JPH08335721A - Method of manufacturing porous thermal generator element - Google Patents

Method of manufacturing porous thermal generator element

Info

Publication number
JPH08335721A
JPH08335721A JP7141954A JP14195495A JPH08335721A JP H08335721 A JPH08335721 A JP H08335721A JP 7141954 A JP7141954 A JP 7141954A JP 14195495 A JP14195495 A JP 14195495A JP H08335721 A JPH08335721 A JP H08335721A
Authority
JP
Japan
Prior art keywords
powder
iron silicide
carbon powder
grains
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7141954A
Other languages
Japanese (ja)
Inventor
Masayuki Kato
雅之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP7141954A priority Critical patent/JPH08335721A/en
Publication of JPH08335721A publication Critical patent/JPH08335721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain high generating output by sintering a mixture of spherical iron silicide powder and carbon powder, and turning the phase of the sintered body to a β-phase by heat-treatment and simultaneously removing carbon powder to produce a porous sintered body. CONSTITUTION: Thermal generator material powder, that comprises spherical iron silicide powder 1 mixed uniformly with carbon powder 2 with the grain size of 1/10 of it, is plasma sintered and compressed. When the carbon powder 2 is kneaded, the grains of the carbon powder 2 interposing between the grains of the spherical iron silicide powder 1 are moved to pores 3 by the pressure of sintering and the grains of the iron silicide 1 are not crushed. Neck As that are contacting parts between the grains of the iron silicide 1 are grown enough, the internal resistance of the material is decreased and high generating output is obtained. Then, heat treating the compressed material under a predetermined condition, it is turned to βphase that shown the thermal generator characteristic and the grains of the carbon powder 2 between the grains of the spherical iron silicide powder 1 are burned completely by the heattreatment and the pores 3 are formed in burned parts. As the spherical iron silicide powder 1 is used, the porous structure, in which the pores 3 are uniformly distributed, is formed and high responsiveness to heat is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電対などに用いられ
る熱発電素子の製造方法に係り、特に、ポーラス状(多
孔質)をした熱発電素子の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric generator used for a thermocouple or the like, and more particularly to a method for manufacturing a porous thermoelectric generator.

【0002】[0002]

【従来の技術】近年、熱から直接電気を発生する熱発電
素子としては、高温大気中で安定で、かつ安価に製造で
きることから珪化鉄(FeSi2 )を原料として用いた
FeSi2 熱発電素子が主流となりつつある。
2. Description of the Related Art In recent years, as a thermoelectric generator that directly generates electricity from heat, an FeSi 2 thermoelectric generator using iron silicide (FeSi 2 ) as a raw material has been proposed because it is stable in a high temperature atmosphere and can be manufactured at low cost. It is becoming mainstream.

【0003】このFeSi2 熱発電素子は、原料となる
FeとSiを任意の割合で混合し、これを高周波炉など
で加熱溶融すると共に、半導体特性を向上させるため、
MnやCoの添加物を添加しP型あるいはN型に調整し
た後、冷却してインゴット化し、その後、このインゴッ
トを粉砕して粉末化し、有機バインダと共に、型で所定
の形状にプレス成形した後これをα相からβ相に相転移
すべく所定の炉で長時間、焼結熱処理して製造されてい
る。しかしながら、このような方法で得られたFeSi
2 熱発電素子は、材料が密に集合したバルク(塊)体で
あるため、形状の自由度が低い、熱に対する応答性が悪
い等といった欠点を有しており、現状では実用性が低い
ものである。
In this FeSi 2 thermoelectric generator, raw materials Fe and Si are mixed at an arbitrary ratio, and the mixture is heated and melted in a high-frequency furnace and the semiconductor characteristics are improved.
After adjusting to a P-type or N-type by adding Mn or Co additive, it is cooled to be an ingot, and then this ingot is pulverized into powder and press-molded with an organic binder into a predetermined shape with a mold. It is manufactured by sintering heat treatment for a long time in a predetermined furnace in order to change the phase from the α phase to the β phase. However, FeSi obtained by such a method
2 thermoelectric elements, since the material is densely assembled bulk (mass) body, a low degree of freedom in shape, responsiveness to heat has a drawback bad like, having a low practical at present Is.

