JPH06277086A - Production of mammalian high mannose-type glucoprotein sugar chain by yeast - Google Patents

Production of mammalian high mannose-type glucoprotein sugar chain by yeast

Info

Publication number
JPH06277086A
JPH06277086A JP29746992A JP29746992A JPH06277086A JP H06277086 A JPH06277086 A JP H06277086A JP 29746992 A JP29746992 A JP 29746992A JP 29746992 A JP29746992 A JP 29746992A JP H06277086 A JPH06277086 A JP H06277086A
Authority
JP
Japan
Prior art keywords
sugar chain
yeast
mannose
man
glycoprotein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29746992A
Other languages
Japanese (ja)
Other versions
JP3091851B2 (en
Inventor
Yoshifumi Chikami
芳文 地神
Yoko Nakanishi
容子 中西
Kenichi Nakayama
賢一 仲山
Atsushi Tanaka
淳志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Asahi Chemical Industry Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Asahi Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP29746992A priority Critical patent/JP3091851B2/en
Publication of JPH06277086A publication Critical patent/JPH06277086A/en
Application granted granted Critical
Publication of JP3091851B2 publication Critical patent/JP3091851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide a method for producing a sugar chain composed of two molecules of N-acetylglucosamine and eight molecules of mannose and having a uniform and same sugar chain as that of human and a glycoprotein having the same sugar chain of this chemical structure using a yeast by a recombinant DNA technique. CONSTITUTION:A sugar chain having a structure same as that of a high mannose type sugar chain produced by mammalian cell and a glycoprotein obtained by forming an adduct of this sugar chain to an asparagine residue of a protein are produced using a yeast variant having a defect in a part of biosynthesis of the sugar chain. A gene encoding for a protein derived from Mammalian is expressed by using this yeast valiant as a host. Thereby, the high mannose type glycoprotein having high purity (obtained by binding the oligosaccharide chain composed of two molecules of N-acetylglucosamine and eight molecules of mannose to the asparagine residue) same as that derived from mammalian cell can stably and abundantly be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、哺乳類細胞の生産する
高マンノース型糖鎖と同一の糖鎖構造をもつ糖鎖、およ
び、この糖鎖を蛋白質のアスパラギン残基に付加した糖
蛋白質を、酵母を用いて、遺伝子工学的手法により、製
造する方法に関する。
TECHNICAL FIELD The present invention relates to a sugar chain having the same sugar chain structure as a high-mannose type sugar chain produced by mammalian cells, and a glycoprotein obtained by adding this sugar chain to an asparagine residue of a protein, The present invention relates to a method for producing yeast using a genetic engineering technique.

【0001】[0001]

【従来の技術】生体内で重要な機能をもつ蛋白質の多く
は、単純蛋白質ではなく、糖鎖をもった糖蛋白質であ
り、糖鎖を除くと本来の生物活性を示さなくなること
が、エリスロポエチン(EPO)や組織プラスミノゲン
活性化因子(TPA)など種々の糖蛋白質で明かにされ
てきた(木幡陽、蛋白質核酸酵素、Vol.36, p775 (199
1) ;竹内誠、生化学、Vol.62, p1272 (1990))。糖鎖
が生物活性の発現に重要な役割を担っていることが示唆
されるが、糖鎖の構造と生物活性との相関が必ずしも明
確でないため、蛋白質部分に付加する糖鎖の種類や構造
については、蛋白質毎に試行錯誤を繰り返しているのが
現状である。このためには、蛋白質に付加する糖鎖の構
造(糖の種類、結合位置、鎖長など)を思い通りに改変
制御できる技術の開発が必要である。
2. Description of the Related Art Most of proteins having important functions in vivo are not simple proteins but glycoproteins having a sugar chain. Erythropoietin ( It has been revealed in various glycoproteins such as EPO) and tissue plasminogen activator (TPA) (Kihatayo, Protein Nucleic Acid Enzyme, Vol.36, p775 (199)
1); Makoto Takeuchi, Biochemistry, Vol.62, p1272 (1990)). It is suggested that the sugar chain plays an important role in the expression of biological activity, but since the correlation between the sugar chain structure and biological activity is not always clear, the type and structure of the sugar chain added to the protein part should be considered. Is currently undergoing trial and error for each protein. To this end, it is necessary to develop a technique that allows modification and control of the structure of the sugar chain added to the protein (type of sugar, binding position, chain length, etc.) as desired.

【0002】蛋白質に結合する糖鎖には蛋白質のアスパ
ラギン残基に結合するN−結合型とセリンまたはスレオ
ニンに結合するO−結合型の2種類がある。このうち、
N−結合型糖鎖の生合成経路については多くの知見があ
り、詳しく解析されている。これによると、糖鎖の生合
成は、まず小胞体(ER)で始まり、その後ゴルジ体で
さらに糖鎖の修飾が起こる。このうち、ERで生成する
糖鎖は酵母も哺乳類細胞も基本的には同じであることが
わかっている。ここでは、以後、これをコア型糖鎖とよ
ぶが、その糖鎖は8分子のマンノース(Man)と2分
子のNーアセチルグルコサミン(GlcNAc)から構
成されることがわかっている。このコア型糖鎖(Man
8 GlcNAc2 )をもつ蛋白質はゴルジ体に輸送され
て、種々の修飾を受けるが、このゴルジ体での修飾は酵
母と哺乳類細胞で大きく異なっている(Kukuruzinska e
t al, Ann. Rev. Biochem., Vol.56, p915 (1987) )。
There are two types of sugar chains that bind to proteins, N-linked that binds to asparagine residues of the protein and O-linked that binds to serine or threonine. this house,
There are many findings on the biosynthetic pathway of N-linked sugar chains, and they have been analyzed in detail. According to this, the biosynthesis of sugar chains first starts in the endoplasmic reticulum (ER), and then the sugar chains are further modified in the Golgi apparatus. Of these, it is known that the sugar chains produced by ER are basically the same in yeast and mammalian cells. Hereafter, this is referred to as a core type sugar chain, and it is known that the sugar chain is composed of 8 molecules of mannose (Man) and 2 molecules of N-acetylglucosamine (GlcNAc). This core type sugar chain (Man
Proteins with 8 GlcNAc 2 ) are transported to the Golgi apparatus and undergo various modifications, but the modifications in this Golgi apparatus differ greatly between yeast and mammalian cells (Kukuruzinska e
t al, Ann. Rev. Biochem., Vol.56, p915 (1987)).

【0003】哺乳類細胞では、コア型糖鎖が何等変化を
うけない糖蛋白質も存在するが、多くの場合は、コア型
糖鎖から5分子のManが除去されてMan3 GlcN
Ac 2 となり、これと相前後してGlcNAc、Gal
(ガラクトース)、NeuNAc(Nーアセチルノイラ
ミン酸、別名シアル酸)などが順次付加して、多様な糖
鎖が混合物として生成する。一方、酵母では、コア型糖
鎖にManが7ー100分子、逐次的に付加して、いわ
ゆる糖外鎖を生成する(Kukuruzinska et al,Ann. Rev.
Biochem., Vol.56, p915 (1987) )。このように酵母
と哺乳類細胞では蛋白質に付加する糖鎖の構造が大きく
異なるため、遺伝子工学的手法により酵母でヒトなど哺
乳類由来の有用糖蛋白質を生産させても、糖鎖の構造が
異なるため、哺乳類由来のものと同一の生物活性が検出
されなかったり、糖鎖の違いによる抗原性の相違などが
指摘されている。このため、哺乳類由来の糖蛋白質を酵
母で生産させることは現状では困難である。
In mammalian cells, there is no change in the core type sugar chain.
There are some glycoproteins that are not accepted, but in most cases, core type
Man of 5 molecules is removed from the sugar chain3GlcN
Ac 2And, before and after this, GlcNAc and Gal
(Galactose), NeuNAc (N-acetylneura)
A variety of sugars can be added by sequentially adding methanoic acid, or sialic acid
The chains form as a mixture. On the other hand, in yeast, core type sugar
Add 7-100 molecules of Man to the chain sequentially,
Produces a loose sugar outer chain (Kukuruzinska et al, Ann. Rev.
 Biochem., Vol.56, p915 (1987)). Thus yeast
In mammalian cells, the structure of sugar chains added to proteins is large
Since they are different, genetic engineering techniques are used to
Even if a useful glycoprotein derived from milk is produced, the structure of the sugar chain
Identical biological activity detected from mammal due to differences
Or the difference in antigenicity due to the difference in sugar chains
It has been pointed out. Therefore, the glycoprotein of mammalian origin is fermented.
At present, it is difficult for mothers to produce them.

【0004】また、Man8 GlcNAc2 から構成さ
れるコア型糖鎖は、糖鎖生合成の中間体として重要なた
め、糖鎖関連の研究用試薬として、少量、哺乳類由来の
ものが市販されているが、この糖鎖を有機化学的手法に
より、均一かつ多量に合成することも現状では困難であ
る。
The core type sugar chain composed of Man 8 GlcNAc 2 is important as an intermediate of sugar chain biosynthesis, and therefore, a small amount of a mammalian-derived reagent is commercially available as a sugar chain-related research reagent. However, it is currently difficult to synthesize this sugar chain uniformly and in large quantities by organic chemistry techniques.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
ヒトおよび他の哺乳類由来のN−結合型糖蛋白質の生産
と供給における質的、量的欠点を克服するため、組み換
えDNA技術により、マンノース8個とN−アセチルグ
ルコサミン2個から構成される、均一で、しかもヒトと
同一の糖鎖構造をもつ糖鎖、ならびに、この化学構造の
糖鎖をもつ糖蛋白質を、微生物を用いて生産することを
可能にするものである。
In order to overcome the qualitative and quantitative drawbacks in producing and supplying such N-linked glycoproteins derived from humans and other mammals, the present invention uses recombinant DNA technology to solve the problems. Production of a uniform sugar chain composed of 8 mannose and 2 N-acetylglucosamine and having the same sugar chain structure as human and a glycoprotein having the sugar chain of this chemical structure using a microorganism It is possible to do.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は次の
構成を含むものである。 (1)酵母細胞の生産するアスパラギン結合型糖蛋白質
糖鎖の構造が化5で示されるマンノース8分子とN−ア
セチルグルコサミン2分子からなるオリゴ糖鎖であるサ
ッカロミセス属酵母。
That is, the present invention includes the following configurations. (1) A yeast of the genus Saccharomyces, which is an oligosaccharide chain composed of 8 molecules of mannose and 2 molecules of N-acetylglucosamine, each of which has a structure of an asparagine-binding glycoprotein sugar chain produced by a yeast cell.

【0007】[0007]

【化5】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
[Chemical 5] (In the formula, M represents mannose and GN represents N-acetylglucosamine)

【0008】(2)上記(1)記載のサッカロミセス属
酵母がSaccharomyces cerevisiaeに属し、OCH1遺伝
子を破壊したoch1変異(Δoch1)とmnn1変
異の両方の変異形質を持つSaccharomyces cerevisiaeに
属する酵母変異株。 (3)上記(2)記載のSaccharomyces cerevisiaeがY
N3−1D株叉はYN4−18A株であるSaccharomyce
s cerevisiaeに属する酵母変異株。 (4)上記(1)乃至上記(3)のいずれかの項記載の
酵母を培地に培養して、培養物から酵母菌体を回収し、
この菌体から化6で示されるオリゴ糖鎖を回収すること
を特徴とする化6記載のオリゴ糖鎖の製造法。
(2) A yeast mutant strain which belongs to Saccharomyces cerevisiae in which the yeast of the genus Saccharomyces described in (1) above belongs to Saccharomyces cerevisiae and which has both och1 mutation (Δoch1) and mnn1 mutation in which the OCH1 gene is disrupted. (3) The Saccharomyces cerevisiae described in (2) above is Y.
Saccharomyce which is N3-1D strain or YN4-18A strain
s cerevisiae yeast mutant. (4) The yeast according to any one of (1) to (3) above is cultured in a medium to recover yeast cells from the culture,
A method for producing an oligosaccharide chain according to Chemical formula 6, characterized in that the oligosaccharide chain represented by Chemical formula 6 is recovered from the cells.

