由来する糖鎖伸長能が減弱もしくは消失しているた
め、哺乳動物細胞、なかんずくはヒトに由来する細胞が
産生する糖蛋白質と同一または類似の糖鎖構造を有する
糖蛋白質を産生することができる。
The modified Pichia yeast strain further comprises a natural medium [eg, YPD medium (1% yeast extract, 2% peptone, 2% glucose), YPM medium (1
% Yeast extract, 2% peptone, 2% methanol, etc.] and the like, and retains the same growth ability as the natural Pichia yeast strain. This means that the presence or absence of modification of the sugar chain-extended DNA does not affect the growth of Pichia yeast under nutritional conditions. Therefore, the modified Pichia yeast strain of the present invention becomes an excellent host for the production of pharmaceutically useful glycoproteins. That is, the yeast has a decreased or disappeared sugar chain elongation ability derived from the host cell as compared with the natural Pichia yeast strain, and therefore, a glycoprotein produced by a mammalian cell, particularly a human-derived cell. Glycoproteins having the same or similar sugar chain structure can be produced.

【0036】上述の哺乳動物細胞、なかんずくはヒトに
由来する細胞が産生する糖蛋白質と同一または類似の糖
鎖構造を有する糖蛋白質としては、蛋白質分子上に糖鎖
構造を有する糖蛋白質であれば特に制限されないが、好
ましくは医薬上有用な生理活性蛋白質、具体的には、可
溶性高親和性IgE受容体α鎖(sFcεRIα)、表
皮増殖因子(EGF)、成長ホルモン放出因子(GR
F)、IGF1結合蛋白質3(IGF1BP3)、プロ
ウロキナーゼ・アネキシンV融合蛋白質、キマーゼ、尿
性トリプシンインヒビターなどが例示される。
The glycoprotein having the same or similar sugar chain structure as the glycoprotein produced by the above-mentioned mammalian cells, especially cells derived from humans, is a glycoprotein having a sugar chain structure on the protein molecule. Although not particularly limited, preferably a pharmaceutically useful physiologically active protein, specifically, a soluble high affinity IgE receptor α chain (sFcεRIα), epidermal growth factor (EGF), growth hormone releasing factor (GR
F), IGF1 binding protein 3 (IGF1BP3), pro-urokinase-annexin V fusion protein, chymase, urinary trypsin inhibitor and the like.

【0037】糖蛋白質産生のために有用な発現系は、種
々の方法により作製することができる。例えば、上述し
た修飾ピキア属酵母株に糖蛋白質をコードするDNAを
導入する方法、天然型糖鎖伸長DNAの塩基配列に形質
転換マーカー遺伝子とともに糖蛋白質をコードするDN
Aを挿入したDNAを用いて天然型ピキア属酵母を形質
転換する方法、糖蛋白質をコードするDNAを有する組
換えピキア属酵母株が有する天然型糖鎖伸長DNAを後
発的に、本発明の修飾糖鎖伸長DNAの態様に変異せし
める方法、または、天然型ピキア属酵母株を上記の修飾
糖鎖伸長DNAおよび糖蛋白質をコードするDNAで同
時に形質転換する方法等が挙げられる。
Expression systems useful for glycoprotein production can be prepared by various methods. For example, a method of introducing a DNA encoding a glycoprotein into the modified Pichia yeast strain described above, a DN encoding a glycoprotein together with a transformation marker gene in the base sequence of a natural sugar chain-extended DNA.
A method of transforming a native Pichia yeast with a DNA having A inserted therein, and a modification of the present invention, which is a natural sugar chain-extended DNA possessed by a recombinant Pichia yeast strain having a DNA encoding a glycoprotein. Examples thereof include a method of mutating to an embodiment of sugar chain extended DNA, a method of simultaneously transforming a natural yeast strain of the genus Pichia with the above modified sugar chain extended DNA and DNA encoding a glycoprotein, and the like.

【0038】組換え糖蛋白質発現系のピキア属酵母は、
転写の読み枠の方向に、少なくとも、プロモーター領
域、実質的に所望の糖蛋白質をコードするDNA及び
転写ターミネーター領域を有するものである。これら
のDNAは、所望の糖蛋白質をコードするDNAがRN
Aに転写されるように、お互いに機能するように関連し
て配列される。
The yeast of the genus Pichia of the recombinant glycoprotein expression system is
It has at least a promoter region, a DNA encoding substantially the desired glycoprotein, and a transcription terminator region in the direction of the reading frame of transcription. These DNAs are RNs that encode the desired glycoprotein.
As transcribed into A, they are arranged in functional relation to each other.

【0039】プロモーターとしては、P.pastorisのAO
X1プロモーター(プライマリーアルコールオキシダー
ゼ遺伝子のためのプロモーター)、P.pastorisのAOX
2プロモーター(セカンダリー アルコールオキシダー
ゼ遺伝子のためのプロモーター)、P.pastorisのDAS
プロモーター(ジヒドロキシアセトン シンターゼ遺伝
子のためのプロモーター)、P.pastorisのP40プロモ
ーター(P40遺伝子のためのプロモーター)、P.past
orisのアルデヒド デヒドロゲナーゼ遺伝子のためのプ
ロモーターまたはP.pastorisの葉酸デヒドロゲナーゼ遺
伝子のためのプロモーターなどが挙げられる。好ましく
は、P.pastorisのAOX1プロモーター(Ellis et a
l., Mol.Cell.Biol.,5,111(1985)、米国特許第4,855,23
1 号など) であり、より好ましくは、発現効率が向上す
るように修飾された変異型AOX2プロモーター(Ohi,
H et al., Mol.Gen.Genet., 243, 489-499, 1994年、特
開平4−299984号公報)である。
As a promoter, P. pastoris AO
X1 promoter (promoter for the primary alcohol oxidase gene), P. pastoris AOX
2 promoters (promoters for the secondary alcohol oxidase gene), P. pastoris DAS
Promoter (promoter for dihydroxyacetone synthase gene), P. pastoris P40 promoter (promoter for P40 gene), P. past
Examples thereof include a promoter for the oris aldehyde dehydrogenase gene or a promoter for the folate dehydrogenase gene of P. pastoris. Preferably, P. pastoris AOX1 promoter (Ellis et a
L., Mol. Cell. Biol., 5,111 (1985), U.S. Patent No. 4,855,23.
No. 1), and more preferably, a mutant AOX2 promoter (Ohi,
H et al., Mol. Gen. Genet., 243, 489-499, 1994, JP-A-4-299984).

【0040】なお、実質的に所望の糖蛋白質をコードす
るDNAの前に分泌シグナル配列をコードするDNAを
有していてよい。かかるDNAを有する組換え糖蛋白質
発現系によれば、糖蛋白質が宿主細胞外に分泌産生され
るため、所望の糖蛋白質を容易に単離精製することがで
きる。分泌シグナル配列をコードしているDNAとして
は、糖蛋白質に関連した天然の分泌シグナル配列をコー
ドするDNA、パン酵母α−接合因子(αMF)リーダ
ー配列をコードしているDNA(プロセッシング部位を
コードしているDNA配列を含む、Lys−Arg)、
ウシリゾチームCシグナル配列のようなメタノール資化
性酵母細胞で機能するシグナル配列をコードするDNA
等が挙げられる。
The DNA encoding the secretory signal sequence may be provided before the DNA encoding substantially the desired glycoprotein. According to the recombinant glycoprotein expression system having such DNA, the glycoprotein is secreted and produced outside the host cell, so that the desired glycoprotein can be easily isolated and purified. The DNA encoding the secretory signal sequence includes a DNA encoding a natural secretory signal sequence related to glycoprotein, a DNA encoding a baker's yeast α-mating factor (αMF) leader sequence (coding a processing site Lys-Arg), which contains the DNA sequence
DNA encoding a signal sequence such as bovine lysozyme C signal sequence that functions in a methanol-assimilating yeast cell
Etc.

【0041】本発明で用いられる転写ターミネーター
は、プロモーターからの転写に対して転写終結信号を提
供するサブセグメントを有するものであればよく、プロ
モーター源の遺伝子と同じもしくは異なるものであって
もよく、また糖蛋白質をコードする遺伝子から取得され
るものであってもよい。
The transcription terminator used in the present invention may be one having a subsegment that provides a transcription termination signal for transcription from the promoter, and may be the same as or different from the gene of the promoter source. It may also be obtained from a gene encoding a glycoprotein.

【0042】本発明の発現系は、上記のDNA配列に加
えてさらに選択マーカー遺伝子を含んでいてもよい。用
いられる選択マーカー遺伝子としては、HIS4,AR
G4,URA3,パン酵母SUC2,G418耐性遺伝
子等が挙げられる。
The expression system of the present invention may further contain a selectable marker gene in addition to the above DNA sequence. The selectable marker gene used is HIS4, AR
G4, URA3, baker's yeast SUC2, G418 resistance gene and the like.

【0043】所望の表現型に形質転換された修飾ピキア
属酵母株は、当該分野で通常用いられる方法で培養する
ことにより、糖蛋白質を産生することができる。用いら
れる培地には特に制限はなく、通常の天然培地(YPD
培地,YPM培地)等が挙げられる。培養温度は、ピキ
ア属酵母宿主細胞の増殖および所望の糖蛋白質の産生に
適した温度であることが好ましく、約20〜30℃、好
ましくは約23〜25℃である。培地のpHも、宿主細
胞の増殖および所望の糖蛋白質の産生に適したpHを適
宜採用することができる。さらに、必要により通気や攪
拌を加えることができる。培養後、培養上清を回収し、
当該上清から自体公知の方法、例えば分画法、イオン交
換,ゲル濾過,疎水相互作用クロマトグラフィーまたは
アフィニティカラムクロマトグラフィー等により所望の
異種蛋白質を精製取得することできる。
The modified Pichia yeast strain transformed to the desired phenotype can produce glycoprotein by culturing by a method commonly used in the art. The medium used is not particularly limited, and a normal natural medium (YPD
Medium, YPM medium) and the like. The culture temperature is preferably a temperature suitable for the growth of Pichia yeast host cells and the production of the desired glycoprotein, and is about 20 to 30 ° C, preferably about 23 to 25 ° C. As the pH of the medium, a pH suitable for host cell growth and production of a desired glycoprotein can be appropriately adopted. Further, aeration and stirring can be added if necessary. After culturing, collect the culture supernatant,
A desired heterologous protein can be purified and obtained from the supernatant by a method known per se, for example, fractionation method, ion exchange, gel filtration, hydrophobic interaction chromatography or affinity column chromatography.