【0004】そのため、最近では、このようなバルク体
に代わり、焼結体内部に微細且つ均一な多数の孔が連続
したポーラス(多孔質)状のFeSi2 熱発電素子が注
目されている。このポーラス状の熱発電素子は多孔質で
通気性を有することから、例えば、この焼結体に可燃性
ガスを流し、その焼結体表面のガス出口で可燃性ガスを
燃焼させることで、焼結体のガス入口部と出口部で大き
な温度差が得られ、これによって熱に対する高い応答性
及び優れた発電効率が期待されている。
Therefore, in recent years, instead of such a bulk body, a porous FeSi 2 thermoelectric power generating element in which a large number of fine and uniform pores are continuously formed inside the sintered body has attracted attention. Since this porous thermoelectric generator is porous and has gas permeability, for example, by burning a flammable gas in this sintered body and burning the combustible gas at the gas outlet on the surface of the sintered body, firing is performed. A large temperature difference is obtained between the gas inlet and outlet of the bonded body, which is expected to have high responsiveness to heat and excellent power generation efficiency.

【0005】[0005]

【発明が解決しようとする課題】ところで、このポーラ
ス状の熱発電素子は球状の材料粉末を焼結してなるもの
であるため、図3に示すように、隣り合う粉末a同士の
接合部A(以下、ネックという。)が点接合になりやす
く、これによって焼結体内部抵抗が増加してしまい、大
きな温度差が得られるわりには、充分な発電出力が得ら
れ難いといった欠点があった。そのため、この焼結体内
部抵抗を減少させるべくネックAを成長させるために、
さらに焼結温度を上げて焼結を進行させることも考えら
れるが、そうすると、図4に示すように、焼結時の圧力
によりネックAが成長する前に球状の材料粉末a自体が
潰れてしまって焼結体全体の気孔率が大きく減少してし
まい熱に対する応答性が低下してしまうといった問題が
ある。さらに、また、常圧において焼結温度を上げるこ
とも考えられるが、このような常圧焼結では図5に示す
ように、焼結が進行するに従って焼結体が変形してしま
い、良好な焼結体を得ることができないといった問題が
ある。
By the way, since this porous thermoelectric generator is formed by sintering a spherical material powder, as shown in FIG. (Hereinafter, it is referred to as a neck.) Is likely to be point-bonded, which increases the internal resistance of the sintered body, and a large temperature difference is obtained, but it is difficult to obtain a sufficient power generation output. Therefore, in order to grow the neck A to reduce the internal resistance of the sintered body,
It is possible to further raise the sintering temperature to proceed with the sintering, but then, as shown in FIG. 4, the spherical material powder a itself is crushed before the neck A grows due to the pressure during the sintering. Therefore, there is a problem that the porosity of the entire sintered body is significantly reduced and the response to heat is reduced. Furthermore, although it is conceivable to raise the sintering temperature under normal pressure, such normal pressure sintering causes deformation of the sintered body as the sintering proceeds, as shown in FIG. There is a problem that a sintered body cannot be obtained.

