JPH08333631A - Production of grain oriented silicon steel sheet with low iron loss - Google Patents

Production of grain oriented silicon steel sheet with low iron loss

Info

Publication number
JPH08333631A
JPH08333631A JP7138073A JP13807395A JPH08333631A JP H08333631 A JPH08333631 A JP H08333631A JP 7138073 A JP7138073 A JP 7138073A JP 13807395 A JP13807395 A JP 13807395A JP H08333631 A JPH08333631 A JP H08333631A
Authority
JP
Japan
Prior art keywords
cold rolling
steel sheet
annealing
slab
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7138073A
Other languages
Japanese (ja)
Other versions
JP3338238B2 (en
Inventor
Hiroaki Sato
浩明 佐藤
Yosuke Kurosaki
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13807395A priority Critical patent/JP3338238B2/en
Publication of JPH08333631A publication Critical patent/JPH08333631A/en
Application granted granted Critical
Publication of JP3338238B2 publication Critical patent/JP3338238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To industrially and stably produce a grain oriented silicon steel sheet with low iron loss by controlling the temp. rise rate at the time of heating a continuously cast slab of specific composition, the cooling velocity at hot rolled plate annealing, and the aging temp. and time between passes at the time of cold rolling, respectively. CONSTITUTION: A steel, having a composition consisting of, by weight, 0.015-0.100% C, 2.0-4.0% Si, 0.03-0.12% Mn, 0.010-0.065% sol.Al, 0.0040-0.0100% N, 0.005-0.050% S and/or Se, and the balance Fe, is used. A continuously cast slab of this composition is heated and soaked to and at 1320-1450 deg.C and hot-rolled into plate. This steel plate is subjected to hot rolled plate annealing, to preliminary cold rolling, and to cold rolling while process-annealed between cold rolling stages. The resulting steel sheet is subjected to decarburizing and primary recrystallization annealing, final finish annealing, etc. At this time, heating for the slab in a temp. region as high as >=1200 deg.C is carried out at >=5 deg.C/min temp. rise rate, and cooling at hot rolled plate annealing through the temp. region from 700 to 150 deg.C is performed at a rate of >=8 deg.C/sec. The steel sheet is held, at least once between the passes at preliminary cold rolling, at 100-400 deg.C for >=1min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は変圧器等の鉄心に使用さ
れる低鉄損一方向性電磁鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low iron loss unidirectional electrical steel sheet used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、更に磁束密度が高く、鉄損の少ない鋼板が
市場から要求されている。一般的に、低鉄損を達成する
ためには、鋼板のSi含有量を極力高め素材の固有抵抗
を上げて渦電流損を下げる方法と、製品板厚を極力薄く
し渦電流損を下げる方法が知られている。更に、低鉄損
を図るにはインヒビター、鋼板の組織、集合組織を高度
に制御する必要がある。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and generators, but with the recent demand for energy saving, steel sheets with higher magnetic flux density and less iron loss are available from the market. Is required. Generally, in order to achieve a low iron loss, a method of reducing the eddy current loss by increasing the Si content of the steel sheet as much as possible to increase the specific resistance of the material, and a method of reducing the eddy current loss by reducing the product sheet thickness as much as possible It has been known. Furthermore, in order to achieve low iron loss, it is necessary to highly control the inhibitor, the structure of the steel sheet, and the texture.

【0003】この中の一つであるインヒビター分散形態
のコントロールは、熱間圧延に先立つスラブ高温加熱中
にインヒビターを一旦溶体化させ、その後適当な冷却パ
ターンの熱間圧延を施すことが必要である。インヒビタ
ー溶体化のためのスラブ高温加熱をガス燃焼型加熱炉で
行うと、スラブ表面から熱せられるのでスラブ表層で温
度が高く、スラブ中心部で温度が低い状態になる。よっ
て、スラブ中心部まで目的の温度に達するためには、ス
ラブ表層温度は、スラブ中心部よりもかなり高い温度と
なり、またガス燃焼型加熱炉では昇温速度も1200℃
以上で約1℃/分と遅いために1200℃以上の高温域
に滞留する時間がかなり長くなる。従って、スラブ高温
加熱後の結晶粒径は粗大化してしまい、線状細粒と呼ば
れる二次再結晶不良を製品にもたらす原因となってい
た。この対策として、特公昭56−18654号公報に
提案されているようなスラブ急速加熱方式を用いると、
スラブ加熱の短時間化が可能となった。
In order to control the inhibitor dispersion morphology, which is one of them, it is necessary to temporarily solution the inhibitor during high temperature heating of the slab prior to hot rolling, and then perform hot rolling with an appropriate cooling pattern. . When high-temperature heating of the slab for solution treatment of the inhibitor is performed in a gas combustion type heating furnace, the slab surface is heated, so the temperature is high at the surface layer of the slab and low at the center of the slab. Therefore, in order to reach the target temperature up to the center of the slab, the surface temperature of the slab is considerably higher than that of the center of the slab, and the temperature rise rate is 1200 ° C in the gas combustion type heating furnace.
As described above, since it is slow at about 1 ° C./minute, the residence time in the high temperature region of 1200 ° C. or higher becomes considerably long. Therefore, the crystal grain size after heating the slab at high temperature becomes coarse, which causes a secondary recrystallization defect called linear fine grain in the product. As a countermeasure against this, if a slab rapid heating method as proposed in Japanese Patent Publication No. 56-18654 is used,
It became possible to shorten the heating time of the slab.