【0044】[0044]

【発明の効果】本発明は、ピキア属酵母に由来する糖蛋
白質の糖鎖伸長に携わるタンパクおよびその遺伝子を初
めて提供するものである。当該糖鎖伸長に携わるタンパ
クおよびその遺伝子の提供は、ピキア属酵母を宿主とす
る糖蛋白質の糖鎖の結合・伸長の機序を解明するための
基礎となり得る点で有用である。また当該遺伝子の解明
は、ピキア属酵母を宿主として、医薬上有用な生理活性
蛋白質と同一もしくは類似の糖蛋白質を発現・産生させ
るために、遺伝子レベルでピキア属酵母が本来有する糖
鎖伸長能を改変する方法の提供にもつながる。また、本
発明の修飾ピキア酵母株は、天然型ピキア酵母株と同等
の増殖能力を有し、かつ天然型ピキア酵母株に比して糖
鎖伸長能が減弱もしくは消失してなるものである。よっ
て、本発明の修飾ピキア酵母株を宿主とする発現系によ
れば、酵母と哺乳類細胞とで共通するERコア糖鎖と同
一もしくは類似の糖鎖構造を有する医薬上有用な糖蛋白
質を調製することができる。従って、本発明の修飾ピキ
ア属酵母株は、糖蛋白質産生用の宿主として有用であ
る。
Industrial Applicability The present invention provides for the first time a protein involved in sugar chain elongation of a glycoprotein derived from a yeast of the genus Pichia and a gene thereof. The provision of the protein involved in the sugar chain elongation and its gene is useful in that it can serve as a basis for elucidating the mechanism of the sugar chain binding / elongation of a glycoprotein whose host is Pichia yeast. Further, the elucidation of the gene is performed by using the yeast of the genus Pichia as a host to express and produce a glycoprotein which is the same as or similar to a physiologically useful protein useful in medicine, and has a sugar chain elongation ability originally possessed by the yeast of the genus Pichia at the gene level. It also leads to the provision of a method of modification. Further, the modified Pichia yeast strain of the present invention has a growth ability equivalent to that of the natural Pichia yeast strain, and has a decreased or eliminated sugar chain elongation ability as compared with the natural Pichia yeast strain. Therefore, according to the expression system using the modified Pichia yeast strain of the present invention as a host, a pharmaceutically useful glycoprotein having a sugar chain structure identical or similar to the ER core sugar chain common to yeast and mammalian cells is prepared. be able to. Therefore, the modified Pichia yeast strain of the present invention is useful as a host for glycoprotein production.

【0045】[0045]

【実施例】以下、実施例および参考例に基づいて本発明
をより詳細に説明する。しかし、本発明はこれによって
なんら限定されるものではない。本発明の実施例で用い
るプラスミド,制限酵素等の酵素,T4DNAリガーゼ
及び他の物質は市販のものであり、常法に従って使用す
ることできる。DNAのクローニング,塩基配列の決
定,宿主細胞の形質転換,形質転換細胞の培養,得られ
る培養物からの酵素の採取,精製等に用いられた操作に
ついても当業者によく知られているものであるか、文献
により知ることのできるものである。
The present invention will be described in more detail based on the following examples and reference examples. However, the present invention is not limited to this. The plasmids, enzymes such as restriction enzymes, T4 DNA ligase and other substances used in the examples of the present invention are commercially available and can be used according to a conventional method. Those skilled in the art are familiar with the procedures used for cloning DNA, determining the nucleotide sequence, transforming host cells, culturing transformed cells, collecting enzymes from the resulting culture, and purifying. There is something that can be known from the literature.

【0046】実施例1 ピキア属酵母由来の糖鎖伸長タ
ンパクの遺伝子の取得 パン酵母(Saccharomyces cerevisiae)由来糖鎖伸長遺
伝子OCH1をPCR法で増幅してプローブとなし、ピ
キア属酵母の染色体遺伝子をサザン解析して、ピキア属
酵母由来の糖鎖伸長に関わるタンパクをコードするDN
Aを探索した。
Example 1 Acquisition of gene for sugar chain elongation protein derived from yeast of the genus Pichia The sugar chain elongation gene OCH1 derived from baker's yeast (Saccharomyces cerevisiae) was amplified by PCR to serve as a probe, and a chromosomal gene of the yeast of the genus Pichia was Southernized. Analyzed and DN encoding a protein involved in sugar chain elongation derived from Pichia yeast
I searched for A.

【0047】(1)PCR法によるパン酵母のOCH1
遺伝子の増幅、取得 パン酵母由来糖鎖伸長遺伝子OCH1をクローニングす
るため、文献〔The EMBO Journal vol.11 no.7 p2511-2
519 (1992): p2513, Fig.2〕に開示のDNA配列を基
に、その蛋白翻訳領域の両末端DNAに相補的な配列に
HindIII認識部位を付与したN末端プライマー:
5’−CGAAGCTTATGTCTAGGAAGTT
GTCCCACCTG−3’、及びC末側プライマー:
5’−CGAAGCTTATTTATGACCTGCA
TTTTTATCAG−3’(PCR増幅用プライマ
ー)をDNA合成装置(ABI社製、モデル392DN
A/RNAシンセサイザー)を用いて化学合成した。当
該プライマーを用いて、常法(Sherman, F., Fink,G.R.
and Hicks, J.B. (1986) Laboratory course manual f
or methods in yeast genetics, Cold Spring Harbor L
aboratory, Cold Spring Harbor, New York)に従って調
製した S.cerevisiae AH22株 (a, len2, his4, can1)
(Hinnen, A. et al(1978) Proc. Natl.Sci USA 75, p.
1929 )由来染色体DNAを鋳型として、PCR反応
(94℃で1分間、50℃で2分間、72℃で2分間/
25サイクル)〔DNA Thermal Cycler Model PJ2000 、
Perkin-Elmer社〕を行った。増幅されたDNA断片につ
いてアガロースゲル電気泳動した結果、ゲル上で明瞭な
単一バンドが観察された。また、増幅されたDNA断片
は設定したプライマーから予想される大きさ(1458 bp)
を示した。
(1) OCH1 of baker's yeast by PCR method
Amplification and acquisition of gene To clone the sugar chain elongation gene OCH1 derived from baker's yeast, the literature [The EMBO Journal vol.11 no.7 p2511-2
519 (1992): p2513, Fig. 2], based on the DNA sequence disclosed herein, an N-terminal primer in which a HindIII recognition site is added to a sequence complementary to both terminal DNAs of the protein translation region:
5'-CGAAGCTTATGTCTAGGAAGTT
GTCCCCACCTG-3 ′ and C-terminal side primer:
5'-CGAAGCTTTATTTATGACCTGCA
TTTTTTACAG-3 '(primer for PCR amplification) is a DNA synthesizer (ABI, model 392DN).
A / RNA synthesizer) was used for chemical synthesis. Using this primer, the conventional method (Sherman, F., Fink, GR
and Hicks, JB (1986) Laboratory course manual f
or methods in yeast genetics, Cold Spring Harbor L
aboratory, Cold Spring Harbor, New York) S. cerevisiae AH22 strain (a, len2, his4, can1)
(Hinnen, A. et al (1978) Proc. Natl. Sci USA 75, p.
PCR reaction (94 ° C. for 1 minute, 50 ° C. for 2 minutes, 72 ° C. for 2 minutes /
25 cycles) [DNA Thermal Cycler Model PJ2000,
Perkin-Elmer]. As a result of agarose gel electrophoresis of the amplified DNA fragment, a clear single band was observed on the gel. In addition, the amplified DNA fragment was the size expected from the set primers (1458 bp)
showed that.

【0048】(2)パン酵母由来OCH1遺伝子のサブ
クローニング (1)で得られたPCR増幅断片をHindIII で消化
後、pUC19のHindIII 部位にサブクローニング
した。作製されたプラスミド(pKM049、図3)を
数種類の制限酵素(BamHI,EcoRI,Kpn
I)で消化し、その切断パターンを発表されているOC
H1遺伝子の切断部位〔EMBO J. 11, 7 p2511-2519 (19
92): p2512, Fig.1 及び p2513, Fig.2 〕と比較したと
ころ、完全に一致していた。
(2) Subcloning of OCH1 gene derived from baker's yeast The PCR amplified fragment obtained in (1) was digested with HindIII and then subcloned into the HindIII site of pUC19. The prepared plasmid (pKM049, FIG. 3) was prepared from several kinds of restriction enzymes (BamHI, EcoRI, Kpn).
OC that has been digested with I) and its cleavage pattern has been announced
H1 gene cleavage site [EMBO J. 11, 7 p2511-2519 (19
92): p2512, Fig.1 and p2513, Fig.2], and they were in perfect agreement.

【0049】(3)OCH1遺伝子をプローブとするピ
キア属酵母の染色体遺伝子のサザンハイブリダイゼーシ
ョン ピキア属酵母(Pichia pastoris GTS115株)をY
PD培地(1% Yeast extract, 2% Peptone, 2% Glucos
e) で、30℃、3日間培養し、Sherman らの方法(She
rman, F., Fink,G.R. and Hicks, J.B. (1986) Laborat
ory course manual for methods in yeast genetics, C
old Spring Harbor Laboratory, Cold Spring Harbor,
New York)に従って染色体DNAを調製した。得られた
染色体DNAを様々な態様の制限酵素処理を行った後ア
ガロースゲル電気泳動し、DNA断片をナイロンメンブ
レン(Hybond-N、アマシャム社製) にトランスファーし
た。(1)で得られたパン酵母由来OCH1遺伝子Hi
ndIII 断片を「DIG−ELISA標識キット」(ベ
ーリンガーマンハイム社製)を用いて標識してプローブ
とし、常法によりサザンハイブリダイゼーションを行い
(Sambrook, J., Fritsh, e.f. and Maniatis, T. (198
9) Molecular cloning: A laboratory manual,Cold Spr
ing Harbor Laboratory, Cold Spring Harbor, New Yor
k) 、パン酵母由来OCH1遺伝子と相同性のある遺伝
子が存在するかどうかの検討を行った。
(3) Southern hybridization of chromosomal gene of Pichia yeast using OCH1 gene as a probe Y of Pichia pastoris (Pichia pastoris GTS115 strain)
PD medium (1% Yeast extract, 2% Peptone, 2% Glucos
e), culturing at 30 ° C for 3 days
rman, F., Fink, GR and Hicks, JB (1986) Laborat
ory course manual for methods in yeast genetics, C
old Spring Harbor Laboratory, Cold Spring Harbor,
Chromosomal DNA was prepared according to New York). The obtained chromosomal DNA was treated with various restriction enzymes and then subjected to agarose gel electrophoresis, and the DNA fragment was transferred to a nylon membrane (Hybond-N, manufactured by Amersham). OCH1 gene Hi derived from baker's yeast obtained in (1)
The ndIII fragment was labeled with "DIG-ELISA labeling kit" (Boehringer Mannheim) to give a probe, which was then subjected to Southern hybridization by a conventional method (Sambrook, J., Fritsh, ef and Maniatis, T. (198
9) Molecular cloning: A laboratory manual, Cold Spr
ing Harbor Laboratory, Cold Spring Harbor, New Yor
k), it was examined whether or not there is a gene homologous to the baker's yeast-derived OCH1 gene.