【0006】そこで、本発明は上記課題を解決するため
に案出されたものであり、その目的は、焼結過程におい
て球状粉末を潰すことなくネックを成長させて充分な発
電出力が得られる新規なポーラス状熱発電素子の製造方
法を提供するものである。
Therefore, the present invention was devised to solve the above-mentioned problems, and an object of the present invention is to obtain a sufficient power generation output by growing a neck without crushing spherical powder during the sintering process. The present invention provides a method for manufacturing a porous thermoelectric generator.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、P型あるいはN型に調整された球状の珪化
鉄粉末中に、粒径がこの珪化鉄粉末の約1/10程度の
炭素粉末を均一に混合した熱発電材料粉末を形成し、こ
の材料粉末を所定の型に充填した後、プラズマ焼結、ま
たはホットプレスして焼結し、その後、この焼結体を熱
処理してβ相化すると同時にその気孔中に存在している
炭素粉末を除去して多孔質化したものであり、さらに、
上記珪化鉄粉末として、粒径が150〜250μmのも
のを用い、かつ、この珪化鉄粉末と上記炭素粉末の混合
比を体積比でそれぞれ60〜70対40〜30としたも
のである。
In order to achieve the above object, the present invention provides a spherical iron silicide powder adjusted to P type or N type with a particle size of about 1/10 of this iron silicide powder. Form a thermoelectric power material powder that is uniformly mixed with the carbon powder, and fill the material powder with a predetermined mold, then sinter by plasma sintering or hot pressing, and then heat-treat this sintered body. The carbon powder existing in the pores is removed at the same time as the β phase is formed, and the carbon powder is made porous.
The iron silicide powder having a particle size of 150 to 250 μm is used, and the mixing ratio of the iron silicide powder to the carbon powder is 60 to 70:40 to 30 by volume, respectively.

【0008】本発明において球状の珪化鉄粉末を用いる
理由は、多孔質を形成する気孔となる空間が焼結体全体
に均一に形成されるようにするためである。また、この
球状の珪化鉄粉末に炭素粉末を混合する理由としては、
炭素粉末は、焼結時は球状の珪化鉄粉末間の気孔に存在
して珪化鉄粉末が潰れるのを防ぐと共に、熱処理に消滅
する性質を有するからであり、この条件に当てはまる材
料としては現在、炭素材料が最適である。すなわち、本
発明の焼結は通常、約1180℃の高温で、かつ、0.
4Torr以下の減圧下で通常行われるため、炭素材料
は燃焼を起こさずに、球状粉末間に存在しネック成長に
伴う球の圧力による変形を防ぐ働きを発揮することにな
る。
The reason why the spherical iron silicide powder is used in the present invention is to ensure that pores forming pores are uniformly formed in the entire sintered body. Further, the reason for mixing the spherical iron silicide powder with the carbon powder is as follows.
This is because the carbon powder has the property of existing in the pores between the spherical iron silicide powder during sintering and preventing the iron silicide powder from being crushed, and also having the property of disappearing in the heat treatment, and as a material applicable to this condition, at present, Carbon materials are the best. That is, the sintering of the present invention is usually at a high temperature of about 1180 ° C.
Since it is usually performed under a reduced pressure of 4 Torr or less, the carbon material does not burn, and is present between spherical powders to exert a function of preventing deformation due to the pressure of the spheres due to neck growth.

【0009】また、この炭素材料粉末の粒径は珪化鉄粉
末の約1/10程度、例えば、珪化鉄粉末の粒径が15
0〜250μmの場合、10〜30μm程度であれば、
FeSi2 球状粉末同士の接点が存在するよう炭素材料粉末
を良好に流動させることが可能となる。すなわち、炭素
材料粉末の粒径が大き過ぎると、焼結後に、FeSi2 球状
粉末同士間に残存しやすくなってしまい、また、小さす
ぎるものは材料のコストが高価になってしまうからであ
る。また、この珪化鉄粉末と炭素粉末の混合比を体積比
で60〜70対40〜30とすることにより、良好な多
孔質体が得られる。
Further, the particle size of the carbon material powder is about 1/10 of the iron silicide powder, for example, the particle size of the iron silicide powder is 15
In the case of 0 to 250 μm, if it is about 10 to 30 μm,
The carbon material powder can be satisfactorily fluidized so that the contact points between the FeSi 2 spherical powders exist. That is, if the particle size of the carbon material powder is too large, it tends to remain between the FeSi 2 spherical powders after sintering, and if it is too small, the cost of the material becomes expensive. A good porous body can be obtained by adjusting the volume ratio of the iron silicide powder and the carbon powder to be 60 to 70 to 40 to 30.