【0009】[0009]

【化6】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
[Chemical 6] (In the formula, M represents mannose and GN represents N-acetylglucosamine)

【0010】(5)上記(1)乃至上記(3)のいずれ
かの項記載の酵母を培養して、培養物から、化7で示さ
れるオリゴ糖鎖をアスパラギン結合型糖鎖として含有す
る宿主酵母由来の糖蛋白質を回収することを特徴とする
化7記載のオリゴ糖を含む酵母由来の糖蛋白質の製造
法。
(5) A host containing the oligosaccharide chain represented by Chemical formula 7 as an asparagine-linked sugar chain, which is obtained by culturing the yeast according to any one of (1) to (3) above and culturing the yeast. A method for producing a yeast-derived glycoprotein containing the oligosaccharide according to Chemical formula 7, characterized in that the yeast-derived glycoprotein is recovered.

【0011】[0011]

【化7】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
[Chemical 7] (In the formula, M represents mannose and GN represents N-acetylglucosamine)

【0012】(6)上記(1)乃至上記(3)のいずれ
かの項記載の酵母を宿主として、哺乳類由来のアスパラ
ギン結合型糖蛋白質をコードする遺伝子を発現させ、発
現された糖蛋白質のアスパラギン結合型糖鎖の構造が化
8で示されるオリゴ糖鎖であることを特徴とする化8記
載のオリゴ糖を含む哺乳類由来の糖蛋白質の製造法。
(6) Using the yeast according to any one of (1) to (3) above as a host, a gene encoding a mammalian-derived asparagine-binding glycoprotein is expressed, and the expressed glycoprotein asparagine is expressed. The method for producing a mammalian-derived glycoprotein containing an oligosaccharide according to Chemical formula 8, wherein the structure of the linked sugar chain is an oligosaccharide chain represented by Chemical formula 8.

【0013】[0013]

【化8】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
[Chemical 8] (In the formula, M represents mannose and GN represents N-acetylglucosamine)

【0014】以下、本発明を詳細に説明する。酵母によ
るN−結合型糖鎖の生合成は、まず、小胞体(ER)で
始まり、その後、ゴルジ体でさらに糖鎖の延長やリン酸
化などの修飾が起こる。ERでの糖鎖の生合成経路は既
に公知であり(Kukuruzinska et al, Ann. Rev. Bioche
m., Vol.56, p915 (1987) )、酵母もヒトや動物細胞も
基本的には同じであり、ERで最終的に生成する糖鎖を
ここではコア型糖鎖とよぶ。蛋白質のアスパラギン残基
(Asn)に転移する糖鎖は、ER膜に局在するドリコ
ールピロリン酸(Dol−PP)に糖ヌクレオチドから
単糖が順次付加し、14糖(Glc3 Man9 GlcN
Ac2 )となったのち、これが一括してER内腔に入っ
てきた蛋白質のAsnに転移する。このあとさらに、3
分子のGlcと1分子のManが除去されてコア型糖鎖
(Man8 GlcNAc2 )となった後、ERから派生
した輸送小胞に包まれてゴルジ体に運ばれる。
The present invention will be described in detail below. The biosynthesis of N-linked sugar chains by yeast first starts in the endoplasmic reticulum (ER), and then in the Golgi apparatus, modifications such as sugar chain extension and phosphorylation occur. The biosynthetic pathway of sugar chains in the ER is already known (Kukuruzinska et al, Ann. Rev. Bioche
m., Vol.56, p915 (1987)), yeast and human and animal cells are basically the same, and the sugar chain finally produced by ER is referred to as a core-type sugar chain. The sugar chain transferred to the asparagine residue (Asn) of the protein is obtained by sequentially adding monosaccharides from sugar nucleotides to dolichol pyrophosphate (Dol-PP) localized in the ER membrane to obtain 14 sugars (Glc 3 Man 9 GlcN).
After becoming Ac 2 ), this is collectively transferred to Asn which is a protein that has entered the ER lumen. 3 more after this
The molecule Glc and one molecule Man are removed to form a core type sugar chain (Man 8 GlcNAc 2 ), which is then transported to the Golgi apparatus by being wrapped in transport vesicles derived from ER.

【0015】ゴルジ体における糖蛋白質糖鎖の修飾はヒ
トや動物細胞と酵母では大きく異なっており、前者では
多くの場合さらにManが除去されて最終的にはMan
3 GlcNAc2 となり、これと相前後してGlcNA
c、Gal、NeuNAc残基が付加して多種の糖を含
む多様な糖鎖構造の混合物を生成するのに対し、後者で
は上記のコア型糖鎖(Man8 GlcNAc2 )にMa
nが約7ー100分子、逐次的に付加して、いわゆる糖
外鎖(outer chain)を生成する。なお、付
加するManの数は蛋白質の種類や糖鎖付加部位の位置
によって異なることがわかっている。
The modification of the glycoprotein sugar chain in the Golgi apparatus is largely different between human and animal cells and yeast. In the former case, Man is often removed and finally Man is removed.
3 GlcNAc 2 and , before and after this, GlcNAc
Whereas c, Gal and NeuNAc residues are added to form a mixture of various sugar chain structures containing various sugars, in the latter, the above core-type sugar chain (Man 8 GlcNAc 2 ) has Ma
About 7-100 molecules of n are added sequentially to form a so-called outer chain. It is known that the number of added Mans varies depending on the type of protein and the position of the sugar chain addition site.

【0016】例えば、液胞に局在するカルボキシペプチ
ダーゼY(CPY)では、4カ所の糖鎖付加部位の各々
に約6分子のManしか付加しないのに対し、細胞表層
まで分泌されるインベルターゼ(INV)では、14カ
所の糖鎖付加可能部位のうち、13カ所で糖鎖が付加し
ており、そのうち9カ所はCPYと同じ6分子のMan
が付加しているが、残りの4カ所には30分子以上の鎖
長分布をもつManが付加している(Trimble et al,
J. Biol. Chem., Vol.258, p2562 (1983); Reddy et a
l., J. Biol. Chem., Vol.263, 6978 (1988); Ziegler
et al., J. Biol.Chem., Vol.263, p6986 (1988) )。
For example, carboxypeptidase Y (CPY), which is localized in the vacuole, adds only about 6 molecules of Man to each of four glycosylation sites, whereas invertase (INV) secreted to the cell surface layer ), Sugar chains have been added at 13 of 14 sites where sugar chains can be added, and 9 of them have the same 6 molecules of Man as CPY.
, But Man with a chain length distribution of 30 molecules or more is added to the remaining 4 positions (Trimble et al,
J. Biol. Chem., Vol.258, p2562 (1983); Reddy et a
l., J. Biol. Chem., Vol.263, 6978 (1988); Ziegler
et al., J. Biol. Chem., Vol.263, p6986 (1988)).

【0017】サッカロミセス属酵母における糖外鎖の生
合成は図1に示した経路で進行すると考えられている
(Ballou et al, Proc. Natl. Acad. Sci. USA, Vol.8
7, p3368 (1990))。すなわち、コア型糖鎖にα−1,
6結合でManが付加する延長開始の反応(図1、I)
に続いて、さらにα−1,6結合でManを順次延長す
る反応(図1、II)がおこることにより、糖外鎖の骨格
となるポリ−α−1,6Man結合が形成される(図
1、E)。このα−1,6結合のManには、α−1,
2結合したManの分枝が存在し、この枝分れしたα−
1,2結合のManの先端には、通常さらにα−1,3
結合したManが付加している(図1、G参照)。ただ
し、α−1,6結合の先端のManにはα−1,2結合
したManが付加するだけであり、α−1,3結合のM
anがさらに付加することはない(図1、FまたはG)
(Gopal and Ballou, Proc. Natl. Acad. Sci. USA, Vo
l.84, p8824 (1987))。
Biosynthesis of the sugar outer chain in Saccharomyces yeast is considered to proceed through the pathway shown in FIG. 1 (Ballou et al, Proc. Natl. Acad. Sci. USA, Vol. 8).
7, p3368 (1990)). That is, α-1,
Reaction of extension initiation in which Man is added by 6 bond (Fig. 1, I)
Then, a reaction of sequentially extending Man with α-1,6 bond (Fig. 1, II) occurs to form poly-α-1,6Man bond as a skeleton of the sugar outer chain (Fig. 1, E). This Man with α-1,6 bond has α-1,
There is a 2-linked Man branch, and this branched α-
At the tip of 1,2-bonded Man, usually α-1,3 is further added.
Bound Man is added (see FIG. 1, G). However, the Man at the tip of the α-1,6 bond is simply added with the α-1,2-bonded Man, and the M of the α-1,3 bond is M.
an does not add further (Figure 1, F or G)
(Gopal and Ballou, Proc. Natl. Acad. Sci. USA, Vo
l.84, p8824 (1987)).

【0018】このような構造解析の結果から、糖外鎖の
α−1,3結合のManは枝分れ構造の停止シグナルと
して、また、骨格であるα−1,6結合の先端に存在す
るα−1,2結合のManは糖外鎖の延長停止シグナル
として、各々機能しているのではないかと推定されてい
る(Ballou et al, J. Biol. Chem., Vol.264, p11857
(1989))。また、糖外鎖の延長が起こるコア糖鎖の位置
については、従来、図2のM°で記したManであろう
と考えられていたが、最近、mnn9など種々の外鎖付
加部分欠損変異株の生成する糖鎖の化学構造を2次元N
MRなどで詳細に解析した結果から、α−1,3及びα
−1,2結合をもつMan(図2のMoで記したM)に
α−1,6で結合すると修正されている(Hernandez et
al, Vol.264, p11849 (1989); Hernandez et al, Vol.
264, p13648 (1989))。
From the results of such structure analysis, Man of α-1,3 bond of the sugar outer chain exists as a termination signal of the branched structure and at the tip of the skeleton α-1,6 bond. It is presumed that the Man of α-1,2 bond may function as an extension stop signal of the outer sugar chain (Ballou et al, J. Biol. Chem., Vol. 264, p11857).
(1989)). Regarding the position of the core sugar chain in which the extension of the outer sugar chain occurs, it was conventionally thought that it might be Man described in M ° in FIG. 2, but recently, various outer chain addition partial deletion mutants such as mnn9 have been recently proposed. The chemical structure of the sugar chain produced by
From the results of detailed analysis by MR, etc., α-1, 3 and α
Man with -1,2 bond has been modified to bind with alpha-1, 6 in (M where noted in the M o FIG 2) (Hernandez et
al, Vol. 264, p11849 (1989); Hernandez et al, Vol.
264, p13648 (1989)).

【0019】従って、酵母を用いてコア型糖鎖を生産す
るためには、このような酵母特有の糖蛋白質糖鎖の修飾
である、前記コア型糖鎖にManが多数付加されるよう
な反応がおこらず、糖外鎖が付加しなくなり、糖鎖合成
がコア型糖鎖(図1、A)で停止するような糖鎖生合成
系を有する変異株を単離することにより達成される筈で
ある。糖外鎖付加に欠損をもつ酵母の変異株としては、
種々のmnn変異株が既に報告されている。しかし、そ
の付加欠損部位は図2に示したように様々である。例え
ばmnn2変異株は糖外鎖のα−1,6骨格からα−
1,2結合を生じる枝分れのステップに欠損があり、m
nn1変異株は分枝先端にα−1,3結合のManを生
成するステップに欠損がある。しかし、これらの変異株
は糖外鎖の骨格であるα−1,6Man結合には欠損が
ないため、いずれも鎖長の長い糖外鎖を生成する。
Therefore, in order to produce a core-type sugar chain using yeast, a reaction such that a large number of Man is added to the core-type sugar chain is a modification of such a glycoprotein sugar chain peculiar to yeast. It should be achieved by isolating a mutant strain having a sugar chain biosynthesis system in which the sugar chain is not added and the sugar chain synthesis is stopped at the core type sugar chain (Fig. 1, A). Is. As a mutant strain of yeast having a deficiency in the addition of sugar chain,
Various mnn mutants have already been reported. However, the additional deletion site varies as shown in FIG. For example, the mnn2 mutant strain has an α-1,6 skeleton of the sugar outer chain and α-
There is a defect in the branching step that produces the 1,2 bond and m
The nn1 mutant strain is defective in the step of generating α-1,3 linked Man at the branching tip. However, since these mutants have no defect in the α-1,6Man bond, which is the backbone of the outer sugar chain, all of them produce a long outer sugar chain.