【0050】パン酵母由来OCH1遺伝子とピキア属酵
母の染色体DNAとの相同性については不明であるた
め、ハイブリダイゼーションの温度(65℃,55℃,
45℃)及び洗浄条件(塩濃度:0.2〜0.5×SS
C、温度:室温〜42℃)について様々検討した。その
結果、ハイブリダイゼーションを55℃で一夜行い、2
×SSC,室温,30分,2回洗浄後、さらに0.5×
SSC,42℃,30分,2回洗浄した場合に、EcoRI
消化物に対し約5kb の明瞭なバンドが観察された。ハイ
ブリダイゼーションの温度及び洗浄条件を上記の如く緩
やかにすることにより、パン酵母由来のOCH1遺伝子
と相同性のある遺伝子がピキア属酵母の染色体上に存在
することが示唆された。
Since the homology between the baker's yeast-derived OCH1 gene and the chromosomal DNA of the yeast of the genus Pichia is unknown, the hybridization temperature (65 ° C, 55 ° C,
45 ° C.) and washing conditions (salt concentration: 0.2-0.5 × SS)
C, temperature: room temperature to 42 ° C.). As a result, hybridization was performed overnight at 55 ° C and 2
× SSC, room temperature, 30 minutes, washed twice, then 0.5 ×
EcoRI when washed twice in SSC, 42 ℃, 30 minutes
A clear band of about 5 kb was observed for the digest. It was suggested that a gene having a homology with the OCH1 gene derived from baker's yeast is present on the chromosome of the yeast of the genus Pichia by making the hybridization temperature and washing conditions mild as described above.

【0051】(4)λgt10ライブラリーの作製 (3)の結果に基づいて、ピキア属酵母の染色体DNA
のEcoRI断片(約5kb)のクローニングを行っ
た。まず、約150μgのP.pastorisGTS115株由
来染色体DNA(NRRL寄託番号Y−15851)を
200酵素単位のEcoRIで一夜消化した後、0.8
%のアガロースゲル電気泳動により約4.5〜6kbの
DNAを分離回収した。回収したDNAの一部を1μg
のλgt10arm(「lambda gt10 vectordigested w
ith EcoRI and dephosphorylated 」、ストラタジーン
社製)とリゲーションし、GigapackII Gold Packagin
g Extract (ストラタジーン社製)を用いてパッケジン
グを行った。その結果、スクリーニングに必要な数のプ
ラークが得られた。
(4) Construction of λgt10 library Based on the result of (3), chromosomal DNA of yeast of the genus Pichia
The EcoRI fragment (about 5 kb) was cloned. First, about 150 μg of P. pastoris GTS115 strain-derived chromosomal DNA (NRRL deposit number Y-15851) was digested overnight with 200 enzyme units of EcoRI, and then 0.8
About 4.5 to 6 kb of DNA was separated and collected by agarose gel electrophoresis of 10%. 1 μg of a part of the recovered DNA
Λgt10arm (“lambda gt10 vector digested w
ith EcoRI and dephosphorylated ", manufactured by Stratagene), and GigapackII Gold Packagin
Packaging was performed using g Extract (manufactured by Stratagene). As a result, the number of plaques required for screening was obtained.

【0052】(5)プラークハイブリダイゼーション (4)で作製した組換λファージライブラリーを80mm径
の1プレートあたり200 〜300 プラークになるようにタ
イトレーションを行い、ナイロンメンブレンフィルター
(Hybond-N、アマシャム社製) にトランスファーした。
これらのフィルターを10枚作製し(全スクリーニング
数;約3000プラーク)、前記のパン酵母由来OCH1遺
伝子断片をプローブにしてハイブリダイゼーションを行
った。その結果、鮮明な14個のポジティブプラークが
検出された。
(5) Plaque Hybridization The recombinant λ phage library prepared in (4) was titrated to 200 to 300 plaques per plate of 80 mm diameter, and a nylon membrane filter (Hybond-N, Amersham) was used. (Made by the company).
Ten of these filters were prepared (total screening number: about 3000 plaques), and hybridization was carried out using the baker's yeast-derived OCH1 gene fragment as a probe. As a result, 14 clear positive plaques were detected.

【0053】(6)λDNAの精製 (5)で検出されたポジティブプラークのうち、任意に
10プラークを選び、single plaque isolation の後、
Sephaglas TM PhagePrep Kit(ファルマシア社製)を用
いてλDNAを抽出、精製した。精製した各DNAを数
種の制限酵素(EcoRI,BglII,HindIII,
XhoI)の消化パターンをアガロースゲル電気泳動で
比較したところ、10クローン中8クローンまでが同一
の挿入DNA(約5kb)を有していることが分かっ
た。
(6) Purification of λDNA Among the positive plaques detected in (5), 10 plaques were arbitrarily selected, and after single plaque isolation,
ΛDNA was extracted and purified using Sephaglas PhagePrep Kit (Pharmacia). Each purified DNA was digested with several restriction enzymes (EcoRI, BglII, HindIII,
When the digestion patterns of (XhoI) were compared by agarose gel electrophoresis, it was found that up to 8 out of 10 clones had the same insert DNA (about 5 kb).

【0054】(7)サブクローニング そのうちの1クローンについて、挿入されたEcoRI
断片をpUC19のEcoRI部位にサブクローニング
して、pKM50(図4 )を作製した。
(7) Subcloning About one of the clones, the inserted EcoRI
The fragment was subcloned into the EcoRI site of pUC19 to create pKM50 (Figure 4).

【0055】(8)pKM50に挿入されたDNA断片
の塩基配列およびアミノ酸配列の決定 pKM50に挿入されているピキア属酵母由来のEco
RI断片の塩基配列を決定した。pKM50を用いてク
ローニングした染色体DNA断片の制限酵素地図を作製
し、さらにいくつかの制限酵素を用いてより詳細にサザ
ーン解析した結果、約2.5kb のBglII断片中にパン酵
母OCH1遺伝子との相同領域が存在することが示され
た。そこで、この約2.5kbのBglII断片のDNA
塩基配列を決定した。具体的には、挿入断片を数種の制
限酵素を用いて部分断片にしてpUC19にサブクロー
ニングし、それらのDNA塩基配列をM13〜40プラ
イマーおよび Reverse primer(ファルマシアLKBバイ
テクノロジー)を用いて、DNAシークエンサー(A.
L.F.DNAシークエンサー、ファルマシアLKBバ
イテクノロジー)により決定した。
(8) Determination of nucleotide sequence and amino acid sequence of DNA fragment inserted into pKM50 Eco derived from yeast belonging to the genus Pichia inserted into pKM50
The base sequence of the RI fragment was determined. A restriction enzyme map of the chromosomal DNA fragment cloned using pKM50 was prepared and further detailed analysis was performed using several restriction enzymes. As a result, a homologous region with the baker's yeast OCH1 gene was found in a BglII fragment of about 2.5 kb. Has been shown to exist. Therefore, the DNA of this BglII fragment of about 2.5 kb
The base sequence was determined. Specifically, the insert fragment was subcloned into pUC19 using several restriction enzymes as subfragments, and their DNA base sequences were analyzed using M13-40 primer and Reverse primer (Pharmacia LKB Bi-Technology). (A.
L. F. DNA sequencer, Pharmacia LKB Bi-Technology).

【0056】pKM50に挿入されたパン酵母OCH1
遺伝子と相同性を示す領域を含む遺伝子断片〔BglII
〜SalI断片(約3.0kb)〕の塩基配列を決定し
たところ、404アミノ酸からなる Open Reading Fram
e (ORF) (図4、斜線領域)が存在していた。BglII
〜SalI部位までの塩基配列(2858bp)及びOp
en Reading Frame 領域をアミノ酸に翻訳した配列を配
列表配列番号1に示す。なお、かかる領域にはアスパラ
ギン結合型糖鎖付加が生じる可能性部位(Asn−Xa
a−Ser/Thr)が2ヶ所存在していた。
Baker's yeast OCH1 inserted in pKM50
A gene fragment containing a region showing homology with a gene [BglII
~ SalI fragment (about 3.0 kb)] was determined to have an open reading frame consisting of 404 amino acids.
e (ORF) (Fig. 4, shaded area) was present. BglII
~ Nucleotide sequence up to SalI site (2858bp) and Op
The sequence obtained by translating the en Reading Frame region into amino acids is shown in SEQ ID NO: 1 in the sequence listing. In this region, a site (Asn-Xa) where asparagine-linked sugar chain addition may occur.
There were two a-Ser / Thr).

【0057】次いで、ピキア属酵母由来の上記ORF領
域のアミノ酸配列とパン酵母由来OCH1遺伝子由来の
タンパクのアミノ酸配列とを比較した。その結果、上記
で決定したピキア属酵母由来のEcoRI断片(約5k
b)によってコードされるアミノ酸配列はパン酵母由来
OCH1遺伝子によってコードされるアミノ酸配列と約
40%の相同性を有していた(図5)。また、該アミノ
酸配列をコードするDNAレベルでの相同性は、約55
%であった。図5中□で囲んで示したアスパラギン結合
型糖鎖付加部位については、1ヶ所のみ相同的な領域で
一致が見られた(本発明のピキア属酵母由来の糖鎖伸長
タンパクのAsn199 及び S.cerevisiae OCH1蛋白
のAsn203 )。アミノ酸配列から予想される分子量
は、 S.cerevisiae OCH1蛋白が55kDaであるの
に対し、ピキア属酵母由来の糖鎖伸長タンパクは46k
Daであった。
Next, the amino acid sequence of the ORF region derived from the yeast of the genus Pichia was compared with the amino acid sequence of the protein derived from the OCH1 gene derived from the baker's yeast. As a result, the EcoRI fragment (about 5 k
The amino acid sequence encoded by b) had about 40% homology with the amino acid sequence encoded by the baker's yeast-derived OCH1 gene (FIG. 5). The homology at the DNA level encoding the amino acid sequence is about 55.
%Met. Regarding the asparagine-binding sugar chain addition site surrounded by □ in FIG. 5, agreement was observed in only one homologous region (Asn 199 and S of the sugar chain extension protein derived from the yeast of the genus Pichia of the present invention). .cerevisiae OCH1 protein Asn 203 ). The molecular weight predicted from the amino acid sequence is 55 kDa for the S. cerevisiae OCH1 protein, whereas it is 46 kDa for the sugar chain elongation protein derived from the yeast of the genus Pichia.
It was Da.

【0058】次に、両タンパクの Hydrophobicity を比
較した。その結果、図6に示すように両者は非常によく
似たパターンを示した。このことから、ピキア属酵母か
ら得られたEcoRI断片は、ピキア属酵母由来のOC
H1遺伝子であることが示唆された。また、パン酵母O
CH1蛋白は、N末端付近に膜貫通領域(membrane spa
nning domain) と思われる疎水性領域が存在しているが
(Thr16〜Phe30)、ピキア属酵母由来の糖鎖伸長
タンパクではさらに長い疎水性領域が存在していた。
Next, the hydrophobicity of both proteins was compared. As a result, both showed very similar patterns as shown in FIG. From this, the EcoRI fragment obtained from the Pichia yeast is OC derived from the Pichia yeast.
It was suggested to be the H1 gene. In addition, baker's yeast O
The CH1 protein has a transmembrane region (membrane spa) near the N-terminus.
Although hydrophobic region seems nning domain) is present (Thr 16 ~Phe 30), further long hydrophobic region than a sugar chain elongation protein from yeast of the genus Pichia was present.