【0010】[0010]

【作用】本発明は上述したように、球状の珪化鉄粉末中
に、粒径がこの珪化鉄粉末の約1/10程度の炭素粉末
を均一に混合した熱発電材料粉末を用いて、これをプラ
ズマ焼結、またはホットプレスして固形化することによ
り、球状の珪化鉄粉末間に炭素粉末が充填された状態と
なるため、加圧しながら焼結温度を上げることによって
珪化鉄粉末が柔らかくなっても珪化鉄粉末が潰れること
がなくなる。従って、粉末同士の接合部(ネック)が充
分に成長することとなり、これによって材料内部抵抗が
減少し、高い発電出力が得られようになる。
As described above, the present invention uses the thermoelectric generation material powder obtained by uniformly mixing carbon powder having a particle size of about 1/10 of the iron silicide powder into the spherical iron silicide powder. Since carbon powder is filled between spherical iron silicide powders by plasma sintering or hot pressing to solidify, the iron silicide powder becomes softer by increasing the sintering temperature while applying pressure. Also, the iron silicide powder will not be crushed. Therefore, the joint portion (neck) of the powder particles grows sufficiently, which reduces the internal resistance of the material and makes it possible to obtain a high power generation output.

【0011】そして、このような通常の焼結が終了した
ならば、その後、この固形体を所定の条件で熱処理する
ことで、熱発電特性を示すβ相化が起こると共に、その
熱によって珪化鉄間に充填されている炭素粉末が燃焼し
て焼結体から除去されて、気孔が均一に存在する多孔体
となり、熱に対する高い応答性が得られる。
After such normal sintering is completed, the solid body is then heat-treated under predetermined conditions to cause β-phase formation, which exhibits thermoelectric power generation characteristics, and the heat causes the iron silicide to change. The carbon powder filled in the space is burned and removed from the sintered body to form a porous body having uniform pores, and high responsiveness to heat is obtained.

【0012】[0012]

【実施例】次に、本発明の一実施例を添付図面を参照し
ながら説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0013】図1に示すように、先ず、P型に調整され
たFeSi2 原料を用い、これをガスアトマイズ法によ
って、粒径が150〜250μmのP型のFeSi
2 (Fe0.91Mn0.09Si2 )球状粉末を製造し、このFeS
2 球状粉末と、粒径が10〜15μmの炭素粉末とを
体積比でそれぞれ65対35になるように秤量し、その
後、これらを乳鉢で十分混合した。その後、φ10×1
0mmの円柱形状に作成できる型に充填した後、この円
柱状型をPAS(プラズマ焼結装置)にセットし、温度
1180℃、圧力250kg/cm2 の条件で焼結し
た。
As shown in FIG. 1, first, a FeSi 2 raw material adjusted to P type is used, and this is subjected to a gas atomization method to obtain P type FeSi having a particle size of 150 to 250 μm.
2 (Fe0.91Mn0.09Si 2 ) spherical powder was produced and
The i 2 spherical powder and the carbon powder having a particle size of 10 to 15 μm were weighed so as to have a volume ratio of 65:35, and then they were sufficiently mixed in a mortar. After that, φ10 × 1
After filling a mold that can be made into a 0 mm cylindrical shape, this cylindrical mold was set in a PAS (plasma sintering apparatus) and sintered under conditions of a temperature of 1180 ° C. and a pressure of 250 kg / cm 2 .