【0020】一方、mnn9変異株では糖外鎖のα−
1,6結合の大半が欠損しており、コア糖鎖にManが
2分子〜5分子付加した構造(図1、C叉はD)で糖外
鎖が停止している。このうち、1分子のManはコア糖
鎖に糖外鎖の延長開始に必要なα−1,6結合として付
加されるが、このα−1,6方向への延長が変異による
何らかの影響により阻害されたため、延長停止に機能す
るα−1,2結合のManが付加したと考えられる(He
rnandez et al., J. Biol. Chem., Vol.264, p11849 (1
989))。
On the other hand, in the mnn9 mutant, α-of the outer sugar chain
Most of the 1,6 bonds are deleted, and the outer sugar chain is stopped in a structure in which 2 to 5 molecules of Man are added to the core sugar chain (Fig. 1, C or D). Of these, one molecule of Man is added to the core sugar chain as an α-1,6 bond necessary for initiation of extension of the outer sugar chain, but this extension in the α-1,6 direction is inhibited by some influence of the mutation. Therefore, it is considered that Man of α-1,2 bond, which functions to stop elongation, was added (He
rnandez et al., J. Biol. Chem., Vol.264, p11849 (1
989)).

【0021】糖外鎖の付加変異としては、これ以外にα
−1,6Man結合を4〜15分子程度しかもたないm
nn7、8、10といった変異株も単離されているが、
これらの変異株も糖外鎖が短くなるだけであり、コア型
で糖鎖が停止するものではない(図2参照)(Ballou e
t al., J. Biol. Chem., Vol.255, p5986 (1980); Ball
ou et al., J. Biol. Chem., Vol.264, p11857 (1989)
)。なお、糖外鎖の大半が欠損しているmnn9変異
株は、糖外鎖の延長開始やその後の付加延長を触媒する
酵素(α-1,6-mannosyltransferase)の活性レベルが野
生株と差がないことから、この変異はマンノースを転移
する糖転移酵素をコードする遺伝子の変異ではなく、別
の遺伝子の変異による2次的影響として糖外鎖の付加延
長にも欠損を生じたものと推測されている(Gopal and
Ballou, Proc. Natl. Acad. Sci. USA, Vol.84, p8824
(1987))。
Other addition mutations of the sugar outer chain include α
-1,6 Man bond has only about 4 to 15 molecules m
Mutants such as nn7, 8, 10 have also been isolated,
These mutants also only shorten the outer sugar chain and do not terminate the sugar chain in the core type (see Fig. 2) (Balloue
t al., J. Biol. Chem., Vol. 255, p5986 (1980); Ball
ou et al., J. Biol. Chem., Vol.264, p11857 (1989)
). In addition, in the mnn9 mutant strain in which most of the outer sugar chain is deficient, the activity level of the enzyme (α-1,6-mannosyltransferase) that catalyzes the initiation of elongation of the outer sugar chain and the subsequent extension of addition is different from that of the wild strain. Since this mutation is not present, it is speculated that this mutation was not a mutation in the gene encoding the glycosyltransferase that transfers mannose, but a secondary effect caused by a mutation in another gene also caused a defect in the extension of the sugar chain. Gopal and
Ballou, Proc. Natl. Acad. Sci. USA, Vol.84, p8824
(1987)).

【0022】このように、糖鎖付加と直接関連がない変
異により糖外鎖が影響をうける例としてはssc1また
はpmr1と呼ばれている変異が報告されている(Smit
h etal, Science, Vol.229, p1219 (1985) )。この変
異株はERかゴルジ体の膜に局在してCa2+イオンの膜
透過に関与する蛋白質(Ca2+−ATPase)をコー
ドしている遺伝子に変異がある。この変異株の生成する
INV糖鎖の鎖長はmnn9のものとほぼ同一であるこ
とから、変異により糖鎖付加が2次的な影響をうけ正常
な糖外鎖の付加がおこらなくなったものと考えられる
(Rudolph et al,Cell, Vol.58, p133 (1989))。
Thus, as an example in which the outer sugar chain is affected by a mutation not directly related to sugar chain addition, a mutation called ssc1 or pmr1 has been reported (Smit).
h et al, Science, Vol.229, p1219 (1985)). This mutant strain has a mutation in the gene encoding a protein (Ca 2+ -ATPase) that is localized in the membrane of the ER or Golgi apparatus and is involved in the membrane permeation of Ca 2+ ions. Since the chain length of the INV sugar chain generated by this mutant strain is almost the same as that of mnn9, it is considered that the sugar chain addition is secondary to the mutation and the normal addition of the outer sugar chain does not occur. (Rudolph et al, Cell, Vol.58, p133 (1989)).

【0023】以上のような糖外鎖の付加欠損は、ERか
らゴルジ体への蛋白質輸送が温度感受性となったsec
18などの分泌変異株でも観察される。しかし、sec
変異株では蛋白質の分泌そのものが高温で阻害されてし
まうので、糖蛋白質の分泌生産などの目的には適当では
ない。一方、mnn9やpmr1変異株は蛋白質の分泌
は正常であり、潜在的な利用価値はあるが、前述のごと
く、蛋白質に付加する糖鎖構造はヒトなど哺乳類で生成
するコア型糖鎖(Man8 GlcNAc2 )より大き
く、2〜5分子のManをさらに含んでいる。このうち
の1〜2分子のManはコア型糖鎖にα−1,3結合の
Manが付加したものである(図1、D参照)。
The above-mentioned addition defect of the sugar outer chain is due to the temperature sensitivity of the protein transport from the ER to the Golgi apparatus.
It is also observed in secretory mutant strains such as 18. But sec
The mutant strain is not suitable for the purpose such as secretory production of glycoprotein because the secretion of protein itself is inhibited at high temperature. On the other hand, the mnn9 and pmr1 mutants have normal protein secretion and have potential utility, but as described above, the sugar chain structure added to the protein has a core type sugar chain (Man 8 It is larger than GlcNAc 2 ) and further contains 2-5 molecules of Man. Of these, 1 to 2 molecules of Man are those in which α-1,3 linked Man is added to the core type sugar chain (see FIG. 1, D).

【0024】この反応は酵母に特有のものでヒトなど哺
乳類には存在しない。mnn9変異株では、さらに前述
のmnn1変異を導入することにより、コア型糖鎖の非
還元末端にα−1,3結合のManをもたないコア類似
型糖鎖(Man10GlcNAc2 )(図1、C)を生成
することに成功しているが(Hernandez et al, J. Bio
l. Chem., Vol.264, p11849 (1989) )、これでもま
だ、ヒトなど哺乳類細胞の生成するコア型糖鎖(Man
8 GlcNAc2 )(図1、A)と比較するとα−1,
6結合のManとこれにα−1,2結合したManの合
計2分子の余計なManが付加している。
This reaction is unique to yeast and does not exist in mammals such as humans. In the mnn9 mutant strain, the core-like sugar chain (Man 10 GlcNAc 2 ) having no α-1,3 linked Man at the non-reducing end of the core sugar chain (Man 10 GlcNAc 2 ) was introduced by further introducing the above-mentioned mnn1 mutation (Fig. 1, C) has been successfully produced (Hernandez et al, J. Bio
l. Chem., Vol.264, p11849 (1989)), which still produces a core-type sugar chain produced by mammalian cells such as humans (Man.
8 GlcNAc 2 ) (FIG. 1, A), α-1,
An extra Man of 2 molecules in total of 6-bonded Man and α-1,2-bonded Man is added.

【0025】前述のごとく、ヒトなど哺乳類由来の糖蛋
白質には多くの種類があり、蛋白質に付加する糖鎖の構
造も蛋白質の種類、生物種、臓器などで異なるうえ、糖
鎖の鎖長も均一ではなく、一定の鎖長分布をもった不均
一なものである(木幡陽、蛋白質核酸酵素、Vol.36, p7
75 (1991) ;竹内誠、生化学、Vol.62, p1272 (199
0))。このため、糖鎖の生物活性と糖鎖構造との相関を
明確にできないという問題点が指摘されており、均一な
鎖長をもち、かつ化学構造の明確な糖鎖およびこの糖鎖
を付加した糖蛋白質の供給が学界だけでなく産業界から
も期待されている。
As described above, there are many kinds of glycoproteins derived from mammals such as humans, and the structure of the sugar chain added to the protein differs depending on the kind of protein, species of organism, organ, etc., and also the chain length of the sugar chain. It is not uniform but heterogeneous with a constant chain length distribution (Kibatayo, Protein Nucleic Acid Enzyme, Vol.36, p7
75 (1991) ; Makoto Takeuchi, Biochemistry, Vol.62, p1272 (199
0)). Therefore, it has been pointed out that the correlation between the biological activity of the sugar chain and the sugar chain structure cannot be clarified, and a sugar chain having a uniform chain length and a clear chemical structure and this sugar chain were added. The supply of glycoproteins is expected not only from academia but also from industry.

【0026】また、上記mnn1mnn9二重変異株の
ように、ヒトと類似しているが同一ではない糖鎖構造
は、ヒトと同一の糖鎖構造でないため、医薬品などを目
的とする糖蛋白質の場合には、生体内への投与により異
種抗原として認識されてアレルギー反応など各種の副作
用を引き起こす可能性がある。
Further, as in the above-mentioned mnn1mnn9 double mutant strain, a sugar chain structure that is similar to human but not identical is not the same as that of human. Therefore, in the case of glycoprotein intended for pharmaceuticals, etc. When administered in vivo, it is recognized as a foreign antigen and may cause various side effects such as allergic reaction.

【0027】このような状況のもとで、本発明者らは、
酵母を用いてヒトなど哺乳類と同一の糖鎖構造をもつ糖
蛋白質を生産するため、鋭意努力した結果、mnn9と
は異なる糖外鎖の付加欠損変異株で、上記の目的に利用
可能と思われる変異株och1を単離することに成功し
た。この変異株は生育が温度感受性であるが、高温では
糖蛋白質(INV)に付加している糖鎖が、分泌変異株
sec18の蓄積するコア型糖鎖(Man8 GlcNA
2 )(図1、A)よりも長く、mnn9のもの(Ma
10ー13 GlcNAc2 )(図1、CおよびD)よりも
短いことを既に報告した(Nagasu et al, YEAST, Vol.
8, p535 (1992) )。
Under these circumstances, the present inventors have
As a result of diligent efforts to produce a glycoprotein having the same sugar chain structure as that of mammals such as human using yeast, it is thought that it is an addition-deficient mutant with an outer sugar chain different from mnn9 and can be used for the above purpose. The mutant strain och1 was successfully isolated. Growth of this mutant strain is temperature-sensitive, but at high temperature, the sugar chain added to glycoprotein (INV) is a core-type sugar chain (Man 8 GlcNA) accumulated by secretory mutant sec18.
c 2 ) (Fig. 1, A), longer than that of mnn9 (Ma
n 10-13 GlcNAc 2 ) (Fig. 1, C and D) has already been reported (Nagasu et al, YEAST, Vol.
8, p535 (1992)).

【0028】さらに、この変異が特定の糖鎖構造を認識
してマンノースを転移する糖転移酵素の遺伝子の変異に
よるものであることを遺伝子の単離とこのコードする蛋
白質の解析から明かにした(Nakayama et al, EMBO J.,
Vol.11, p2511 (1992) )。しかし、この変異株の生産
する糖鎖の詳細な鎖長分布や化学構造については不明の
ままであった。そこで、このOCH1遺伝子を破壊した
変異株(Δoch1)を作成し、この変異株の細胞表層
に分泌される糖蛋白質(INV)に付加しているN−結
合型糖鎖を単離生成し、その化学構造をHPLC、NM
RおよびFAB−MSなどの機器分析を駆使して分析し
た。また、単離した糖鎖をさらに特定のマンノース結合
のみを認識して加水分解する酵素(マンノシダーゼ)に
よって消化し、その生成物の構造を同様に分析した。
Furthermore, it was revealed from the isolation of the gene and the analysis of the encoded protein that this mutation was due to the mutation of the gene of glycosyltransferase that recognizes a specific sugar chain structure and transfers mannose. Nakayama et al, EMBO J.,
Vol.11, p2511 (1992)). However, the detailed chain length distribution and chemical structure of the sugar chains produced by this mutant strain remained unclear. Therefore, a mutant strain (Δoch1) in which the OCH1 gene was disrupted was prepared, and an N-linked sugar chain added to the glycoprotein (INV) secreted on the cell surface of this mutant strain was isolated and produced. Chemical structure is HPLC, NM
Analysis was performed by making full use of instrumental analysis such as R and FAB-MS. The isolated sugar chain was further digested with an enzyme (mannosidase) that recognizes and hydrolyzes only a specific mannose bond, and the structure of the product was similarly analyzed.