【0059】実施例2 糖鎖伸長DNA破壊株の作製 (1)ピキア属酵母由来の糖鎖伸長DNAの Genomic S
outhern 解析 実施例1でクローニングしたピキア属酵母由来の糖鎖伸
長DNAを破壊した菌株を作製する目的で、まず該DN
Aが染色体上で単一遺伝子であることを確認するための
Genomic Southern Hybridization を行った。宿主とし
て用いたP.pastorisGTS115株の染色体をBglI
I, EcoRI,SphI,XbaIの各制限酵素で切
断、アガロースゲル電気泳動後、ナイロンメンブランに
ブロットした。次にピキア属酵母由来の糖鎖伸長DNA
の蛋白翻訳領域をコードするDNA配列を含むDNA断
片(図4,pK50のHnidIII −HincII断片約
900bp,塩基配列表配列番号1記載の塩基番号1488
〜塩基番号2385の領域)をプローブとして、ハイブリダ
イゼーションを行った。結果を図7に示す。これから分
かるように、ピキア属酵母由来の糖鎖伸長DNAプロー
ブはいずれの制限酵素を用いた場合でも単一のバンドに
しかハイブリダイズしなかった。以上の結果から、ピキ
ア属酵母由来の糖鎖伸長DNAは単一遺伝子であること
がわかった。
Example 2 Preparation of sugar chain-extended DNA-disrupted strain (1) Genomic S of sugar chain-extended DNA derived from yeast of the genus Pichia
Outhern Analysis For the purpose of preparing a strain in which the sugar chain-extended DNA derived from the yeast of the genus Pichia cloned in Example 1 was disrupted, the DN was first analyzed.
To confirm that A is a single gene on the chromosome
Genomic Southern Hybridization was conducted. The chromosome of the P. pastoris GTS115 strain used as a host was constructed with BglI
It was cleaved with each restriction enzyme of I, EcoRI, SphI, and XbaI, subjected to agarose gel electrophoresis, and then blotted on a nylon membrane. Next, a sugar chain elongation DNA derived from Pichia yeast
A DNA fragment containing a DNA sequence encoding the protein translation region of the protein (Fig. 4, HnidIII-HincII fragment of pK50 of about 900 bp, nucleotide number 1488 shown in SEQ ID NO: 1 of the nucleotide sequence table).
~ Region of base number 2385) was used as a probe for hybridization. FIG. 7 shows the results. As can be seen, the sugar chain-extending DNA probe derived from the yeast of the genus Pichia hybridized only with a single band regardless of which restriction enzyme was used. From the above results, it was found that the sugar chain extended DNA derived from the yeast of the genus Pichia is a single gene.

【0060】(2)HIS4を選択マーカーとしたピキ
ア属酵母由来の糖鎖伸長DNA破壊株の作製 ピキア属酵母由来の糖鎖伸長DNAとその周辺の染色体
断片を含むプラスミドpKM50(図4参照)のAsu
IIおよびBalI部位を消化して平滑末端にし、その
間にHIS4遺伝子および可溶性高親和性IgE受容体
α鎖遺伝子(sFcεRIα)発現ユニットを挿入し
て、プラスミドpKM74(図8)を作成した。可溶性
高親和性IgE受容体α鎖遺伝子(sFcεRIα)発
現ユニットは、S.cerevisiae SUC2遺伝子のシグナ
ル配列をsFcεRIα遺伝子〔Nucleic Acids Resear
ch, Volume 16 Number 8, 3584 (1988) 参照〕の成熟型
N末端に付加し、P.pastorisAOX2遺伝子のプロモー
ター領域およびP.pastorisAOX1遺伝子ターミネータ
ー領域を連結したDNA断片で、P.pastorisでヒト由来
高親和性IgE受容体の細胞外領域(172アミノ酸)
を分泌発現することができるものである。
(2) Preparation of Pichia yeast-derived sugar chain-extended DNA-disrupted strain using HIS4 as a selectable marker Plasmid pKM50 (see FIG. 4) containing the Pichia yeast-derived sugar chain extended DNA and the surrounding chromosomal fragment Asu
The II and BalI sites were digested to blunt ends and the HIS4 gene and soluble high affinity IgE receptor α chain gene (sFcεRIα) expression unit were inserted between them to create plasmid pKM74 (FIG. 8). The soluble high-affinity IgE receptor α-chain gene (sFcεRIα) expression unit uses the signal sequence of the S. cerevisiae SUC2 gene as the sFcεRIα gene [Nucleic Acids Resear
ch, Volume 16 Number 8, 3584 (1988)], a DNA fragment in which the promoter region of the P. pastoris AOX2 gene and the P. pastoris AOX1 gene terminator region were ligated to the mature N-terminal. Extracellular domain of affinity IgE receptor (172 amino acids)
Can be secreted and expressed.

【0061】該pKM74をSphI及びPstIで消
化し、P.pastorisGTS115株(his4) (NRRL寄
託番号Y−15851)を形質転換したところ、45株
の形質転換体(HIS4)が取得できた。そこで、これ
らの形質転換株のうちいくつかを選び、以下の解析を行
った。
When the pKM74 was digested with SphI and PstI and transformed into P. pastoris GTS115 strain (his4) (NRRL deposit number Y-15851), 45 transformants (HIS4) could be obtained. Therefore, some of these transformants were selected and the following analysis was performed.

【0062】(3)GTS115/pKM74形質転換
株の解析 パン酵母OCH1遺伝子破壊株について、該株は高温耐
性を失っており、37℃で成育できないことが報告され
ている〔Nakayama,K., et al. EMBO J. 11, 2511 (199
2) 〕。そこで、(2)で得られた形質転換体について
温度感受性を調べた。YPDプレートを用いて45株に
ついて、25℃、30℃及び37℃での成育をそれぞれ
観察したところ、うち10株が37℃で成育できなかっ
た。一方で、形質転換株のうち任意に10株を選び、Ge
nomic Southern Hybridizationを行ったところ、このう
ちの2株(KM74−2及びKM74−5株)の糖鎖伸
長DNAが破壊されていた。この2株はいずれも37℃
で成育ができず、温度感受性とSouthern Hybridization
解析は一致していることが示された。
(3) Analysis of GTS115 / pKM74 Transformant Regarding baker's yeast OCH1 gene-disrupted strain, it has been reported that the strain has lost high temperature resistance and cannot grow at 37 ° C. [Nakayama, K., et. al. EMBO J. 11, 2511 (199
2)]. Therefore, the temperature sensitivity of the transformant obtained in (2) was examined. When 45 strains were observed using the YPD plate for growth at 25 ° C., 30 ° C. and 37 ° C., respectively, 10 strains could not grow at 37 ° C. On the other hand, arbitrarily select 10 transformants and
When nomic Southern Hybridization was performed, the sugar chain-extended DNA of two of these strains (KM74-2 and KM74-5 strain) was disrupted. Both of these two strains are 37 ℃
Can't grow because of temperature sensitivity and Southern Hybridization
The analysis was shown to be consistent.

【0063】さらに形質転換株(KM74−2株)につ
いて、より詳細なGenomic Southern解析を行った(図
9)。図9に示すKM45株は、pKM74のHIS4
遺伝子および可溶性高親和性IgE受容体α鎖遺伝子
(sFcεRIα)発現ユニットDNA断片を、P.past
orisGTS115his4株のhis4遺伝子座に組み込ませた
形質転換株で、sFcεRIα鎖蛋白を分泌発現できる
ものである。GTS115株、OCH1遺伝子野生株K
M45株、OCH1遺伝子破壊株KM74−2株につい
て、染色体DNAをEcoRI及びBglIIで消化
後、糖鎖伸長DNAの上流域(図9中、プローブ1:図
4に示すpKM50 BglII−AsuII断片 125
6bp,塩基配列表配列番号1記載の塩基番号2〜塩基
番号1258)及び糖鎖伸長DNAの領域(図9中、プロー
ブ2:図4に示すpKM50,HindIII −EcoT
14I 断片 468bp,塩基配列表配列番号1記載の
塩基番号1488〜塩基番号1948)をプローブとしてGenomi
c Southern解析を行い、KM74−2株の糖鎖伸長DN
Aが、導入したpKM74遺伝子断片により破壊されて
いることを確認した(図10、図11参照)。
Further, the transformant (KM74-2 strain) was subjected to more detailed Genomic Southern analysis (FIG. 9). The KM45 strain shown in FIG. 9 is HIS4 of pKM74.
The gene and soluble high affinity IgE receptor α chain gene (sFcεRIα) expression unit DNA fragment were
It is a transformant in which the orisGTS115 his4 strain is integrated into the his4 gene locus, and is capable of secreting and expressing the sFcεRIα chain protein. GTS115 strain, OCH1 gene wild strain K
Regarding the M45 strain and the OCH1 gene-disrupted strain KM74-2 strain, after chromosomal DNA was digested with EcoRI and BglII, the upstream region of the sugar chain-extended DNA (probe 1: pKM50 BglII-AsuII fragment 125 shown in FIG.
6 bp, base number 2 to base number 1258 shown in SEQ ID NO: 1 of the base sequence table, and sugar chain extended DNA region (probe 2 in FIG. 9: pKM50, HindIII-EcoT shown in FIG. 4).
14I fragment 468 bp, base number 1488 to base number 1948 described in SEQ ID NO: 1 of the nucleotide sequence table) as a probe for Genomi
c Southern analysis was performed, and the sugar chain extension DN of the KM74-2 strain was increased.
It was confirmed that A was destroyed by the introduced pKM74 gene fragment (see FIGS. 10 and 11).