【0014】次に、このようにして得られた焼結体を任
意の面で切断し、その切断面を顕微鏡で観察したとこ
ろ、気孔率、すなわち、炭素粉末が占める割合は全体の
約35%であり、また、図2のように粒子1同士の接合
部であるネックAが十分成長した構造体が見られた。
尚、図2中1はFeSi2 球状粉末、2は炭素粉末、3
は気孔、4はポーラス焼結体である。また、炭素粉末混
練時、FeSi2 球状粉末間に介在している炭素粉末2
は焼結時の加圧力より、気孔側にスライドし、ネックA
の成長を阻害することはなかった。
Next, the sintered body thus obtained was cut along an arbitrary surface, and the cut surface was observed with a microscope. As a result, the porosity, that is, the proportion of carbon powder was about 35% of the whole. Further, as shown in FIG. 2, a structure in which the neck A, which is the joint between the particles 1, was sufficiently grown was observed.
In Fig. 2, 1 is FeSi 2 spherical powder, 2 is carbon powder, and 3 is
Is a pore and 4 is a porous sintered body. Further, when kneading the carbon powder, the carbon powder 2 interposed between the FeSi 2 spherical powders
Slides to the pore side due to the pressure applied during sintering, and neck A
Did not inhibit the growth of.

【0015】次に、このポーラス焼結体の熱発電機能を
発揮すべく大気中850℃×25時間熱処理を行ってβ
相化した。すると、球状粉末1間の炭素粉末2は熱処理
により、完全に燃焼し、その部分が気孔となり、ポーラ
ス構造体が得られた。
Next, in order to exert the thermoelectric power generation function of this porous sintered body, heat treatment was carried out in the atmosphere at 850 ° C. for 25 hours for β.
Phased. Then, the carbon powder 2 between the spherical powders 1 was completely burned by the heat treatment, and the portions became pores, and a porous structure was obtained.

【0016】その後、このようにして得られた本実施例
のポーラス状熱発電素子と、従来のバルク体、及び従来
法で得られたポーラス状熱発電素子についてそれぞれ熱
電特性を測定し、その結果を表1に示す。また、N型Fe
Si2 (Fe0.97Mn0.03Si2 )についても同様に行ったの
で、同表に示す。
Thereafter, the thermoelectric properties of the thus obtained porous thermoelectric generator of this example, the conventional bulk body, and the porous thermoelectric generator obtained by the conventional method were measured. Is shown in Table 1. In addition, N-type Fe
The same procedure was performed for Si 2 (Fe0.97Mn0.03Si 2 ), and the results are shown in the table.

【0017】[0017]

【表1】 [Table 1]

【0018】この結果、表1からも明らかなように、本
実施例で得られたポーラス状熱発電素子は、起電圧
(V)及び起電力Wm/m2 のいずれも、従来のポーラ
ス体よりも優れた値を示しており、しかも、起電圧
(V)はバルク体並の値を示した。尚、本実施例に係る
熱発電素子の起電圧に関しては、一見、バルク体よりも
大きく劣っているようにみえるが、これは、気孔率が3
5%であるため、バルク体のP型FeSi2 の電力44Wm
/m2 ×0.65=28.6Wm/m2 となり、実質的
に従来のバルク体と電力と略等しいことが分かる。
As a result, as is clear from Table 1, in the porous thermoelectric generator obtained in this example, both the electromotive voltage (V) and the electromotive force Wm / m 2 were higher than those of the conventional porous body. Also showed an excellent value, and the electromotive voltage (V) showed a value comparable to that of a bulk body. The electromotive voltage of the thermoelectric generator according to the present example seems to be significantly inferior to that of the bulk body, but the porosity is 3
Since it is 5%, the power of the bulk P-type FeSi 2 is 44 Wm.
/ M 2 × 0.65 = 28.6 Wm / m 2 , which is substantially the same as the electric power of the conventional bulk body.