【0029】その結果、この遺伝子破壊株(Δoch
1)の生成するN−結合型糖鎖は、前述のコア型糖鎖
(Man8 GlcNAc2 )(図1、A)のほか、これ
にα−1,3結合した1分子のManが1または2カ所
に付加した糖鎖構造(図1、HおよびI)(Man9
lcNAc2 およびMan10GlcNAc2 )の混合物
から構成されていることが判明した。このOCH1遺伝
子破壊株の糖鎖には、mnn9変異株とは異なり、コア
型からα−1,6方向への延長や、この延長したMan
のα−1,2結合でのMan分枝などは存在しない。そ
こでこの知見をもとに、哺乳類と同一のコア型糖鎖を生
成する方法を鋭意検討した結果、OCH1遺伝子破壊株
(Δoch1)に、α−1,3結合でのManの付加に
欠損のあるmnn1変異をさらに導入することにより、
非還元末端にα−1,3結合したManを持たない均一
な所望のコア型糖鎖(Man8 GlcNAc2 )(図
1、A)のみを生成する変異株(Δoch1mnn1)
を造成できるのではないかと考えた。
As a result, this gene-disrupted strain (Δoch
The N-linked sugar chain generated in 1) includes the aforementioned core sugar chain (Man 8 GlcNAc 2 ) (FIG. 1, A), and one molecule of Man having α-1,3 linked thereto is 1 or Sugar chain structure added at two positions (Fig. 1, H and I) (Man 9 G
It was found to consist of a mixture of lcNAc 2 and Man 10 GlcNAc 2 ). Unlike the mnn9 mutant strain, the sugar chain of the OCH1 gene-disrupted strain has an extension from the core type in the α-1,6 direction and the extended Man
There is no Man branching or the like at the α-1,2 bond. Therefore, based on this finding, as a result of extensive studies on a method for producing the same core type sugar chain as that of mammals, the OCH1 gene-disrupted strain (Δoch1) has a defect in addition of Man at α-1,3 bond. By further introducing the mnn1 mutation,
A mutant strain (Δoch1mnn1) that produces only a uniform desired core sugar chain (Man 8 GlcNAc 2 ) (FIG. 1, A) that does not have α-1,3-linked Man at the non-reducing end.
I thought it could be created.

【0030】そこで、このΔoch1およびmnn1変
異を、各々単独でもつ1倍体酵母を交雑し、生成した2
倍体酵母を、減数分裂により胞子形成させて得た1倍体
酵母のなかから、Δoch1mnn1二重変異株の形質
を示すものを選別し、この二重変異株の生産するN−結
合型糖蛋白質糖鎖の化学構造を解析したところ、目的通
り、所望のコア型糖鎖(Man8 GlcNAc2 )(図
1、A)のみを生産していることが確認され、本発明を
完成するに至った。すなわち、哺乳類細胞の生産する高
マンノース型糖鎖をもつN−結合型糖蛋白質と同一のN
−結合型糖鎖を酵母で製造する方法は、基本的には下記
の工程よりなる。
Therefore, 2 were produced by crossing haploid yeasts each having the Δoch1 and mnn1 mutations alone.
Among the haploid yeasts obtained by sporulation of polyploid yeasts by meiosis, those showing the trait of Δoch1mnn1 double mutant strain were selected, and the N-linked glycoprotein produced by this double mutant strain was selected. When the chemical structure of the sugar chain was analyzed, it was confirmed that only the desired core type sugar chain (Man 8 GlcNAc 2 ) (Fig. 1, A) was produced as intended, and the present invention was completed. . That is, the same N as the N-linked glycoprotein having a high mannose type sugar chain produced by mammalian cells is produced.
-The method for producing a linked sugar chain in yeast basically comprises the following steps.

【0031】1)OCH1遺伝子破壊株(Δoch1)
とmnn1遺伝子変異株(mnn1)との交配による二
重変異株(Δoch1mnn1)の造成 2)Δoch1mnn1二重変異株の細胞表層糖蛋白質
(マンナン蛋白質)から糖鎖の単離・精製 上記のコア型糖鎖のほか、コア型糖鎖をもつヒトなど哺
乳類由来の高マンノース型糖蛋白質を生産させるために
は、さらに以下の工程が必要である。 3)上記の二重変異株を宿主として、目的の糖蛋白質を
コードする遺伝子(cDNAなど)を酵母で発現できる
プロモーターの下流に接続した遺伝子を作成し、相同組
み替えによって上記の酵母宿主の染色体に組み込むか、
或いは、プラスミドに挿入して上記宿主を形質転換する
ことにより、上記宿主の形質転換体を作成し、これを公
知の方法により培養することにより、細胞内または細胞
外に生産された目的の糖蛋白質を回収する。
1) OCH1 gene-disrupted strain (Δoch1)
Of a double mutant strain (Δoch1mnn1) by crossing with a mnn1 gene mutant strain (mnn1) 2) Isolation / purification of sugar chain from cell surface glycoprotein (mannan protein) of Δoch1mnn1 double mutant strain In order to produce a high-mannose type glycoprotein derived from mammals such as human having a core type sugar chain in addition to the chain, the following steps are further required. 3) Using the above double mutant strain as a host, a gene in which a gene (cDNA, etc.) encoding a target glycoprotein is connected downstream of a promoter capable of expressing in yeast is prepared, and homologous recombination is carried out to the chromosome of the above yeast host. Incorporate or
Alternatively, a transformant of the above-mentioned host is prepared by inserting it into a plasmid and transforming the above-mentioned host, and by culturing this by a known method, the target glycoprotein produced intracellularly or extracellularly. Collect.

【0032】[0032]

【発明の効果】本発明により、酵母を用いる遺伝子工学
的手法により、ヒトなど哺乳類細胞の生産する高マンノ
ースと同一のコア型糖鎖、あるいはこの糖鎖構造をもつ
高マンノース型糖蛋白質を多量かつ純度よく生産するこ
とができる。この変異株は、糖鎖生合成の経路上、酵母
および哺乳類細胞に共通するERでの反応産物であるコ
ア型糖鎖(Man8 GlcNAc2 )(図1、A)と同
一の化学構造をもつ糖鎖を生成する。従って、糖鎖分析
試薬として需要の大きいヒトと同一の化学構造をもつ均
一な高マンノース型糖鎖を、安定かつ多量に供給するこ
とが可能である。
INDUSTRIAL APPLICABILITY According to the present invention, a large amount of a high-mannose glycoprotein having the same core-type sugar chain as that of high-mannose produced by mammalian cells such as human, or a high-mannose-type glycoprotein having this sugar chain structure can be produced by a genetic engineering technique using yeast. It can be produced with high purity. This mutant strain has the same chemical structure as the core type sugar chain (Man 8 GlcNAc 2 ) (Fig. 1, A), which is a reaction product of ER common to yeast and mammalian cells, in the sugar chain biosynthesis pathway. It produces sugar chains. Therefore, it is possible to stably and in large quantity supply a uniform high-mannose type sugar chain having the same chemical structure as human, which is in great demand as a sugar chain analysis reagent.

【0033】また、このコア型糖鎖を中間素材として、
種々の糖転移酵素を作用させて化学構造の異なる種々の
糖鎖に変換することも可能である。さらに、本発明は、
この酵母変異株を宿主として、高マンノース型糖鎖をも
つ哺乳類由来糖蛋白質を遺伝子組み換え技術により生産
することも可能にするものである。哺乳類細胞の生産す
る高マンノース型糖鎖を含有する糖蛋白質としては、ウ
シ膵臓のリボヌクレアーゼBやヒトIgM、ウシ、ラッ
ト腎臓のγ−グルタミルトランスフェラーゼなどが報告
されている(天野純子、新生化学実験講座3、糖質I、
糖タンパク質(上)、p324、東京化学同人 (199
0))。高マンノース型糖鎖は糖鎖生合成の中間体として
重要なだけでなく、種々の生物活性の発現にも重要な寄
与をしていることが明かにされている。
Also, using this core type sugar chain as an intermediate material,
It is also possible to act on various glycosyltransferases to convert into various sugar chains having different chemical structures. Further, the present invention provides
Using this yeast mutant as a host, a mammalian-derived glycoprotein having a high mannose type sugar chain can be produced by a gene recombination technique. As glycoproteins containing high mannose type sugar chains produced by mammalian cells, bovine pancreatic ribonuclease B, human IgM, bovine and rat kidney γ-glutamyl transferase, etc. have been reported (Junko Amano, Laboratory for New Chemistry). 3, sugar I,
Glycoprotein (above), p324, Tokyo Kagaku Dojin (199
0)). It has been clarified that the high-mannose type sugar chain is not only important as an intermediate of sugar chain biosynthesis, but also importantly contributes to the expression of various biological activities.

【0034】例えば、リンパ球のhoming(Stoolman et
al, J. Cell Biol., Vol.99, 1535(1984))やTGF−
β1(transforming growth factor β1)前駆体の活性化
(Miyazono and Heodin, Nature(London), Vol.338, p1
58 (1989) )に関与していることが示唆されている。ま
た、好中球のFc受容体(FcrRIII)の高マンノース型糖
鎖は立体構造的にIgGとの結合能に影響したり、細菌
のマンノースレクチンの受容体となることが推察されて
いる(Kimberly et al, J. Immunol., Vol.142, p3923
(1989))。従って、上記のΔoch1mnn1二重変異
株は、これらの有用な高マンノース型糖鎖をもつ哺乳類
由来の糖蛋白質を遺伝子工学技術を用いて生産するため
の宿主としても利用できる。
For example, homing of lymphocytes (Stoolman et
al, J. Cell Biol., Vol.99, 1535 (1984)) and TGF-
Activation of β1 (transforming growth factor β1) precursor (Miyazono and Heodin, Nature (London), Vol.338, p1
58 (1989)). In addition, it has been speculated that the high mannose type sugar chain of Fc receptor (FcrRIII) of neutrophil may affect the binding ability to IgG in a three-dimensional structure, or may serve as a receptor for bacterial mannose lectin (Kimberly et al, J. Immunol., Vol. 142, p3923
(1989)). Therefore, the above-mentioned Δoch1mnn1 double mutant strain can also be used as a host for producing a mammalian-derived glycoprotein having these useful high-mannose type sugar chains by genetic engineering technology.

【0035】ここで得られるΔoch1mnn1二重変
異株は、工業技術院微生物工業技術研究所にそれぞれ寄
託されている。その寄託番号は次の通りである。 S.cerevisiae YN3−1Dは微工研菌寄
第13219号(FERM P−13219)および
S.cerevisiae YN4−18Aは微工研菌
寄第13220号(FERM P−13220)。
The Δoch1mnn1 double mutant strains obtained here have been deposited at the Institute of Microbial Technology, Institute of Industrial Science. The deposit number is as follows. S. S. cerevisiae YN3-1D was produced by Microindustrial Research Institute No. 13219 (FERM P-13219) and S. cerevisiae YN4-18A is Microbiology Research Institute No. 13220 (FERM P-13220).