【0064】(4)ピキア属酵母の糖鎖伸長DNA破壊
株の産生するsFcεRIα鎖蛋白の解析 ピキア属酵母糖鎖伸長DNA破壊株の糖鎖付加を調べる
ため、糖鎖伸長DNA破壊株KM74−2およびKM7
4−5株と野生型株としてKM45株を3×YP+2%
のメタノール(3% Yeast extract, 6% Bacto peptone,
2% Methanol )M培地で、25℃、4日間培養後、培養
上清よりIgEアフィニティーカラムにより、sFcε
RIα鎖蛋白を精製した。精製した各sFcεRIα鎖
蛋白およびPNGaseF(Genzyme 社製)でアスパラ
ギン結合型糖鎖を除去したサンプルをSDS−ポリアク
リルアミドゲル電気泳動で解析した(図12)。この結
果、糖鎖伸長DNAが破壊されていないKM45株では
高分子量のsFcεRIα鎖蛋白が観察される(図1
2、レーン1)のに対し、糖鎖伸長DNA破壊株である
KM74−2及びKM74−5株由来のsFcεRIα
鎖蛋白では、糖鎖の伸長が抑制されたため、高分子量を
示す蛋白分子種が消失していた(図12、レーン2,
3)。さらに、これらの蛋白の糖をPNGaseF(Ge
nzyme 社製)で除去したところ、同じ分子量を示すこと
から(図12、レーン4,5,6)、この分子量分布の
差は、糖鎖に起因することが確認された。以上の結果か
ら、P.pastoris糖鎖伸長DNA破壊株では糖鎖の伸長が
抑制されていることが示唆された。
(4) Analysis of sFcεRIα chain protein produced by a sugar chain-expanded DNA-disrupted strain of yeast Pichia To investigate sugar chain addition in a sugar chain-expanded DNA-disrupted strain of Pichia yeast, a sugar chain-extended DNA-disrupted strain KM74-2 And KM7
4 × 5 strain and KM45 strain as a wild type strain 3 × YP + 2%
Methanol (3% Yeast extract, 6% Bacto peptone,
After culturing in 2% Methanol) M medium at 25 ° C. for 4 days, sFcε was detected from the culture supernatant by IgE affinity column.
The RI α chain protein was purified. A sample obtained by removing the asparagine-linked sugar chain with each purified sFcεRIα chain protein and PNGaseF (manufactured by Genzyme) was analyzed by SDS-polyacrylamide gel electrophoresis (FIG. 12). As a result, a high molecular weight sFcεRIα chain protein was observed in the KM45 strain in which the sugar chain-extended DNA was not destroyed (FIG. 1).
2, lane 1), whereas sFcεRIα derived from the KM74-2 and KM74-5 strains, which are sugar chain-extended DNA-disrupted strains.
In the chain protein, the elongation of the sugar chain was suppressed, so that the protein molecular species exhibiting a high molecular weight disappeared (Fig. 12, lane 2,).
3). Furthermore, the sugars of these proteins are converted to PNGaseF (Ge
It was confirmed that the difference in the molecular weight distribution was due to the sugar chain, since they showed the same molecular weight when removed by Nzyme (manufactured by nzyme) (FIG. 12, lanes 4, 5, 6). From the above results, it was suggested that the sugar chain elongation was suppressed in the P. pastoris sugar chain elongation DNA-disrupted strain.

【0065】[0065]

【配列表】[Sequence list]