【0019】[0019]

【発明の効果】以上要するに本発明によれば、焼結時、
焼結圧力により潰れやすい球状及び気孔となる空間を保
持でき、ネック成長に十分なポーラス体が得られる。こ
れによりバルク体並の出力電力が得られると共に、十分
な焼結圧力を加えることができるため、通常の焼結と同
等の形状自由度が発揮できる等といった優れた効果を発
揮する。
In summary, according to the present invention, during sintering,
It is possible to maintain a spherical shape that is easily crushed by sintering pressure and a space that becomes a pore, and a porous body sufficient for neck growth can be obtained. As a result, an output power equivalent to that of a bulk body can be obtained, and a sufficient sintering pressure can be applied, so that excellent effects such as exhibiting the same degree of freedom in shape as ordinary sintering can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す工程図である。FIG. 1 is a process drawing showing an embodiment of the present invention.

【図2】本発明によって得られるポーラス焼結体の一実
施例を示す概念図である。
FIG. 2 is a conceptual diagram showing an example of a porous sintered body obtained by the present invention.

【図3】従来のポーラス焼結体の構造を示す概念図であ
る。
FIG. 3 is a conceptual diagram showing the structure of a conventional porous sintered body.

【図4】加圧により粉末が変化する様子を示す概念図で
ある。
FIG. 4 is a conceptual diagram showing how powder is changed by pressurization.

【図5】無加圧状態で焼結した場合の焼結体の状態を示
す概念図である。
FIG. 5 is a conceptual diagram showing a state of a sintered body when it is sintered in a non-pressurized state.

【符号の説明】[Explanation of symbols]

1 FeSi2 球状粉末 2 炭素粉末 3 気孔 4 焼結体1 FeSi 2 Spherical powder 2 Carbon powder 3 Pore 4 Sintered body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 P型あるいはN型に調整された球状の珪
化鉄粉末中に、粒径がこの珪化鉄粉末の約1/10程度
の炭素粉末を均一に混合した熱発電材料粉末を形成し、
この材料粉末を所定の型に充填した後、プラズマ焼結、
またはホットプレスして焼結し、その後、この焼結体を
熱処理してβ相化すると同時にその気孔中に存在してい
る炭素粉末を除去して多孔質化することを特徴とするポ
ーラス状熱発電素子の製造方法。
1. A thermoelectric power generation material powder is obtained by uniformly mixing carbon powder having a particle size of about 1/10 of the iron silicide powder in a spherical iron silicide powder adjusted to P type or N type. ,
After filling this material powder into a predetermined mold, plasma sintering,
Alternatively, it is hot-pressed and sintered, and then this sintered body is heat-treated to form β phase, and at the same time, carbon powder existing in the pores is removed to make it porous. Method for manufacturing power generating element.
【請求項2】 上記珪化鉄粉末として、粒径が150〜
250μmのものを用い、かつ、この珪化鉄粉末と上記
炭素粉末の混合比を体積比でそれぞれ60〜70対40
〜30としたことを特徴とする請求項1記載のポーラス
状熱発電素子の製造方法。
2. The iron silicide powder has a particle size of 150-150.
The volume ratio of the iron silicide powder to the carbon powder is 60 to 70:40.
The method for manufacturing a porous thermoelectric generator according to claim 1, wherein
JP7141954A 1995-06-08 1995-06-08 Method of manufacturing porous thermal generator element Pending JPH08335721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7141954A JPH08335721A (en) 1995-06-08 1995-06-08 Method of manufacturing porous thermal generator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7141954A JPH08335721A (en) 1995-06-08 1995-06-08 Method of manufacturing porous thermal generator element

Publications (1)

Publication Number Publication Date
JPH08335721A true JPH08335721A (en) 1996-12-17

Family

ID=15303999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7141954A Pending JPH08335721A (en) 1995-06-08 1995-06-08 Method of manufacturing porous thermal generator element

Country Status (1)