【0036】以下、実施例により本発明を具体的に説明
するが、本発明はもちろん以下の実施例にのみ限定され
るものではない。 実施例1 OCH1遺伝子破壊株(Δoch1)の生産
するインベルターゼ(INV)の糖鎖の単離精製 (1)インベルターゼ(INV)の精製 OCH1遺伝子破壊株Saccharomyces cerevisiae YS52-
1-1B(Nakayama et al., EMBO J.,Vol.11, p2511 (199
2) )よりINVを精製した。菌体の培養は、YEPD
培地(1%酵母エキス、2%バクト−ペプトン、2%D
−グルコース)に0.3Mソルビトールを加えた培地3
l を5l 容ジャーファーメンターにいれ、25℃で行っ
た。グルコースCII−テストワコー(和光純薬製)を用
いて、グルコースが消費されたことを確認した後、ショ
糖を0.5%になるように加え、さらに4時間インキュ
べートして、INVを誘導生産させた。12l の培養液
から菌体を集め、これを10mMカリウム−リン酸緩衝
液(pH6.5)(緩衝液A)に1mMフェニルメチル
スルホニルフルオリド(PMSF)を添加した溶液に懸
濁した。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples. Example 1 Isolation and purification of sugar chain of invertase (INV) produced by OCH1 gene disrupted strain (Δoch1) (1) Purification of invertase (INV) OCH1 gene disrupted strain Saccharomyces cerevisiae YS52-
1-1B (Nakayama et al., EMBO J., Vol.11, p2511 (199
2)) was used to purify INV. The cell culture is YEPD
Medium (1% yeast extract, 2% bacto-peptone, 2% D
-Glucose) plus 0.3 M sorbitol in medium 3
1 liter was placed in a 5 liter jar fermenter and the treatment was carried out at 25 ° C. After confirming that glucose was consumed using Glucose CII-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.), sucrose was added to 0.5%, and the mixture was further incubated for 4 hours to obtain INV. Was induced to produce. Cells were collected from 12 l of the culture solution and suspended in a solution containing 10 mM potassium-phosphate buffer (pH 6.5) (buffer solution A) containing 1 mM phenylmethylsulfonyl fluoride (PMSF).

【0037】フレンチプレスを用いて細胞を破砕し、無
細胞抽出液を得た。75%飽和になるように硫酸アンモ
ニウムを加え、生じた沈澱物を除くことにより糖鎖を持
たないINVおよび大部分の夾雑蛋白質を除いた。得ら
れた上清を緩衝液Aに対して透析した後、緩衝液Aで平
衡化したDEAE-Sephadex A-50担体(ファルマシア製)を
10g加えた。上清のINV活性が全体の10%以下で
あることを確認した後、上清を除いた。INVの吸着し
た担体をカラム(2.6×35cm)に注ぎ込み、2倍
容の0.1M塩化ナトリウムを含む緩衝液Aで洗った
後、0.2M塩化ナトリウムを含む同緩衝液でINVを
溶出した。活性画分を集め、MiliQ 水に対し透析して脱
塩し、凍結乾燥した。これを少量のMiliQ 水に溶かし、
Sephadex G-200SF(ファルマシア製)を充填したカラム
(2.0×95cm)を用い、ゲルろ過を行った。0.
2M塩化ナトリウムを含む緩衝液Aで溶出し、活性画分
を集めた。このようにして精製したINV(2mg)は
電気泳動的に均一であった。
The cells were crushed using a French press to obtain a cell-free extract. Ammonium sulfate was added to 75% saturation and the resulting precipitate was removed to remove INV having no sugar chain and most of the contaminating proteins. The resulting supernatant was dialyzed against buffer A, and 10 g of DEAE-Sephadex A-50 carrier (Pharmacia) equilibrated with buffer A was added. After confirming that the INV activity of the supernatant was 10% or less of the whole, the supernatant was removed. The carrier on which INV was adsorbed was poured into a column (2.6 × 35 cm), washed with 2 times the volume of buffer A containing 0.1 M sodium chloride, and then the INV was eluted with the same buffer containing 0.2 M sodium chloride. did. The active fractions were collected, dialyzed against MiliQ water, desalted, and lyophilized. Dissolve this in a small amount of MiliQ water,
Gel filtration was performed using a column (2.0 × 95 cm) packed with Sephadex G-200SF (Pharmacia). 0.
Elution was performed with buffer A containing 2M sodium chloride, and active fractions were collected. INV (2 mg) purified in this manner was electrophoretically uniform.

【0038】(2)糖鎖の切り出しおよび糖鎖の蛍光標
識 全量 48 l の培養液から上記の方法で精製したINV
(約8mg)から、ヒドラクラブS−204(ホーネン
コーポレーション製、Code No. 800600 )を用いてヒド
ラジン分解を行い、糖鎖を切り出した。N−アセチル化
の後、2−アミノピリジンでピリジルアミノ化(PA
化)蛍光標識した(近藤昭宏ら、生化学、Vol. 60 、p6
89 (1988) )。PA化は糖質分析用キット(宝酒造製、
Code No.5000)を用いて行った。10mM酢酸アンモニ
ウム緩衝液(pH7.0)で平衡化させたToyopeal HW-
40F (東ソー製)カラム(1.0×40cm)でゲルろ
過を行って未反応の2−アミノピリジンを除き、PA化
されたオリゴ糖を得た。
(2) Cleavage of sugar chain and fluorescent labeling of sugar chain INV purified from the culture solution with a total volume of 48 l by the above method
From (about 8 mg), hydrazine was decomposed using Hydra Club S-204 (manufactured by Honen Corporation, Code No. 800600) to cut out sugar chains. After N-acetylation, pyridyl amination with 2-aminopyridine (PA
Fluorescent labeling (Akihiro Kondo et al., Biochemistry, Vol. 60, p6
89 (1988)). PA conversion is a sugar analysis kit (Takara Shuzo,
Code No. 5000). Toyopeal HW- equilibrated with 10 mM ammonium acetate buffer (pH 7.0)
Gel filtration was carried out using a 40F (manufactured by Tosoh Corporation) column (1.0 × 40 cm) to remove unreacted 2-aminopyridine to obtain PA-oligosaccharide.

【0039】(3)中性糖鎖の精製 Saccharomyces cerevisiaeの生産するINVの糖鎖には
リン酸化されているものが含まれている。これを陰イオ
ン交換カラムを用いて中性糖鎖と分離した。カラムは、
COSMOGEL QA (8×75mm)(ナカライテスク製)を
用い、あらかじめ10mM酢酸アンモニウム緩衝液(p
H8.0)を流速0.5ml/minで流して平衡化させた。
試料注入後20分までは10mM酢酸アンモニウム緩衝
液で溶出し、その後は緩衝液濃度を45mMにまで、1
5分間で直線的に上昇させた。試料注入後17分までに溶
出されてきた未吸着糖鎖を中性糖鎖として分離した。
(3) Purification of Neutral Sugar Chain INV sugar chains produced by Saccharomyces cerevisiae include phosphorylated ones. This was separated from neutral sugar chains using an anion exchange column. The columns are
Using COSMOGEL QA (8 × 75 mm) (manufactured by Nacalai Tesque), 10 mM ammonium acetate buffer (p
H8.0) was flown at a flow rate of 0.5 ml / min to equilibrate.
Elute with 10 mM ammonium acetate buffer for up to 20 minutes after sample injection, then increase buffer concentration to 45 mM, 1
It was raised linearly in 5 minutes. The unadsorbed sugar chains that had been eluted up to 17 minutes after the sample injection were separated as neutral sugar chains.

【0040】実施例2 OCH1遺伝子破壊株(Δoc
h1)の生産するインベルターゼの糖鎖の構造解析 (1)高速液体クロマトグラフィー(HPLC)による
糖鎖の分離と同定 (1)−1 アミノカラムによるオリゴ糖の分離 アミノカラムを用いたHPLCでは、オリゴ糖をそのサ
イズ(鎖長)によって分離することが可能である。そこ
で、アミノカラムを用い、Δoch1の生産するINV
の糖鎖をサイズによって分離した。カラムは、ASAHIPAK
NH2P-50(4.6×250mm)(旭化成工業製)を使
用し、溶媒は、200mM酢酸−トリエチルアミン緩衝
液(pH7.3)とアセトニトリルとの35:36の混
液(溶媒A)、200mM酢酸−トリエチルアミン緩衝
液(pH7.3)とアセトニトリルとの50:50の混
液(溶媒B)を調製した。
Example 2 OCH1 gene-disrupted strain (Δoc
Structure analysis of sugar chain of invertase produced by h1) (1) Separation and identification of sugar chain by high performance liquid chromatography (HPLC) (1) -1 Separation of oligosaccharide by amino column It is possible to separate sugars by their size (chain length). Therefore, using an amino column, INV produced by Δoch1
Sugar chains were separated according to size. Column is ASAHIPAK
NH2P-50 (4.6 × 250 mm) (manufactured by Asahi Kasei Corporation) was used, and the solvent was a mixture of 200 mM acetic acid-triethylamine buffer (pH 7.3) and acetonitrile at 35:36 (solvent A), 200 mM acetic acid- A 50:50 mixture of triethylamine buffer (pH 7.3) and acetonitrile (solvent B) was prepared.

【0041】あらかじめカラムを溶媒Aを流速1.0 m
l/min で流すことにより平衡化し、試料注入直後から溶
媒Bの割合を50分間かけて100%まで直線的に上昇
させてオリゴ糖を溶出した。結果を図3に示す。Δoc
h1の生産するINVの糖鎖は、3つの主なピーク(a
〜c)および2つの微量なピーク(d 、e )に分離でき
た。PA化グルコースオリゴマー標品(ホーネンコーポ
レーション製、Code No.800109) およびPA化高マンノ
ース糖鎖標品(宝酒造製、Code No.4117、4119、4120)
の溶出位置より、これらのピークはMan8-12GlcNAc2-PA
に相当し、大きな糖外鎖を有するような糖鎖を全く生成
していないことが分かった。
The solvent A was flown through the column in advance at a flow rate of 1.0 m.
Immediately after the injection of the sample, the proportion of solvent B was linearly increased to 100% over 50 minutes immediately after the injection of the sample to elute the oligosaccharide. The results are shown in Fig. 3. Δoc
INV sugar chain produced by h1 has three main peaks (a
~ C) and two minor peaks (d, e) could be separated. PA-modified glucose oligomer preparation (Honen Corporation, Code No. 800109) and PA-modified high-mannose sugar chain preparation (Takara Shuzo, Code No. 4117, 4119, 4120)
From the elution position of, these peaks are Man 8-12 GlcNAc 2 -PA
It was found that a sugar chain having a large outer sugar chain was not produced at all.

【0042】(1)−2 逆相カラムによるオリゴ糖の
分離 (1)−1で分離したオリゴ糖を逆相カラムを用いたH
PLCでさらに分離した。カラムは、COSMOSIL 5C18-P
(4.6×150mm)(ナカライテスク製)を用い、
溶媒は、10mMリン酸ナトリウム緩衝液(pH3.
8)(溶媒C)、溶媒Cに0.1%ブタノールを添加し
た溶媒Dを調製した。次いで、あらかじめカラムを溶媒
C: 溶媒D=95:5の混液を流速1.0ml/minで流し
て平衡化し、試料注入10分後から溶媒Dの割合を90
分間かけて100%まで直線的に上昇させた。その結果
を図4に示す。
(1) -2 Separation of oligosaccharide by reverse phase column The oligosaccharide separated in (1) -1 was subjected to H using a reverse phase column.
Further separation by PLC. Column is COSMOSIL 5C18-P
(4.6 × 150 mm) (manufactured by Nakarai Tesque),
The solvent was 10 mM sodium phosphate buffer (pH 3.
8) (Solvent C) and Solvent D prepared by adding 0.1% butanol to Solvent C were prepared. Then, a column was preliminarily equilibrated by flowing a mixed solution of solvent C: solvent D = 95: 5 at a flow rate of 1.0 ml / min, and the ratio of solvent D was adjusted to 90% after 10 minutes from sample injection.
It was raised linearly to 100% over the course of a minute. The result is shown in FIG.

【0043】図3におけるピークa〜cは逆相カラムで
もそれぞれ単一のピークとなり、均一な成分のものであ
ると考えられた。それに対し、ピークdは、2成分以上
からなると示唆された。また、糖鎖aは、Man8GlcNAc2-
PA標品(図5、構造A)と溶出位置が一致した。図3に
おけるピークa、b、cは、それぞれ糖鎖a、b、cと
して以下の構造解析を行った。ピークd、eは微量であ
るため、構造解析することはできなかった。
The peaks a to c in FIG. 3 each had a single peak even in the reversed phase column, and were considered to have uniform components. On the other hand, peak d was suggested to consist of two or more components. The sugar chain a is Man 8 GlcNAc 2-.
The elution position was the same as the PA standard (Fig. 5, structure A). Peaks a, b and c in FIG. 3 were subjected to the following structural analysis as sugar chains a, b and c, respectively. Since the amounts of peaks d and e were very small, structural analysis could not be performed.