配列番号:1 配列の長さ:2858 配列の型:核酸 鎖の数:2 トポロジ─:直鎖状 配列の種類:genomic DNA 起源 生物名:P.pastoris 株名:GTS115 配列の特徴: 特徴を表す記号:CDS 存在位置:1027−2238 特徴を決定した方法:S,P 配列 AGATCTGCCT GACAGCCTTA AAGAGCCCGC TAAAAGACCC GGAAAACCGA GAGAACTCTG 60 GATTAGCAGT CTGAAAAAGA ATCTTCACTC TGTCTAGTGG AGCAATTAAT GTCTTAGCGG 120 CACTTCCTGC TACTCCGCCA GCTACTCCTG AATAGATCAC ATACTGCAAA GACTGCTTGT 180 CGATGACCTT GGGGTTATTT AGCTTCAAGG GCAATTTTTG GGACATTTTG GACACAGGAG 240 ACTCAGAAAC AGACACAGAG CGTTCTGAGT CCTGGTGCTC CTGACGTAGG CCTAGAACAG 300 GAATTATTGG CTTTATTTGT TTGTCCATTT CATAGGCTTG GGGTAATAGA TAGATGACAG 360 AGAAATAGAG AAGACCTAAT ATTTTTTGTT CATGGCAAAT CGCGGGTTCG CGGTCGGGTC 420 ACACACGGAG AAGTAATGAG AAGAGCTGGT AATCTGGGGT AAAAGGGTTC AAAAGAAGGT 480 CGCCTGGTAG GGATGCAATA CAAGGTTGTC TTGGAGTTTA CATTGACCAG ATGATTTGGC 540 TTTTTCTCTG TTCAATTCAC ATTTTTCAGC GAGAATCGGA TTGACGGAGA AATGGCGGGG 600 TGTGGGGTGG ATAGATGGCA GAAATGCTCG CAATCACCGC GAAAGAAAGA CTTTATGGAA 660 TAGAACTACT GGGTGGTGTA AGGATTACAT AGCTAGTCCA ATGGAGTCCG TTGGAAAGGT 720 AAGAAGAAGC TAAAACCGGC TAAGTAACTA GGGAAGAATG ATCAGACTTT GATTTGATGA 780 GGTCTGAAAA TACTCTGCTG CTTTTTCAGT TGCTTTTTCC CTGCAACCTA TCATTTTCCT 840 TTTCATAAGC CTGCCTTTTC TGTTTTCACT TATATGAGTT CCGCCGAGAC TTCCCCAAAT 900 TCTCTCCTGG AACATTCTCT ATCGCTCTCC TTCCAAGTTG CGCCCCCTGG CACTGCCTAG 960 TAATATTACC ACGCGACTTA TATTCAGTTC CACAATTTCC AGTGTTCGTA GCAAATATCA 1020 TCAGCC ATG GCG AAG GCA GAT GGC AGT TTG CTC TAC TAT AAT CCT CAC AAT 1071 Met Ala Lys Ala Asp Gly Ser Leu Leu Tyr Tyr Asn Pro His Asn 1 5 10 15 CCA CCC AGA AGG TAT TAC TTC TAC ATG GCT ATA TTC GCC GTT TCT GTC 1119 Pro Pro Arg Arg Tyr Tyr Phe Tyr Met Ala Ile Phe Ala Val Ser Val 20 25 30 ATT TGC GTT TTG TAC GGA CCC TCA CAA CAA TTA TCA TCT CCA AAA ATA 1167 Ile Cys Val Leu Tyr Gly Pro Ser Gln Gln Leu Ser Ser Pro Lys Ile 35 40 45 GAC TAT GAT CCA TTG ACG CTC CGA TCA CTT GAT TTG AAG ACT TTG GAA 1215 Asp Tyr Asp Pro Leu Thr Leu Arg Ser Leu Asp Leu Lys Thr Leu Glu 50 55 60 GCT CCT TCA CAG TTG AGT CCA GGC ACC GTA GAA GAT AAT CTT CGA AGA 1263 Ala Pro Ser Gln Leu Ser Pro Gly Thr Val Glu Asp Asn Leu Arg Arg 65 70 75 CAA TTG GAG TTT CAT TTT CCT TAC CGC AGT TAC GAA CCT TTT CCC CAA 1311 Gln Leu Glu Phe His Phe Pro Tyr Arg Ser Tyr Glu Pro Phe Pro Gln 80 85 90 95 CAT ATT TGG CAA ACG TGG AAA GTT TCT CCC TCT GAT AGT TCC TTT CCG 1359 His Ile Trp Gln Thr Trp Lys Val Ser Pro Ser Asp Ser Ser Phe Pro 100 105 110 AAA AAC TTC AAA GAC TTA GGT GAA AGT TGG CTG CAA AGG TCC CCA AAT 1407 Lys Asn Phe Lys Asp Leu Gly Glu Ser Trp Leu Gln Arg Ser Pro Asn 115 120 125 TAT GAT CAT TTT GTG ATA CCC GAT GAT GCA GCA TGG GAA CTT ATT CAC 1455 Tyr Asp His Phe Val Ile Pro Asp Asp Ala Ala Trp Glu Leu Ile His 130 135 140 CAT GAA TAC GAA CGT GTA CCA GAA GTC TTG GAA GCT TTC CAC CTG CTA 1503 His Glu Tyr Glu Arg Val Pro Glu Val Leu Glu Ala Phe His Leu Leu 145 150 155 CCA GAG CCC ATT CTA AAG GCC GAT TTT TTC AGG TAT TTG ATT CTT TTT 1551 Pro Glu Pro Ile Leu Lys Ala Asp Phe Phe Arg Tyr Leu Ile Leu Phe 160 165 170 175 GCC CGT GGA GGA CTG TAT GCT GAC ATG GAC ACT ATG TTA TTA AAA CCA 1599 Ala Arg Gly Gly Leu Tyr Ala Asp Met Asp Thr Met Leu Leu Lys Pro 180 185 190 ATA GAA TCG TGG CTG ACT TTC AAT GAA ACT ATT GGT GGA GTA AAA AAC 1647 Ile Glu Ser Trp Leu Thr Phe Asn Glu Thr Ile Gly Gly Val Lys Asn 195 200 205 AAT GCT GGG TTG GTC ATT GGT ATT GAG GCT GAT CCT GAT AGA CCT GAT 1695 Asn Ala Gly Leu Val Ile Gly Ile Glu Ala Asp Pro Asp Arg Pro Asp 210 215 220 TGG CAC GAC TGG TAT GCT AGA AGG ATA CAA TTT TGC CAA TGG GCA ATT 1743 Trp His Asp Trp Tyr Ala Arg Arg Ile Gln Phe Cys Gln Trp Ala Ile 225 230 235 CAG TCC AAA CGA GGA CAC CCA GCA CTG CGT GAA CTG ATT GTA AGA GTT 1791 Gln Ser Lys Arg Gly His Pro Ala Leu Arg Glu Leu Ile Val Arg Val 240 245 250 255 GTC AGC ACG ACT TTA CGG AAA GAG AAA AGC GGT TAC TTG AAC ATG GTG 1839 Val Ser Thr Thr Leu Arg Lys Glu Lys Ser Gly Tyr Leu Asn Met Val 260 265 270 GAA GGA AAG GAT CGT GGA AGT GAT GTG ATG GAC TGG ACG GGT CCA GGA 1887 Glu Gly Lys Asp Arg Gly Ser Asp Val Met Asp Trp Thr Gly Pro Gly 275 280 285 ATA TTT ACA GAC ACT CTA TTT GAT TAT ATG ACT AAT GTC AAT ACA ACA 1935 Ile Phe Thr Asp Thr Leu Phe Asp Tyr Met Thr Asn Val Asn Thr Thr 290 295 300 GGC CAC TCA GGC CAA GGA ATT GGA GCT GGC TCA GCG TAT TAC AAT GCC 1983 Gly His Ser Gly Gln Gly Ile Gly Ala Gly Ser Ala Tyr Tyr Asn Ala 305 310 315 TTA TCG TTG GAA GAA CGT GAT GCC CTC TCT GCC CGC CCG AAC GGA GAG 2031 Leu Ser Leu Glu Glu Arg Asp Ala Leu Ser Ala Arg Pro Asn Gly Glu 320 325 330 335 ATG TTA AAA GAG AAA GTC CCA GGT AAA TAT GCA CAG CAG GTT GTT TTA 2079 Met Leu Lys Glu Lys Val Pro Gly Lys Tyr Ala Gln Gln Val Val Leu 340 345 350 TGG GAA CAA TTT ACC AAC CTG CGC TCC CCC AAA TTA ATC GAC GAT ATT 2127 Trp Glu Gln Phe Thr Asn Leu Arg Ser Pro Lys Leu Ile Asp Asp Ile 355 360 365 CTT ATT CTT CCG ATC ACC AGC TTC AGT CCA GGG ATT GGC CAC AGT GGA 2175 Leu Ile Leu Pro Ile Thr Ser Phe Ser Pro Gly Ile Gly His Ser Gly 370 375 380 GCT GGA GAT TTG AAC CAT CAC CTT GCA TAT ATT AGG CAT ACA TTT GAA 2223 Ala Gly Asp Leu Asn His His Leu Ala Tyr Ile Arg His Thr Phe Glu 385 390 395 GGA AGT TGG AAG GAC TAA AGAAAGCTAG AGTAAAATAG ATATAGCGAG 2271 Gly Ser Trp Lys Asp *** 400 ATTAGAGAAT GAATACCTTC TTCTAAGCGA TCGTCCGTCA TCATAGAATA TCATGGACTG 2331 TATAGTTTTT TTTTTGTACA TATAATGATT AAACGGTCAT CCAACATCTC GTTGACAGAT 2391 CTCTCAGTAC GCGAAATCCC TGACTATCAA AGCAAGAACC GATGAAGAAA AAAACAACAG 2451 TAACCCAAAC ACCACAACAA ACACTTTATC TTCTCCCCCC CAACACCAAT CATCAAAGAG 2511 ATGTCGGAAC ACAAACACCA AGAAGCAAAA ACTAACCCCA TATAAAAACA TCCTGGTAGA 2571 TAATGCTGGT AACCCGCTCT CCTTCCATAT TCTGGGCTAC TTCACGAAGT CTGACCGGTC 2631 TCAGTTGATC AACATGATCC TCGAAATGGG TGGCAAGCAT CGTTCCAGAC CTGCCTCCTC 2691 TGGTAGATGG AGTGTTGTTT TTGACAGGGG ATTACAAGTC TATTGATGAA GATACCCTAA 2751 AGCAACTGGG GGACGTTCCA ATATACAGAG ACTCCTTCAT CTACCAGTGT TTTGTGCACA 2811 AGACATCTCT TCCCATTGAC ACTTTCCGAA TTGACAAGAA CGTCGAC 2858 SEQ ID NO: 1 Sequence length: 2858 Sequence type: Nucleic acid Number of strands: 2 Topology ─: Linear Sequence type: genomic DNA Origin organism name: P. pastoris Strain name: GTS115 Sequence characteristics: Characterize symbol: CDS existing position: 1027-2238 method to determine the characteristics: S, P sequences AGATCTGCCT GACAGCCTTA AAGAGCCCGC TAAAAGACCC GGAAAACCGA GAGAACTCTG 60 GATTAGCAGT CTGAAAAAGA ATCTTCACTC TGTCTAGTGG AGCAATTAAT GTCTTAGCGG 120 CACTTCCTGC TACTCCGCCA GCTACTCCTG AATAGATCAC ATACTGCAAA GACTGCTTGT 180 CGATGACCTT GGGGTTATTT AGCTTCAAGG GCAATTTTTG GGACATTTTG GACACAGGAG 240 ACTCAGAAAC AGACACAGAG CGTTCTGAGT CCTGGTGCTC CTGACGTAGG CCTAGAACAG 300 GAATTATTGG CTTTATTTGT TTGTCCATTT CATAGGCTTG GGGTAATAGA TAGATGACAG 360 AGAAATAGAG AAGACCTAAT ATTTTTTGTT CATGGCAAAT CGCGGGTTCG CGGTCGGGTC 420 ACACACGGAG AAGTAATGAG AAGAGCTGGT AATCTGGGGT AAAAGGGTTC AAAAGAAGGT 480 CGCCTGGTAG GGATGCAATA CAAGGTTGTC TTGGAGTTTA CATTGACCAG ATGATTTGGC 540 TTTTTCTCTG TTCAATTCAC ATTTTTCAGC GAGAATCGGA TTGACGGAGA AATGGCGGG G 600 TGTGGGGTGG ATAGATGGCA GAAATGCTCG CAATCACCGC GAAAGAAAGA CTTTATGGAA 660 TAGAACTACT GGGTGGTGTA AGGATTACAT AGCTAGTCCA ATGGAGTCCG TTGGAAAGGT 720 AAGAAGAAGC TAAAACCGGC TAAGTAACTA GGGAAGAATG ATCAGACTTT GATTTGATGA 780 GGTCTGAAAA TACTCTGCTG CTTTTTCAGT TGCTTTTTCC CTGCAACCTA TCATTTTCCT 840 TTTCATAAGC CTGCCTTTTC TGTTTTCACT TATATGAGTT CCGCCGAGAC TTCCCCAAAT 900 TCTCTCCTGG AACATTCTCT ATCGCTCTCC TTCCAAGTTG CGCCCCCTGG CACTGCCTAG 960 TAATATTACC ACGCGACTTA TATTCAGTTC CACAATTTCC AGTGTTCGTA GCAAATATCA 1020 TCAGCC ATG GCG AAG GCA GAT GGC AGT TTG CTC TAC TAT AAT CCT CAC AAT 1071 Met Ala Lys Ala Asp Gly Ser Leu Leu Tyr Tyr Asn Pro His Asn 1 5 10 15 CCA CCC AGA AGG TAT TAC TTC TAC ATG GCT ATA TTC GCC GTT TCT GTC 1119 Pro Pro Arg Arg Tyr Tyr Phe Tyr Met Ala Ile Phe Ala Val Ser Val 20 25 30 ATT TGC GTT TTG TAC GGA CCC TCA CAA CAA TTA TCA TCT CCA AAA ATA 1167 Ile Cys Val Leu Tyr Gly Pro Ser Gln Gln Leu Ser Ser Pro Lys Ile 35 40 45 GAC TAT GAT CCA TTG ACG CTC CGA TCA CTT GAT TTG AAG ACT TTG GAA 1215 Asp Tyr Asp Pro Leu Thr Leu Arg Ser Leu Asp Leu Lys Thr Leu Glu 50 55 60 GCT CCT TCA CAG TTG AGT CCA GGC ACC GTA GAA GAT AAT CTT CGA AGA 1263 Ala Pro Ser Gln Leu Ser Pro Gly Thr Val Glu Asp Asn Leu Arg Arg Arg Arg 65 70 75 CAA TTG GAG TTT CAT TTT CCT TAC CGC AGT TAC GAA CCT TTT CCC CAA 1311 Gln Leu Glu Phe His Phe Pro Tyr Arg Ser Tyr Glu Pro Phe Pro Gln 80 85 90 95 CAT ATT TGG CAA ACG TGG AAA GTT TCT CCC TCT GAT AGT TCC TTT CCG 1359 His Ile Trp Gln Thr Trp Lys Val Ser Pro Ser Asp Ser Ser Phe Pro 100 105 110 AAA AAC TTC AAA GAC TTA GGT GAA AGT TGG CTG CAA AGG TCC CCA AAT 1407 Lys Asn Phe Lys Asp Leu Gly Glu Ser Trp Leu Gln Arg Ser Pro Asn 115 120 125 TAT GAT CAT TTT GTG ATA CCC GAT GAT GCA GCA TGG GAA CTT ATT CAC 1455 Tyr Asp His Phe Val Ile Pro Asp Asp Ala Ala Trp Glu Leu Ile His 130 135 140 CAT GAA TAC GAA CGT GTA CCA GAA GTC TTG GAA GCT TTC CAC CTG CTA 1503 His Glu Tyr Glu Arg Val Pro Glu Val Leu Glu Ala Phe His Leu Leu 145 150 155 CCA GAG CCC ATT CTA AAG GCC GAT TTT TTC AGG TAT TTG ATT CTT TTT 155 1 Pro Glu Pro Ile Leu Lys Ala Asp Phe Phe Arg Tyr Leu Ile Leu Phe 160 165 170 175 GCC CGT GGA GGA CTG TAT GCT GAC ATG GAC ACT ATG TTA TTA AAA CCA 1599 Ala Arg Gly Gly Leu Tyr Ala Asp Met Asp Thr Met Leu Leu Lys Pro 180 185 190 ATA GAA TCG TGG CTG ACT TTC AAT GAA ACT ATT GGT GGA GTA AAA AAC 1647 Ile Glu Ser Trp Leu Thr Phe Asn Glu Thr Ile Gly Gly Val Lys Asn 195 200 205 AAT GCT GGG TTG GTC ATT GGT ATT GAG GCT GAT CCT GAT AGA CCT GAT 1695 Asn Ala Gly Leu Val Ile Gly Ile Glu Ala Asp Pro Asp Arg Pro Asp 210 215 220 TGG CAC GAC TGG TAT GCT AGA AGG ATA CAA TTT TGC CAA TGG GCA ATT 1743 Trp His Asp Trp Tyr Ala Arg Arg Ile Gln Phe Cys Gln Trp Ala Ile 225 230 235 CAG TCC AAA CGA GGA CAC CCA GCA CTG CGT GAA CTG ATT GTA AGA GTT 1791 Gln Ser Lys Arg Gly His Pro Ala Leu Arg Glu Leu Ile Val Arg Val 240 245 250 255 GTC AGC ACG ACT TTA CGG AAA GAG AAA AGC GGT TAC TTG AAC ATG GTG 1839 Val Ser Thr Thr Leu Arg Lys Glu Lys Ser Gly Tyr Leu Asn Met Val 260 265 270 GAA GGA AAG GAT CGT GGA AGT GAT GTG ATG GAC TGG ACG GGT CCA GGA 1887 Glu Gly Lys Asp Arg Gly Ser Asp Val Met Asp Trp Thr Gly Pro Gly 275 280 285 ATA TTT ACA GAC ACT CTA TTT GAT TAT ATG ACT AAT GTC AAT ACA ACA 1935 Ile Phe Thr Asp Thr Leu Phe Asp Tyr Met Thr Asn Val Asn Thr Thr 290 295 300 GGC CAC TCA GGC CAA GGA ATT GGA GCT GGC TCA GCG TAT TAC AAT GCC 1983 Gly His Ser Gly Gln Gly Ile Gly Ala Gly Ser Ala Tyr Tyr Asn Ala 305 310 315 TTA TCG TTG GAA GAA CGT GAT GCC CTC TCT GCC CGC CCG AAC GGA GAG 2031 Leu Ser Leu Glu Glu Arg Asp Ala Leu Ser Ala Arg Pro Asn Gly Glu 320 325 330 335 ATG TTA AAA GAG AAA GTC CCA GGT AAA TAT GCA CAG CAG GTT GTT TTA 2079 Met Leu Lys Glu Lys Val Pro Gly Lys Tyr Ala Gln Gln Val Val Leu 340 345 350 TGG GAA CAA TTT ACC AAC CTG CGC TCC CCC AAA TTA ATC GAC GAT ATT 2127 Trp Glu Gln Phe Thr Asn Leu Arg Ser Pro Lys Leu Ile Asp Asp Ile 355 360 365 CTT ATT CTT CCG ATC ACC AGC TTC AGT CCA GGG ATT GGC CAC AGT GGA 2175 Leu Ile Leu Pro Ile Thr Ser Phe Ser Pro Gly Ile Gly His Ser Gly 370 375 380 GCT GGA GAT TTG AAC CAT CAC CTT GCA TAT ATT AGG CAT ACA TTT GAA 2223 Ala Gly Asp Leu Asn His His Leu Ala Tyr Ile Arg His Thr Phe Glu 385 390 395 GGA AGT TGG AAG GAC TAA AGAAAGCTAG AGTAAAATAG ATATAGCGAG 2271 Gly Ser Trp LysGAp *** 400 AT GAATACCTTC TTCTAAGCGA TCGTCCGTCA TCATAGAATA TCATGGACTG 2331 TATAGTTTTT TTTTTGTACA TATAATGATT AAACGGTCAT CCAACATCTC GTTGACAGAT 2391 CTCTCAGTAC GCGAAATCCC TGACTATCAA AGCAAGAACC GATGAAGAAA AAAACAACAG 2451 TAACCCAAAC ACCACAACAA ACACTTTATC TTCTCCCCCC CAACACCAAT CATCAAAGAG 2511 ATGTCGGAAC ACAAACACCA AGAAGCAAAA ACTAACCCCA TATAAAAACA TCCTGGTAGA 2571 TAATGCTGGT AACCCGCTCT CCTTCCATAT TCTGGGCTAC TTCACGAAGT CTGACCGGTC 2631 TCAGTTGATC AACATGATCC TCGAAATGGG TGGCAAGCAT CGTTCCAGAC CTGCCTCCTC 2691 TGGTAGATGG AGTGTTGTTT TTGACAGGGG ATTACAAGTC TATTGATGAA GATACCCTAA 2751 AGCAACTGGG GGACGTTCCA ATATACAGAG ACTCCTTCAT CTACCAGTGT TTTGTGCACA 2811 AGACATCTCT TCCCATTGAC ACTTTCCGAA TTGACAAGAA CGTCGAC 2858