Country Link
JP (1) JPH08335721A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073712A3 (en) * 1999-06-01 2001-08-23 Vtv Verfahrenstech Verwaltung Method and device for forming thermobranches containing a foam structure
WO2001099204A1 (en) * 2000-06-21 2001-12-27 Robert Bosch Gmbh Thermoelectric component
US6751341B2 (en) 2000-05-12 2004-06-15 Fuji Photo Film Co., Ltd. Image position matching method and apparatus
US6882744B2 (en) 2000-09-19 2005-04-19 Fuji Photo Film Co., Ltd. Method of registering images
JPWO2005091393A1 (en) * 2004-03-22 2008-05-22 独立行政法人科学技術振興機構 Porous thermoelectric material and manufacturing method thereof
US7813576B2 (en) 2002-11-27 2010-10-12 Fujifilm Corporation Image processing apparatus
JP2011129832A (en) * 2009-12-21 2011-06-30 Denso Corp Thermoelectric conversion element and method of manufacturing the same
JP2013110158A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073712A3 (en) * 1999-06-01 2001-08-23 Vtv Verfahrenstech Verwaltung Method and device for forming thermobranches containing a foam structure
US6751341B2 (en) 2000-05-12 2004-06-15 Fuji Photo Film Co., Ltd. Image position matching method and apparatus
WO2001099204A1 (en) * 2000-06-21 2001-12-27 Robert Bosch Gmbh Thermoelectric component
US7029173B2 (en) 2000-06-21 2006-04-18 Robert Bosch Gmbh Thermoelectric component
US6882744B2 (en) 2000-09-19 2005-04-19 Fuji Photo Film Co., Ltd. Method of registering images
US7813576B2 (en) 2002-11-27 2010-10-12 Fujifilm Corporation Image processing apparatus
JPWO2005091393A1 (en) * 2004-03-22 2008-05-22 独立行政法人科学技術振興機構 Porous thermoelectric material and manufacturing method thereof
JP4839430B2 (en) * 2004-03-22 2011-12-21 国立大学法人九州大学 Method for producing porous thermoelectric material
JP2011129832A (en) * 2009-12-21 2011-06-30 Denso Corp Thermoelectric conversion element and method of manufacturing the same
JP2013110158A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion module
US9455389B2 (en) 2011-11-17 2016-09-27 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element, manufacturing method for the thermoelectric conversion element, and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
CN101220513B (en) Thermal treatment method for improving type N polycrystal Bi2Te3thermoelectricity capability
JPH08335721A (en) Method of manufacturing porous thermal generator element
CN112723891B (en) Lanthanum-calcium composite hexaboride polycrystalline cathode material and preparation method thereof
CN102976757B (en) Preparation method of composite ceramic heating element with adjustable high-temperature resistivity
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JPH077186A (en) Production of thermoelectric conversion material
CN110042264A (en) A kind of quick method for preparing ZrNiSn thermoelectric material
JP2004134673A (en) N-type thermoelectric transduction material and manufacturing method thereof
JPH1041556A (en) Porous thermoelectric semiconductor and its manufacture
JPH06144825A (en) Production of thermoelectric element
KR100428948B1 (en) A production method of tungsten nano powder without impurities and its sintered part
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same
KR101851736B1 (en) The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
CN112441819A (en) Hot isostatic pressing preparation method of nickel oxide-based ceramic target material
KR101812270B1 (en) Thermoelectric module with improved thermoelectric element-to-electrode bonding and method of fabricating the same
JP3131914B2 (en) Silicon carbide heating element and method for producing the same
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
US1337264A (en) Process of making solid bodies from nitrids
CN110357634A (en) A kind of application of boron carbide ceramics as pressure-sensitive ceramic material
JP2735442B2 (en) Manufacturing method of high-efficiency thermoelectric element with high temperature operation
JP2019064850A (en) Silicon carbide powder
JPH104218A (en) Porous structure thermoelectric element and manufacture thereof
JP3588240B2 (en) Ceramic heater
JPH0738156A (en) Thermoelectric power generating material and manufacture thereof
US3359097A (en) Method of producing thermoelectric bodies