【0044】(2)FAB−MS測定 FAB−MSは、質量分析計JMS−HX110(日本
電子社製)を用い、ニトロベンジルアルコールとグリセ
リンの6:4の混合液をマトリックスとして行った。試
料糖鎖は、アミノカラム(ASAHIPAK NH2P-50)を用いた
HPLCで脱塩を行った。溶媒はアセトニトリル:水=
50:50を使用した。1〜2μg をFAB−MS測定
に供した。
(2) FAB-MS measurement FAB-MS was carried out using a mass spectrometer JMS-HX110 (manufactured by JEOL Ltd.) with a 6: 4 mixture of nitrobenzyl alcohol and glycerin as a matrix. The sample sugar chain was desalted by HPLC using an amino column (ASAHIPAK NH2P-50). Solvent is acetonitrile: water =
50:50 was used. 1-2 μg was subjected to FAB-MS measurement.

【0045】糖鎖bについては、m/z=1962に、
糖鎖cについては、m/z=2123にそれぞれプロト
ン化分子イオンと帰属できるシグナルが観察された。ア
ミノカラムHPLCの結果から、糖鎖b、cはそれぞれ
Man9GlcNAc2-PA、Man10GlcNAc2-PA と推定されるが、こ
れらの予想分子量は、それぞれ1960.7、212
2.8である。測定値と理論値はよく一致しており、ア
ミノカラムHPLCから推定した糖鎖の大きさは正しいと考
えられる。
Regarding the sugar chain b, m / z = 1962,
Regarding the sugar chain c, signals capable of being assigned to protonated molecular ions were observed at m / z = 2123. From the results of amino column HPLC, sugar chains b and c were respectively
Man 9 GlcNAc 2 -PA and Man 10 GlcNAc 2 -PA are estimated, but their predicted molecular weights are 1960.7 and 212, respectively.
2.8. The measured value and the theoretical value are in good agreement, and the size of the sugar chain estimated from amino column HPLC is considered to be correct.

【0046】(3)α−1,2−マンノシダーゼ処理に
よる糖鎖の構造解析 α−1,2−マンノシダーゼ(Aspergillus saitoi由
来、東京大学医科学研究所、木幡教授研究室で精製され
たものを分与)を1 μunit含む0.1M酢酸ナトリウム
(pH5.0)15μl に、2pmol /μl のPA化
オリゴ糖を5μl加えて、37℃、18時間温置した。
(3) Structural analysis of sugar chain by treatment with α-1,2-mannosidase α-1,2-mannosidase (derived from Aspergillus saitoi, purified by the Institute of Medical Science, University of Tokyo, Professor Kawata's laboratory) 5 μl of 2 pmol / μl PA-oligosaccharide was added to 15 μl of 0.1 M sodium acetate (pH 5.0) containing 1 μunit of the above) and incubated at 37 ° C. for 18 hours.

【0047】反応後、沸騰水浴中で5分間加熱して反応
を停止し、遠心分離した上清をHPLC分析に使用し
た。アミノカラムHPLCで糖鎖のサイズを分析した結
果、糖鎖a、bは酵素処理後、それぞれ、Man8GlcNAc2-
PAからMan5GlcNAc2-PAの位置に、Man9GlcNAc2-PAからMa
n8GlcNAc2-PAの位置に移動した。また、糖鎖cは酵素処
理後も、大きさの変化はみられなかった。α−1,2−
マンノシダーゼ処理によって新たに生じたMan5GlcNAc2-
PA、Man8GlcNAc2-PAをそれぞれ逆相カラムHPLCで分
析した結果、両者とも1成分よりなると考えられ、Man5
GlcNAc2-PAは、市販のMan5GlcNAc2-PA標品(宝酒造製、
Code No.4117)(図5、構造B)と溶出位置が一致し
た。
After the reaction, the reaction was stopped by heating for 5 minutes in a boiling water bath, and the centrifuged supernatant was used for HPLC analysis. As a result of analyzing the size of the sugar chain by amino column HPLC, the sugar chains a and b were treated with the enzyme and then Man 8 GlcNAc 2- , respectively.
PA to Man 5 GlcNAc 2 -PA, Man 9 GlcNAc 2 -PA to Ma
It moved to the position of n 8 GlcNAc 2 -PA. In addition, the sugar chain c did not change in size even after the enzyme treatment. α-1,2-
Man 5 GlcNAc 2- newly generated by mannosidase treatment
As a result of analyzing each of PA and Man 8 GlcNAc 2 -PA by reverse phase column HPLC, both were considered to consist of one component, and Man 5
GlcNAc 2 -PA is a commercially available Man 5 GlcNAc 2 -PA standard (Takara Shuzo,
The elution position coincided with Code No. 4117) (Fig. 5, structure B).

【0048】したがって、糖鎖aは構造Aであり、α−
1,2−マンノシダーゼによって非還元末端のα−1,
2結合したマンノースが順次切断されて構造Bとなった
ことが強く示唆された。また、糖鎖bがMan9GlcNAc2-PA
からMan8GlcNAc2-PAの位置に移動したことから、これ
は、構造Aにおけるα−1,3分岐したマンノースの非
還元末端のマンノース(構造Aに示した*1 のマンノー
ス)にマンノースが1分子付加したものであることが考
えられる。糖鎖cについては、さらにα−1,6分岐し
たマンノースの非還元末端のマンノース(*2 )にマン
ノースが1分子付加したことが考えられる。
Therefore, the sugar chain a has the structure A and α-
Α-1, at the non-reducing end by 1,2-mannosidase
It was strongly suggested that the 2-bonded mannose was sequentially cleaved to form structure B. Also, the sugar chain b is Man 9 GlcNAc 2 -PA.
From the Man 8 GlcNAc 2 -PA position to mannose at the non-reducing end mannose of α-1,3-branched mannose in structure A (* 1 mannose shown in structure A). It is considered that the molecule is added. Regarding sugar chain c, it is considered that one molecule of mannose was added to mannose (* 2) at the non-reducing end of mannose further branched by α-1,6.

【0049】(4)1H−NMRによる糖鎖構造解析1 H−NMRは、核磁気共鳴装置JNM−GX400(日
本電子社製)を用いて行った。試料糖鎖は、Sephadex G
15(ファルマシア製)カラム(1×50cm)10mM
重炭酸アンモニウム溶媒を用いたゲルろ過により脱塩し
た。脱塩した糖鎖を重水に溶解し、50〜200μg を
1H−NMR測定に供した。市販のMan8GlcNAc2-PA(宝酒
造製、Code No.4119)(図5、構造A)は18μg を重
水に溶解し、1H−NMR測定に供した。その結果は、マ
ンノースの結合様式の帰属に重要なアノメリックプロト
ン領域のスペクトルを図6(a)〜(d)に示す。市販
のMan8GlcNAc2-PA標品(図5、構造A)のスペクトル
(図6(a))は糖鎖aのスペクトル(図6(b))と
は、完全に一致していた。
[0049] (4) 1 H-NMR sugar chain structure by the analysis 1 H-NMR were performed using a nuclear magnetic resonance apparatus JNM-GX400 (manufactured by Nippon Denshi). The sample sugar chain is Sephadex G
15 (Pharmacia) column (1 x 50 cm) 10 mM
It was desalted by gel filtration using ammonium bicarbonate solvent. Dissolve the desalted sugar chains in heavy water and add 50-200 μg
It was subjected to 1 H-NMR measurement. 18 μg of commercially available Man 8 GlcNAc 2 -PA (Code No. 4119, manufactured by Takara Shuzo) (FIG. 5, structure A) was dissolved in heavy water and subjected to 1 H-NMR measurement. The results are shown in FIGS. 6 (a) to 6 (d), which are spectra of the anomeric proton region which is important for the assignment of the binding mode of mannose. The spectrum of the commercially available Man 8 GlcNAc 2 -PA preparation (FIG. 5, structure A) (FIG. 6 (a)) was completely in agreement with the spectrum of sugar chain a (FIG. 6 (b)).

【0050】したがって、糖鎖aは、構造A、即ちコア
型糖鎖であることが確認できた。糖鎖bのスペクトル
(図6(c))は、構造Aに対し、α−1,3結合のマ
ンノースが1分子付加した構造であることが分かる。α
−1,2−マンノシダーゼ処理の結果からこのマンノー
スは、*1 のマンノースに結合したものと考えられる。
したがって、糖鎖bは構造C(図5)であると決定でき
た。糖鎖cのスペクトル(図6(d))はさらに構造C
に対し、α−1,3結合のマンノースが1分子付加した
構造であることが分かる。α−1,2−マンノシダーゼ
処理の結果からこのマンノースは*2 のマンノースに結
合したものと考えられる。したがって、糖鎖cは構造D
(図5)であると決定できた。
Therefore, it was confirmed that the sugar chain a was a structure A, that is, a core type sugar chain. The spectrum of sugar chain b (FIG. 6 (c)) shows that one molecule of mannose having α-1,3 bond is added to structure A. α
From the results of the -1,2-mannosidase treatment, it is considered that this mannose was bound to * 1 mannose.
Therefore, it could be determined that the sugar chain b had the structure C (FIG. 5). The spectrum of the sugar chain c (FIG. 6 (d)) shows the structure C
On the other hand, it can be seen that it has a structure in which one molecule of mannose having α-1,3 bond is added. From the result of the α-1,2-mannosidase treatment, it is considered that this mannose is bound to * 2 mannose. Therefore, the sugar chain c has the structure D
(Fig. 5).

【0051】実施例3 Δoch1変異とmnn1変異
の両方をもつ二重変異株(Δoch1mnn1)の作成 酵母のmnn1変異では、糖蛋白質のコア型糖鎖にマン
ノースのα−1,3結合したマンノースの付加する反応
が欠損している。そこで、均一なコア型糖鎖のみを生産
する株を得るため、Δoch1とmnn1の両変異をも
つ変異株を作成した。二重変異をもつ変異株の生産する
INVの分子量はΔoch1の生産するINVの分子量
よりも小さくなると期待されるため、二重変異株は、I
NVの分子量を調べることで選択した。INVの分子量
は、SDS−PAGE(4−20%SDSポリアクリル
アミドグラジエントゲル、第一化学製、Code No.12047
6)の後、抗INV抗体でウエスタンブロッティングを
行なうことにより推定した。抗INV抗体は、市販のI
NV(Sigma 製)をエンド- β-N- アセチルグルコサミ
ニダーゼH処理して大部分のN−結合型糖鎖を除き、こ
れを抗原としてウサギを用いて調製したものである(日
本バイオテスト研究所に作成委託)。
Example 3 Preparation of Double Mutant Strain (Δoch1mnn1) Having Both Δoch1 Mutation and mnn1 Mutation In the yeast mnn1 mutation, addition of mannose α-1,3-linked to mannose to the core sugar chain of glycoprotein was added. The reaction to do is missing. Therefore, in order to obtain a strain that produces only uniform core type sugar chains, a mutant strain having both Δoch1 and mnn1 mutations was prepared. Since the molecular weight of INV produced by the mutant having the double mutation is expected to be smaller than the molecular weight of INV produced by Δoch1, the double mutant is
It was selected by examining the molecular weight of NV. The molecular weight of INV was SDS-PAGE (4-20% SDS polyacrylamide gradient gel, manufactured by Daiichi Pure Chemicals, Code No. 12047).
After 6), it was estimated by performing Western blotting with an anti-INV antibody. Anti-INV antibodies are commercially available I
NV (manufactured by Sigma) was treated with endo-β-N-acetylglucosaminidase H to remove most of the N-linked sugar chains, and this was prepared using rabbits as an antigen (Japan Biotest Institute). Creation commission).