【図面の簡単な説明】[Brief description of drawings]

【図1】エリスロポエチンにおけるAsn結合型糖鎖の
機能分担モデルを示す図である。図中、Manはマンノ
ース、GlcNAcはN−アセチルグルコサミンおよび
Fucはフコースを意味する。
FIG. 1 is a diagram showing a model of functional sharing of Asn-linked sugar chains in erythropoietin. In the figure, Man means mannose, GlcNAc means N-acetylglucosamine, and Fuc means fucose.

【図2】パン酵母における糖蛋白質の糖鎖構造モデルを
示す図である。図中、Mはマンノース、2はα−1,2
結合、3はα−1,3結合、6はα−1,6結合および
4はβ−1,4結合を意味する。また、N−linke
d糖鎖中の「Ma」は小胞体(ER)で合成されるマン
ノース糖を意味する。
FIG. 2 is a diagram showing a sugar chain structure model of a glycoprotein in baker's yeast. In the figure, M is mannose, 2 is α-1,2.
Bond 3, 3 means α-1,3 bond, 6 means α-1,6 bond and 4 means β-1,4 bond. Also, N-linke
“Ma” in the d sugar chain means a mannose sugar synthesized in the endoplasmic reticulum (ER).

【図3】パン酵母由来OCH1遺伝子がサブクローニン
グされたプラスミドpKM049を示す図である。
FIG. 3 is a view showing a plasmid pKM049 in which a baker's yeast-derived OCH1 gene is subcloned.

【図4】pKM50に挿入された遺伝子断片(パン酵母
OCH1遺伝子と相同性を有するP.pastoris染色体DN
A断片)の制限酵素地図を示す。斜線領域は、決定した
塩基配列より予想されるOCH1遺伝子翻訳領域を示
す。
FIG. 4 shows a gene fragment inserted into pKM50 (P. pastoris chromosome DN having homology with baker's yeast OCH1 gene).
A fragment map of (A fragment) is shown. The hatched region indicates the OCH1 gene translation region predicted from the determined nucleotide sequence.

【図5】パン酵母OCH1遺伝子がコードするアミノ酸
配列(上段)とP.pastoris糖鎖伸長DNAがコードする
アミノ酸配列(下段)のホモロジーを示す図である。□
は、アスパラギン糖鎖付加部位を示す。
FIG. 5 is a diagram showing the homology between the amino acid sequence encoded by the baker's yeast OCH1 gene (upper column) and the amino acid sequence encoded by P. pastoris sugar chain-extended DNA (lower column). □
Indicates an asparagine sugar chain addition site.

【図6】パン酵母由来のOCH1タンパク(A)とP.pa
storis由来の糖鎖伸長タンパク(B)の Hydrophobicit
y プロファイルを比較した図である。
FIG. 6: OCH1 protein (A) derived from baker's yeast and P.pa
Hydrophobicit of storis-derived sugar chain elongation protein (B)
It is the figure which compared the y profile.

【図7】ピキア属酵母の糖鎖伸長DNAをプローブとし
たGenomic Southern Hybridizationの結果を、アガロー
スゲル電気泳動像を示す図面に代わる写真である。
FIG. 7 is a photograph instead of a drawing, which shows an agarose gel electrophoresis image, showing the results of Genomic Southern Hybridization using a sugar chain-extended DNA of Pichia yeast as a probe.

【図8】P.pastoris糖鎖伸長DNA破壊プラスミド(p
KM74)の制限酵素地図を示す図である。
FIG. 8: P. pastoris sugar chain extension DNA disruption plasmid (p
It is a figure which shows the restriction enzyme map of KM74).

【図9】糖鎖伸長DNA破壊株KM74−2および野生
株GTS115,KM45の染色体DNAの糖鎖伸長遺
伝子座近傍の構造を示した図で、図中の下線はGenomicS
outhern Hybridization解析に用いたプローブの位置を
示した図である。なお、図中、EはEcoRIを、Bg
はBglIIを意味する。
FIG. 9 is a diagram showing the structures in the vicinity of the sugar chain extension gene loci of the chromosomal DNAs of the sugar chain extension DNA-disrupted strain KM74-2 and the wild strains GTS115 and KM45, in which the underline in the figure indicates GenomicS.
It is the figure which showed the position of the probe used for the outhern Hybridization analysis. In the figure, E is EcoRI and Bg
Means BglII.

【図10】糖鎖伸長DNA破壊株KM74−2および野
生株GTS115,KM45について図9で示したプロ
ーブ1を用いてGenomic Southern Hybridization解析を
行った結果を示す図面に代わる写真である。
FIG. 10 is a photograph instead of a drawing, showing the results of Genomic Southern Hybridization analysis using the probe 1 shown in FIG. 9 for the sugar chain-extended DNA-disrupted strain KM74-2 and wild-type strains GTS115 and KM45.

【図11】糖鎖伸長DNA破壊株KM74−2および野
生株GTS115,KM45について図9で示したプロ
ーブ2を用いてGenomic Southern Hybridization解析を
行った結果を示す図面に代わる写真である。
FIG. 11 is a photograph instead of a drawing, which shows the results of Genomic Southern Hybridization analysis using the probe 2 shown in FIG. 9 for the sugar chain-extended DNA-disrupted strain KM74-2 and the wild-type strains GTS115 and KM45.

【図12】P.pastoris糖鎖伸長DNA破壊株が産生する
sFcεRIα鎖蛋白についてSDS−PAGE解析を
行った電気泳動像を示す図面に代わる写真である。1:
sFcεRIα(KM45)、2:sFcεRIα(K
M74−2)、3:sFcεRIα(KM74−5)、
4:PNGaseF処理KM45−sFcεRIα、
5:PNGaseF処理KM74−2−sFcεRI
α、6:PNGaseF処理KM74−5−sFcεR
Iα
FIG. 12 is a photograph instead of a drawing, showing an electrophoretic image of SDS-PAGE analysis of the sFcεRIα chain protein produced by the P. pastoris sugar chain-expanded DNA-disrupted strain. 1:
sFcεRIα (KM45), 2: sFcεRIα (K
M74-2), 3: sFcεRIα (KM74-5),
4: PNGaseF-treated KM45-sFcεRIα,
5: PNGaseF treated KM74-2-sFcεRI
α, 6: PNGaseF-treated KM74-5-sFcεR

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 21/00 9162−4B C12N 15/00 ZNAA //(C12N 9/10 C12R 1:84) (C12N 1/19 C12R 1:84) (C12N 15/09 ZNA C12R 1:84) (C12P 21/00 C12R 1:84) (72)発明者 羅 智靖 千葉県千葉市花見川区花園2−14−13─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C12P 21/00 9162-4B C12N 15/00 ZNAA // (C12N 9/10 C12R 1:84) ( (C12N 1/19 C12R 1:84) (C12N 15/09 ZNA C12R 1:84) (C12P 21/00 C12R 1:84) (72) Inventor, Jin Yasushi 2-14-13 Hanazono, Hanamigawa-ku, Chiba-shi, Chiba Prefecture