【0052】Saccharomyces cerevisiae YS57-5C(MAT
α och1::LEU2 leu2 ura3 trp1 his1 his3 )(Nakaya
ma et al., EMBO J., Vol.11, p2511 (1992)を参照し
て、本発明者らにより作成)とS. cerevisiae LB1-10B
(MATa mnn1 )(カリフォルニア大学、バークレー校、
Yeast Genetic Stock Centerより入手)を交雑したとこ
ろ、胞子の形成率は約10%であったが、生じた胞子の
うち生育したものからはoch1変異を有する株は得ら
れなかった。そこで、この生育した株から、mnn1変
異を有する株YN1−28A、YN1−28Bを選別
し、これをΔoch1と再度交雑することにした。mn
n1変異を有することの確認は、抗α−1,3−マンナ
ン抗体(C.E.Ballou, Methods Enzymol., Vol.185, p44
6 (1990)を参照、カリフォルニア大学、バークレー校、
Schekman教授研究室より分与)を用いて行った。
Saccharomyces cerevisiae YS57-5C (MAT
α och1 :: LEU2 leu2 ura3 trp1 his1 his3) (Nakaya
ma et al., EMBO J., Vol. 11, p2511 (1992), and prepared by the present inventors) and S. cerevisiae LB1-10B.
(MATa mnn1) (University of California, Berkeley,
When obtained from the Yeast Genetic Stock Center), the spore formation rate was about 10%, but no och1 mutation-bearing strain was obtained from the grown spores. Therefore, strains YN1-28A and YN1-28B having a mnn1 mutation were selected from this grown strain, and it was decided to recross with Δoch1. mn
Confirmation of having the n1 mutation was confirmed by anti-α-1,3-mannan antibody (CEBallou, Methods Enzymol., Vol.185, p44.
6 (1990), University of California, Berkeley,
(Provided by Professor Schekman's laboratory).

【0053】YN1−28A(MATa mnn1)とYS57−
5A(MAT α och1::LEU2 leu2 ura3 his1 his3 )を交
雑し、減数分裂して得た1媒体の中から、目的の二重変
異株YN3-1D(MAT α och1::LEU2 mnn1 his1 and/or his
3 )を得た(図7)。また、YN1−28BとYS57
−2C(MATa och1::LEU2 leu2 ura3 trp1 his1 his3)
からも同様に二重変異株YN4−18A(MAT α och
1::LEU2 mnn1)を得ることができた。
YN1-28A (MATa mnn1) and YS57-
5A (MAT α och1 :: LEU2 leu2 ura3 his1 his3) was crossed and meiotically obtained, and the target double mutant strain YN3-1D (MAT α och1 :: LEU2 mnn1 his1 and / or his
3) was obtained (Fig. 7). In addition, YN1-28B and YS57
-2C (MATa och1 :: LEU2 leu2 ura3 trp1 his1 his3)
The double mutant strain YN4-18A (MAT α och
1 :: LEU2 mnn1) was obtained.

【0054】実施例4 Δoch1mnn1二重変異株
の生産するマンナン蛋白質糖鎖の単離精製 (1)Δoch1mnn1二重変異株の生産するマンナ
ン蛋白質の単離 S. cerevisiae YN3−1Dの菌体より細胞表層のマン
ナン蛋白質を分離した(S.Peat et al., J.Chem.Soc.,
p29 (1961))。YEPD培地に0.3Mソルビトールを
加えた培地50mlを500ml容三角フラスコに入
れ、25℃で24時間、培養し、菌体を遠心分離によっ
て集め、10mlの0.1Mコハク酸ナトリウム緩衝液
(pH7.0)に懸濁し、オートクレーブ中で121
℃、2時間加熱した。冷却後、固形物を遠心分離で集
め、もう1度、10mlの水を加えて同様に加熱した。
Example 4 Isolation and Purification of Mannan Protein Sugar Chain Produced by Δoch1mnn1 Double Mutant Strain (1) Isolation of Mannan Protein Produced by Δoch1mnn1 Double Mutant Strains of S. cerevisiae YN3-1D Was isolated from mannan protein (S. Peat et al., J. Chem. Soc.,
p29 (1961)). 50 ml of YEPD medium plus 0.3 M sorbitol was placed in a 500 ml Erlenmeyer flask, cultured at 25 ° C. for 24 hours, the cells were collected by centrifugation, and 10 ml of 0.1 M sodium succinate buffer (pH 7. 0) and suspended in an autoclave for 121
Heated at ℃ for 2 hours. After cooling, the solid was collected by centrifugation, 10 ml of water was added again, and the mixture was similarly heated.

【0055】全抽出液を合わせて、3倍量のエタノール
中に注加した。生じた白色の沈澱物を乾燥させ、水に溶
かし、脱塩した。アガロース固定化ConA(ホーネンコー
ポレーション製、Code No.800259)を充填したカラム
(1×10cm)を、0.2M塩化ナトリウム、1mM
塩化マンガン、1mM塩化カルシウムを含む10mMト
リス塩酸緩衝液(pH7.3)で平衡化し、脱塩試料を
これに供した。吸着したマンナン蛋白質を0.1M α
−メチル−D−マンノシドを含む0.1M塩化ナトリウ
ム溶液で溶出し、脱塩後、凍結乾燥し、これをマンナン
蛋白質として使用した(収量5mg)
All extracts were combined and poured into 3 volumes of ethanol. The resulting white precipitate was dried, dissolved in water and desalted. A column (1 × 10 cm) packed with agarose-immobilized ConA (Honen Corporation, Code No. 800259) was loaded with 0.2 M sodium chloride, 1 mM.
Equilibration was performed with 10 mM Tris-HCl buffer (pH 7.3) containing manganese chloride and 1 mM calcium chloride, and the desalted sample was subjected to this. Adsorbed mannan protein to 0.1M α
Elution with a 0.1 M sodium chloride solution containing -methyl-D-mannoside, desalting, and lyophilization were used as mannan protein (yield 5 mg).

【0056】(2)グリコペプチダーゼA処理による糖
鎖の切りだし アーモンド由来のグリコペプチダーゼA(生化学工業
製、Code No.100676)10munit を0.1M酢酸ナトリウ
ム緩衝液(pH5.0)500μl に溶かしたものを酵
素溶液として調製した。1mgのマンナン蛋白質を10
μl の同緩衝液に溶解し、これに酵素溶液を3μl 添加
した。37℃、18時間温置した後、沸騰水浴中で5分
間加熱して反応を停止し、遠心分離した上清を凍結乾燥
した。切り出した糖鎖は実施例2−(3)に示した方法
でPA化標識した。
(2) Extraction of sugar chain by treatment with glycopeptidase A 10 munit of almond-derived glycopeptidase A (Seikagaku Corporation, Code No. 100676) was dissolved in 500 μl of 0.1 M sodium acetate buffer (pH 5.0). Was prepared as an enzyme solution. 10 mg of 1 mg mannan protein
It was dissolved in μl of the same buffer, and 3 μl of the enzyme solution was added thereto. After incubation at 37 ° C. for 18 hours, the reaction was stopped by heating in a boiling water bath for 5 minutes, and the centrifuged supernatant was freeze-dried. The excised sugar chain was labeled with PA by the method shown in Example 2- (3).

【0057】実施例5 Δoch1mnn1二重変異株
の生産するマンナン蛋白質糖鎖の構造解析 (1)高速液体クロマトグラフィー(HPLC)による
糖鎖の分離と同定 実施例2と同様にHPLC分析を行った。 (1)−1 アミノカラムによるオリゴ糖の分析 アミノカラムによる分析の結果を図8に示す。Δoch
1mnn1二重変異株の生産するマンナン蛋白質の糖鎖
は、アミノカラムでは主に1つのピークであった。この
ピークはMan8GlcNAc2-PA標品(宝酒造製、Code No.411
9)(図5、構造A)の溶出位置と一致した。
Example 5 Structural Analysis of Mannan Protein Sugar Chain Produced by Δoch1mnn1 Double Mutant (1) Separation and Identification of Sugar Chain by High Performance Liquid Chromatography (HPLC) HPLC analysis was carried out in the same manner as in Example 2. (1) -1 Analysis of oligosaccharides by amino column The results of the amino column analysis are shown in FIG. Δoch
The sugar chain of the mannan protein produced by the 1mnn1 double mutant strain had mainly one peak on the amino column. This peak is a Man 8 GlcNAc 2 -PA standard (Takara Shuzo, Code No. 411
9) (FIG. 5, structure A).

【0058】(1)−2 逆相カラムによるオリゴ糖の
分離 図8で検出されたオリゴ糖を逆相カラムを用いたHPLCで
分析した。その結果、図9に示すように、逆相カラムで
も単一のピークとなり、Man8GlcNAc2-PA標品(図5、構
造A)の溶出位置と一致した。
(1) -2 Separation of oligosaccharides by reverse phase column The oligosaccharides detected in Fig. 8 were analyzed by HPLC using a reverse phase column. As a result, as shown in FIG. 9, a single peak was obtained even on the reversed phase column, which coincided with the elution position of the Man 8 GlcNAc 2 -PA standard (FIG. 5, structure A).

【0059】(2)α−1,2−マンノシダーゼ処理に
よる糖鎖の構造解析 実施例2と同様にα−1,2−マンノシダーゼ処理を行
った。アミノカラムを用いたHPLC分析の結果、酵素
処理によってMan8GlcNAc2-PAからMan5GlcNAc2-PAの位置
に移動した。逆相カラムHPLCでは、反応生成物の溶
出位置はMan5GlcNAc2-PA標識(宝酒造、Code No.4117)
(図5、構造B)と一致した。したがって、Δoch1
mnn1の二重変異株S. cerevisiae YN3−1Dの生
産するマンナン蛋白質のアスパラギン結合型糖鎖は主と
してMan8GlcNAc2 のコア型糖鎖の構造であり、酵母の生
産する糖鎖に特有のα−1,3結合した末端のマンノー
スは存在しないことが分かった。
(2) Structural analysis of sugar chain by α-1,2-mannosidase treatment α-1,2-mannosidase treatment was carried out in the same manner as in Example 2. As a result of HPLC analysis using an amino column, it was moved from Man 8 GlcNAc 2 -PA to Man 5 GlcNAc 2 -PA by enzymatic treatment. In reversed-phase column HPLC, the elution position of the reaction product was labeled with Man 5 GlcNAc 2 -PA (Takara Shuzo, Code No. 4117).
(FIG. 5, structure B). Therefore, Δoch1
The asparagine-linked sugar chain of the mannan protein produced by the double mutant of mnn1 S. cerevisiae YN3-1D is mainly the structure of the core sugar chain of Man 8 GlcNAc 2 and is α-specific to the sugar chain produced by yeast. It was found that there was no mannose at the end bound by 1,3.

【0060】(3)1H−NMRによる糖鎖構造解析 実施例2(4)と同様に、1H−NMRによるΔoch1
mnn1二重変異株の生産するマンナ蛋白質の糖鎖の構
造解析を行った。市販のMan8ClcNAc2-PA(図5、構造
A)のスペクトルとΔoch1mnn1二重変異株の生
産するマンナン蛋白質のAsn結合型糖鎖のスペクトル
とは完全に一致していた。従って、同糖鎖はコア型糖鎖
であることが確認された。
(3) Sugar chain structure analysis by 1 H-NMR In the same manner as in Example 2 (4), Δoch1 by 1 H-NMR.
The structure of the sugar chain of the manna protein produced by the mnn1 double mutant strain was analyzed. The spectrum of the commercially available Man 8 ClcNAc 2 -PA (FIG. 5, structure A) and the spectrum of the Asn-linked sugar chain of the mannan protein produced by the Δoch1mnn1 double mutant strain were completely in agreement. Therefore, it was confirmed that the sugar chain is a core type sugar chain.

【図面の簡単な説明】[Brief description of drawings]

【図1】酵母における糖外鎖の生合成経路である。FIG. 1 is a biosynthetic pathway of an outer sugar chain in yeast.

【図2】パン酵母のマンナン蛋白質糖鎖の構造およびm
nn変異株における欠損部位である。
FIG. 2 Structure and m of sugar chain of mannan protein of baker's yeast
It is a deletion site in the nn mutant strain.

【図3】Δoch1の生産するインベルターゼの糖鎖の
アミノカラムによる分離(矢印はグルコースオリゴマー
の溶出位置)。
FIG. 3 Separation of sugar chains of invertase produced by Δoch1 by amino column (arrow indicates elution position of glucose oligomer).

【図4】Δoch1の生産するインベルターゼの糖鎖の
逆相カラムによる分離(a〜d:図3におけるピークa
〜dをそれぞれ分取したものに対応する)。
FIG. 4 Separation of sugar chains of invertase produced by Δoch1 by reversed-phase column (ad: peak a in FIG. 3)
Corresponds to each of ~ d).

【図5】Δoch1の生産するインベルターゼの糖鎖お
よび標準品の糖鎖の構造。
FIG. 5 shows structures of sugar chains of invertase produced by Δoch1 and standard sugar chains.

【図6】Δoch1の生産するインベルターゼの糖鎖お
よび標準品の糖鎖の1H−NMRスペクトル。
FIG. 6 is a 1 H-NMR spectrum of a sugar chain of invertase produced by Δoch1 and a sugar chain of a standard product.

【図7】Saccharomyces cerevisiae変異株の生産するイ
ンベルターゼのSDS−PAGEパターン(抗インベル
ターゼ抗体を用いたウエスタンブロッテイング)。
FIG. 7 is an SDS-PAGE pattern of invertase produced by a Saccharomyces cerevisiae mutant strain (western blotting using an anti-invertase antibody).

【図8】Δoch1mnn1の生産するマンナン蛋白質
糖鎖のアミノ化カラムによる分離(矢印はMan8GlcNAc2-
PAの溶出位置)。
FIG. 8: Separation of mannan protein sugar chains produced by Δoch1mnn1 by an amination column (arrows indicate Man 8 GlcNAc 2
PA elution position).

【図9】Δoch1mnn1の生産するマンナン蛋白質
の糖鎖の逆相HPLCによる分離(矢印はMan8GlcNAc2-
PA標品(宝酒造CodeNo.4119)の溶出位置。
FIG. 9: Separation of sugar chain of mannan protein produced by Δoch1mnn1 by reverse phase HPLC (arrow indicates Man8GlcNAc2-
Elution position of PA standard (Takara Shuzo Code No. 4119).

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:865) (C12P 21/00 C12R 1:865) (72)発明者 中西 容子 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 仲山 賢一 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 田中 淳志 静岡県富士市鮫島2番地の1 旭化成工業 株式会社内Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C12R 1: 865) (C12P 21/00 C12R 1: 865) (72) Inventor Yoko Nakanishi 1st East, Tsukuba City, Ibaraki Prefecture No. 1 Industrial Technology Institute, Institute of Chemical Research (72) Inventor Kenichi Nakayama 1-1, Higashi Tsukuba, Ibaraki Prefecture Industrial Technology Institute, Institute of Chemical Technology (72) Inventor Atsushi Tanaka 1 Asahi Kasei Industrial Co., Ltd., Samejima, Fuji City, Shizuoka Prefecture In the company

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酵母細胞の生産するアスパラギン結合型
糖蛋白質糖鎖の構造が化1で表されるマンノース8分子
とN−アセチルグルコサミン2分子からなるオリゴ糖鎖
であるサッカロミセス属の酵母。 【化1】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
1. A yeast of the genus Saccharomyces, which is an oligosaccharide chain consisting of 8 molecules of mannose and 2 molecules of N-acetylglucosamine represented by the formula 1 in which the structure of an asparagine-binding glycoprotein sugar chain produced by a yeast cell is shown. [Chemical 1] (In the formula, M represents mannose and GN represents N-acetylglucosamine)
【請求項2】 請求項1記載のサッカロミセス属酵母が
Saccharomyces cerevisiaeに属し、OCH1遺伝子を破
壊したoch1変異(Δoch1)とmnn1変異の両
方の変異形質を持つSaccharomyces cerevisiaeに属する
酵母変異株。
2. The yeast of the genus Saccharomyces according to claim 1.
A yeast mutant strain that belongs to Saccharomyces cerevisiae and that has both och1 mutation (Δoch1) and mnn1 mutation, which are mutants of OCH1 gene, and belong to Saccharomyces cerevisiae.
【請求項3】 請求項2記載のSaccharomyces cerevisi
aeがYN3−1D株叉はYN4−18A株であるSaccha
romyces cerevisiaeに属する酵母変異株。
3. The Saccharomyces cerevisi according to claim 2.
ae is YN3-1D strain or YN4-18A strain Saccha
A yeast mutant belonging to romyces cerevisiae.
【請求項4】 請求項1乃至請求項3のいずれかの項記
載の酵母を培地に培養して、培養物から酵母菌体を回収
し、この菌体から化2で示されるオリゴ糖鎖を回収する
ことを特徴とする化2のオリゴ糖鎖の製造法。 【化2】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
4. The yeast according to any one of claims 1 to 3 is cultivated in a medium, yeast cells are recovered from the culture, and the oligosaccharide chain represented by Chemical formula 2 is recovered from the cells. A method for producing an oligosaccharide chain of Chemical formula 2, which is characterized by recovering [Chemical 2] (In the formula, M represents mannose and GN represents N-acetylglucosamine)
【請求項5】 請求項1乃至請求項3のいずれかの項記
載の酵母を培養して、培養物から、化3で示されるオリ
ゴ糖鎖をアスパラギン結合型糖鎖として含有する宿主酵
母由来の糖蛋白質を回収することを特徴とする化3のオ
リゴ糖を含む酵母由来の糖蛋白質の製造法。 【化3】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
5. A yeast derived from a host yeast containing the oligosaccharide chain represented by Chemical formula 3 as an asparagine-linked sugar chain, which is obtained by culturing the yeast according to any one of claims 1 to 3. A method for producing a yeast-derived glycoprotein containing the oligosaccharide of Chemical formula 3, which comprises recovering the glycoprotein. [Chemical 3] (In the formula, M represents mannose and GN represents N-acetylglucosamine)
【請求項6】 請求項1乃至請求項3のいずれかの項記
載の酵母を宿主として、哺乳類由来のアスパラギン結合
型糖蛋白質をコードする遺伝子を発現させ、発現された
糖蛋白質のアスパラギン結合型糖鎖の構造が化4で示さ
れるオリゴ糖鎖であることを特徴とする化4記載のオリ
ゴ糖を含む哺乳類由来の糖蛋白質の製造法。 【化4】 (式中、Mはマンノース、GNはN−アセチルグルコサ
ミンを示す)
6. Using the yeast according to any one of claims 1 to 3 as a host, a gene encoding a mammalian-derived asparagine-binding glycoprotein is expressed, and the expressed glycoprotein asparagine-binding sugar is expressed. A method for producing a mammalian-derived glycoprotein containing an oligosaccharide according to Chemical formula 4, wherein the chain structure is an oligosaccharide chain represented by Chemical formula 4. [Chemical 4] (In the formula, M represents mannose and GN represents N-acetylglucosamine)
JP29746992A 1992-11-06 1992-11-06 Production method of mammalian high mannose glycoprotein sugar chain by yeast Expired - Lifetime JP3091851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29746992A JP3091851B2 (en) 1992-11-06 1992-11-06 Production method of mammalian high mannose glycoprotein sugar chain by yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29746992A JP3091851B2 (en) 1992-11-06 1992-11-06 Production method of mammalian high mannose glycoprotein sugar chain by yeast

Publications (2)

Publication Number Publication Date
JPH06277086A true JPH06277086A (en) 1994-10-04
JP3091851B2 JP3091851B2 (en) 2000-09-25

Family

ID=17846903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29746992A Expired - Lifetime JP3091851B2 (en) 1992-11-06 1992-11-06 Production method of mammalian high mannose glycoprotein sugar chain by yeast

Country Status (1)

Country Link
JP (1) JP3091851B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369692A (en) * 2001-06-14 2002-12-24 National Institute Of Advanced Industrial & Technology Glycoprotein and method for producing the same
KR100473658B1 (en) * 2002-10-25 2005-03-10 드림바이오젠 주식회사 Transformed yeast system for developing therapeutic hybrid protein drug by site-specific modification
KR100473659B1 (en) * 2002-10-25 2005-03-15 드림바이오젠 주식회사 Process for preparing hybrid protein replaced by available polymer at the saccharide chain by site-specific modification
JP2005514021A (en) * 2001-12-27 2005-05-19 グライコフィ, インコーポレイテッド Methods for manipulating mammalian carbohydrate structures
DE10028492B4 (en) * 2000-06-08 2008-09-25 Ebm-Papst Mulfingen Gmbh & Co. Kg System for controlling a mains AC synchronous motor
JP2010517537A (en) * 2007-02-02 2010-05-27 グローブイミューン, インコーポレイテッド Method for generating a yeast-based vaccine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028492B4 (en) * 2000-06-08 2008-09-25 Ebm-Papst Mulfingen Gmbh & Co. Kg System for controlling a mains AC synchronous motor
JP2002369692A (en) * 2001-06-14 2002-12-24 National Institute Of Advanced Industrial & Technology Glycoprotein and method for producing the same
JP4742191B2 (en) * 2001-06-14 2011-08-10 独立行政法人産業技術総合研究所 Glycoprotein and method for producing the same
JP2005514021A (en) * 2001-12-27 2005-05-19 グライコフィ, インコーポレイテッド Methods for manipulating mammalian carbohydrate structures
JP2009273474A (en) * 2001-12-27 2009-11-26 Glycofi Inc Method for engineering mammalian-type carbohydrate structure
JP2011078431A (en) * 2001-12-27 2011-04-21 Glycofi Inc Method to engineer mammalian-type carbohydrate structure
JP4820055B2 (en) * 2001-12-27 2011-11-24 グライコフィ, インコーポレイテッド Methods for manipulating mammalian carbohydrate structures
KR100473658B1 (en) * 2002-10-25 2005-03-10 드림바이오젠 주식회사 Transformed yeast system for developing therapeutic hybrid protein drug by site-specific modification
KR100473659B1 (en) * 2002-10-25 2005-03-15 드림바이오젠 주식회사 Process for preparing hybrid protein replaced by available polymer at the saccharide chain by site-specific modification
JP2010517537A (en) * 2007-02-02 2010-05-27 グローブイミューン, インコーポレイテッド Method for generating a yeast-based vaccine
US9066893B2 (en) 2007-02-02 2015-06-30 GlobelImmune, Inc. Yeast-based vaccines
US9549970B2 (en) 2007-02-02 2017-01-24 Globeimmune, Inc. Methods for producing yeast-based vaccines

Also Published As

Publication number Publication date
JP3091851B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
AU784960B2 (en) Novel yeast variants and process for producing glycoprotein containing mammalian type sugar chain
EP1505149B1 (en) Methylotroph yeast producing mammalian type sugar chain
Nakanishi-Shindo et al. Structure of the N-linked oligosaccharides that show the complete loss of alpha-1, 6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae.
JP4794455B2 (en) Modification of protein glycosylation in methylotrophic yeast
EP1408117B1 (en) Glycoprotein and process for producing the same
CN102648286A (en) Method for producing proteins in pichia pastoris that lack detectable cross binding activity to antibodies against host cell antigens
US8936918B2 (en) Yeast strain for the production of proteins with modified O-glycosylation
JP3091851B2 (en) Production method of mammalian high mannose glycoprotein sugar chain by yeast
JPH08336387A (en) Sugar chain-extended protein derived from pichia yeast and dna of the protein
JP2770010B2 (en) Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
JP4258662B2 (en) Yeast transformant introduced with O-fucose-binding protein synthesis gene
CN1918297B (en) Hansenula polymorpha gene coding for alpha 1,6-mannosyltransferase and process for the production of recombinant glycoproteins with hansenula polymorpha mutant strain deficient in the same
JPH09261A (en) Production of glycoprotein
Takeuchi et al. Characterization of an alg2 mutant of the zygomycete fungus Rhizomucor pusillus
US5854031A (en) Mannose-1-phosphate transferase gene from yeast and its use for producing phosphate-containing acidic sugars
JP2826636B2 (en) Method for producing phosphate-containing acidic sugar chain using yeast mannose-1-phosphotransferase gene
Berends et al. Identification of alg3 in the mushroom-forming fungus Schizophyllum commune and analysis of the Δ alg3 knockout mutant
JP2024509895A (en) Genetically engineered filamentous fungi for the production of exogenous proteins with low or no N-linked glycosylation
WO2004003205A1 (en) Hansenula polymorpha mutant strains with defect in outer chain biosynthesis and the production of recombinant glycoproteins using the same strains
Cremata et al. Conventional and non-conventional yeasts in modern biotechnology
JPH093097A (en) Saccharide chain elongation protein derived from genus pichia, dna coding the same protein, modified dna and transformant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term