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 実質的に下記に示されるアミノ酸配列を
N末端領域に有することを特徴とするピキア属酵母に由
来する、糖蛋白質の糖鎖伸長に携わるタンパク。 【化1】
1. A protein involved in sugar chain elongation of a glycoprotein, which is derived from a yeast of the genus Pichia and has an amino acid sequence shown below substantially in the N-terminal region. Embedded image
【請求項2】 実質的に下記に示されるアミノ酸配列を
有することを特徴とする請求項1記載のピキア属酵母に
由来する、糖蛋白質の糖鎖伸長に携わるタンパク。 【化2】
2. A protein involved in sugar chain elongation of a glycoprotein derived from the yeast of the genus Pichia according to claim 1, which has substantially the amino acid sequence shown below. Embedded image
【請求項3】 請求項1または2に記載の糖蛋白質の糖
鎖伸長に携わるタンパクをコードする塩基配列を有する
DNA。
3. A DNA having a nucleotide sequence encoding a protein involved in sugar chain elongation of the glycoprotein according to claim 1.
【請求項4】 下記に示される塩基配列を有することを
特徴とする請求項3記載の糖蛋白質の糖鎖伸長に携わる
タンパクをコードするDNA。 【化3】
4. A DNA encoding a protein involved in sugar chain elongation of the glycoprotein according to claim 3, which has the base sequence shown below. Embedded image
【請求項5】 請求項3または4記載の糖蛋白質の糖鎖
伸長に携わるタンパクをコードするDNAの一部が、該
DNAの機能産物の産生が少なくとも抑制されるように
修飾されてなるDNA。
5. A DNA obtained by modifying a part of a DNA encoding a protein involved in sugar chain elongation of the glycoprotein according to claim 3 or 4 so that production of a functional product of the DNA is at least suppressed.
【請求項6】 修飾の態様が、請求項3または4記載の
糖蛋白質の糖鎖伸長に携わるタンパクをコードするDN
Aの塩基配列への形質転換マーカー遺伝子の挿入である
請求項5記載のDNA。
6. A modified embodiment of DN encoding a protein involved in sugar chain elongation of the glycoprotein according to claim 3 or 4.
The DNA according to claim 5, which is an insertion of a transformation marker gene into the nucleotide sequence of A.
【請求項7】 形質転換マーカー遺伝子が、パン酵母由
来SUC2遺伝子、ピキア属酵母由来のHIS4遺伝
子、ARG4遺伝子、URA3遺伝子およびG418耐
性遺伝子からなる群から選択されるものであることを特
徴とする請求項6記載のDNA。
7. The transformation marker gene is selected from the group consisting of SUC2 gene derived from baker's yeast, HIS4 gene derived from yeast of the genus Pichia, ARG4 gene, URA3 gene and G418 resistance gene. Item 7. The DNA according to Item 6.
【請求項8】 請求項5〜7のいずれかのDNAを有す
ることにより、天然型ピキア属酵母株に比して糖蛋白質
の糖鎖伸長能が抑制されてなる修飾ピキア属酵母株。
8. A modified Pichia yeast strain comprising the DNA according to any one of claims 5 to 7, in which the sugar chain elongation ability of a glycoprotein is suppressed as compared with a natural Pichia yeast strain.
【請求項9】 請求項8記載の修飾ピキア属酵母株を宿
主細胞として用いることを特徴とする糖蛋白質の製造方
法。
9. A method for producing a glycoprotein, which comprises using the modified Pichia yeast strain according to claim 8 as a host cell.
【請求項10】 糖蛋白質が可溶性高親和性IgE受容
体α鎖(sFcεRIα)、キマーゼ、プロウロキナー
ゼ−アネキシンV融合タンパク、尿性トリプシンインヒ
ビター、IGF1結合蛋白質3(IGF1BP3)から
なる群から選択されるいずれかであることを特徴とする
請求項9記載の糖蛋白質の製造方法。
10. The glycoprotein is selected from the group consisting of soluble high-affinity IgE receptor α chain (sFcεRIα), chymase, pro-urokinase-annexin V fusion protein, urinary trypsin inhibitor, IGF1 binding protein 3 (IGF1BP3). It is any one, The manufacturing method of the glycoprotein of Claim 9 characterized by the above-mentioned.
JP7145005A 1995-06-12 1995-06-12 Sugar chain-extended protein derived from pichia yeast and dna of the protein Pending JPH08336387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145005A JPH08336387A (en) 1995-06-12 1995-06-12 Sugar chain-extended protein derived from pichia yeast and dna of the protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145005A JPH08336387A (en) 1995-06-12 1995-06-12 Sugar chain-extended protein derived from pichia yeast and dna of the protein

Publications (1)

Publication Number Publication Date
JPH08336387A true JPH08336387A (en) 1996-12-24

Family

ID=15375254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145005A Pending JPH08336387A (en) 1995-06-12 1995-06-12 Sugar chain-extended protein derived from pichia yeast and dna of the protein

Country Status (1)

Country Link
JP (1) JPH08336387A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803225B2 (en) 2000-06-30 2004-10-12 Flanders Interuniversity Institute For Biotechnology Protein glycosylation modification in Pichia pastoris
US7332299B2 (en) 2003-02-20 2008-02-19 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
US7449308B2 (en) 2000-06-28 2008-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US7507573B2 (en) 2003-11-14 2009-03-24 Vib, Vzw Modification of protein glycosylation in methylotrophic yeast
EP2080809A1 (en) 2003-02-20 2009-07-22 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
EP2083084A1 (en) 2003-02-20 2009-07-29 Glycofi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP2119793A1 (en) 2000-06-28 2009-11-18 Glycofi, Inc. Methods for producing modified glycoproteins
US7863020B2 (en) 2000-06-28 2011-01-04 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
US8697394B2 (en) 2000-06-28 2014-04-15 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
US8932825B2 (en) 2001-12-27 2015-01-13 Glycofi Inc. Method to engineer mammalian-type carbohydrate structures
CN109749949A (en) * 2019-03-08 2019-05-14 中国人民解放军军事科学院军事医学研究院 A kind of construction method of recombinant yeast cell and its preparing the application in hypo-glycosylated antibody

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2322644A1 (en) 2000-06-28 2011-05-18 GlycoFi, Inc. Methods for producing modified glycoproteins
US8883483B2 (en) 2000-06-28 2014-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US7449308B2 (en) 2000-06-28 2008-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US8877462B2 (en) 2000-06-28 2014-11-04 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US8697394B2 (en) 2000-06-28 2014-04-15 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
US8445227B2 (en) 2000-06-28 2013-05-21 Merck Sharp & Dohme N-acetylglucosaminyltransferase III expression in lower eukaryotes
US8211691B2 (en) 2000-06-28 2012-07-03 Glycofi, Inc. Methods for producing modified glycoproteins
US7981660B2 (en) 2000-06-28 2011-07-19 Glycofi, Inc. Methods for producing modified glycoproteins
US7598055B2 (en) 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
EP2119793A1 (en) 2000-06-28 2009-11-18 Glycofi, Inc. Methods for producing modified glycoproteins
US7625756B2 (en) 2000-06-28 2009-12-01 GycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
US7629163B2 (en) 2000-06-28 2009-12-08 Glycofi, Inc. Methods for producing modified glycoproteins
US7863020B2 (en) 2000-06-28 2011-01-04 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
US7923430B2 (en) 2000-06-28 2011-04-12 Glycofi, Inc. Methods for producing modified glycoproteins
US7935513B2 (en) 2000-06-28 2011-05-03 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
EP2339013A1 (en) 2000-06-28 2011-06-29 GlycoFi, Inc. Methods for producing modified glycoproteins
US8354268B2 (en) 2000-06-30 2013-01-15 Vib, Vzw Protein glycosylation modification in methylotrophic yeast
US6803225B2 (en) 2000-06-30 2004-10-12 Flanders Interuniversity Institute For Biotechnology Protein glycosylation modification in Pichia pastoris
US9359628B2 (en) 2000-06-30 2016-06-07 Vib, Vzw Protein glycosylation modification in methylotrophic yeast
EP2028275A2 (en) * 2000-06-30 2009-02-25 VIB vzw Protein glycosylation modification in pichia pastoris
EP2267135A3 (en) * 2000-06-30 2011-09-14 Vib Vzw Protein glycosylation modification in pichia pastoris
US8663971B2 (en) 2000-06-30 2014-03-04 Vib, Vzw Protein glycosylation modification in methylotrophic yeast
US8932825B2 (en) 2001-12-27 2015-01-13 Glycofi Inc. Method to engineer mammalian-type carbohydrate structures
US7332299B2 (en) 2003-02-20 2008-02-19 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
EP2316963A1 (en) 2003-02-20 2011-05-04 GlycoFi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US8299228B2 (en) 2003-02-20 2012-10-30 Glycofi, Inc. Expression of Class 2 mannosidase and Class III mannosidase in lower eukaryotic cells
US8298811B2 (en) 2003-02-20 2012-10-30 Glycofi, Inc. Expression of Class 2 mannosidase and Class III mannosidase in lower eukaryotic cells
EP2083084A1 (en) 2003-02-20 2009-07-29 Glycofi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP2080809A1 (en) 2003-02-20 2009-07-22 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
EP2333095A1 (en) 2003-02-20 2011-06-15 GlycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
US8999671B2 (en) 2003-02-20 2015-04-07 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
EP2088201A1 (en) 2003-02-20 2009-08-12 Glycofi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP2333096A2 (en) 2003-02-20 2011-06-15 GlycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
US8268609B2 (en) 2003-02-20 2012-09-18 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
US8986949B2 (en) 2003-02-20 2015-03-24 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
US7507573B2 (en) 2003-11-14 2009-03-24 Vib, Vzw Modification of protein glycosylation in methylotrophic yeast
US8058053B2 (en) 2003-11-14 2011-11-15 Vib, Vzw Modification of protein glycosylation in methylotrophic yeast
CN109749949A (en) * 2019-03-08 2019-05-14 中国人民解放军军事科学院军事医学研究院 A kind of construction method of recombinant yeast cell and its preparing the application in hypo-glycosylated antibody

Similar Documents

Publication Publication Date Title
JP4969011B2 (en) Method for producing acidic sugar chain-reducing protein and the produced glycoprotein
DE69333112T2 (en) MODIFIED MUSHROOM CELLS AND METHOD FOR THE PRODUCTION OF RECOMBINANT PRODUCTS
EP1505149B1 (en) Methylotroph yeast producing mammalian type sugar chain
EP2912162B1 (en) Pichia pastoris strains for producing predominantly homogeneous glycan structure
Cereghino et al. Expression of foreign genes in the yeast Pichia pastoris
EP0438200B1 (en) Method for the expression of heterologous genes in the yeast Pichia pastoris, expression vectors and transformed microorganisms
CN102648286A (en) Method for producing proteins in pichia pastoris that lack detectable cross binding activity to antibodies against host cell antigens
EP0436625A1 (en) Mixed feed recombinant yeast fermentation
DE19620649A1 (en) Recombinantly produced Aspergillus lysophospholipase
Roca et al. Cloning of the Penicillium minioluteum gene encoding dextranase and its expression in Pichia pastoris
MX2012004994A (en) Method for producing therapeutic proteins in pichia pastoris lacking dipeptidyl aminopeptidase activity.
JPH08336387A (en) Sugar chain-extended protein derived from pichia yeast and dna of the protein
JPH09261A (en) Production of glycoprotein
EP0654081A1 (en) Hypoglycosylated recombinant glucosidase oxidases.
EP0362183A2 (en) Process for the production of human lysozyme
EP0704527A2 (en) DNA sequences encoding biosynthetic insulin precursors and process for prepation of insulin
EP0208706A1 (en) Dna sequence useful for the production and secretion from yeast of peptides and proteins
JP2770010B2 (en) Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
JPH093097A (en) Saccharide chain elongation protein derived from genus pichia, dna coding the same protein, modified dna and transformant
JPH06277086A (en) Production of mammalian high mannose-type glucoprotein sugar chain by yeast
EP0832257A1 (en) A dna molecule for expression of bile salt-stimulated lipase (bssl)
US5854031A (en) Mannose-1-phosphate transferase gene from yeast and its use for producing phosphate-containing acidic sugars
JPH08256770A (en) Protease derived from yeast belonging to the genus pichia
WO2004003205A1 (en) Hansenula polymorpha mutant strains with defect in outer chain biosynthesis and the production of recombinant glycoproteins using the same strains
KR100558614B1 (en) Glycosylated Onconase and Process for Preparing the Same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816