【0004】一方、圧下率40〜80%の最終冷間圧延
を行う2回冷延法で一方向性電磁鋼板を製造する方法に
おいて、1回目の冷間圧延時、2回目の冷間圧延時に時
効処理を施すことにより磁気特性が向上する方法が開示
されている(特開昭58−25425号公報参照)。ま
た、圧下率80超〜95%の強圧下最終冷間圧延を含む
2回以上の冷間圧延を行い一方向性電磁鋼板を製造する
方法において、熱延板焼鈍の冷却過程で600℃〜20
0℃の間を5℃/秒以上で冷却し、1回目の冷間圧延に
おける複数パスのパス間の少なくとも1回に鋼板を50
〜500℃の温度範囲で1分以上の時間保持することに
より磁気特性が向上する方法が開示されている(特開昭
62−202024号公報参照)。
On the other hand, in a method for producing a grain-oriented electrical steel sheet by a double cold rolling method in which final cold rolling with a reduction rate of 40 to 80% is performed, during the first cold rolling and during the second cold rolling. A method of improving the magnetic properties by performing an aging treatment has been disclosed (see Japanese Patent Application Laid-Open No. 58-25425). Further, in a method for producing a unidirectional electrical steel sheet by performing cold rolling two or more times including final cold rolling with a strong reduction having a rolling reduction of more than 80 to 95%, 600 ° C. to 20 ° C. in a cooling process of hot rolled sheet annealing.
Cool between 0 ° C. at 5 ° C./sec or more, and apply the steel plate 50 at least once between multiple passes in the first cold rolling.
A method has been disclosed in which the magnetic properties are improved by holding the temperature range of up to 500 ° C. for 1 minute or more (see Japanese Patent Application Laid-Open No. 62-202024).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来技術の方法で得られる製品は、低鉄損という点で満足
できるものではなかった。本発明は、スラブ加熱時の高
温域におけるスラブ加熱の昇温速度を規制することによ
りスラブ加熱時の結晶粒の成長を抑制し、熱延板焼鈍で
の冷却速度を規制し、冷間圧延時のパス間時効温度およ
びパス間時効時間をある範囲に制御することにより、低
鉄損な製品を得る方法を提供するものである。
However, the products obtained by the above-mentioned conventional methods are not satisfactory in terms of low iron loss. The present invention suppresses the growth of crystal grains during slab heating by controlling the temperature rising rate of slab heating in the high temperature region during slab heating, and controls the cooling rate during hot-rolled sheet annealing, during cold rolling. By controlling the aging temperature between passes and the aging time between passes within a certain range, a method for obtaining a product with low iron loss is provided.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、
(1)重量%で、C:0.015〜0.100%、S
i:2.0〜4.0%、Mn:0.03〜0.12%、
Sol.Al:0.010〜0.065%、N:0.00
40〜0.0100%、SおよびSeのうちから選んだ
1種または2種合計:0.005〜0.050%、更に
Sb,Sn,Cu,Mo,Ge,B,Te,Asおよび
Biから選ばれる1種または2種以上を0.003〜
0.3%を含有し、残部は実質的にFeの組成になる連
続鋳造スラブを、1320℃〜1450℃に加熱均熱し
たのち熱延し、熱延板焼鈍を施し、予備冷間圧延、中間
焼鈍、最終冷間圧延、脱炭・1次再結晶焼鈍、最終仕上
げ焼鈍によって一方向性電磁鋼板を製造する方法におい
て、上記スラブの1200℃以上の高温域の加熱を5℃
/分以上の昇温速度で行うと共に、熱延板焼鈍の冷却過
程において700℃〜150℃の間を8℃/秒以上で冷
却し、予備冷間圧延における複数パスのパス間の少なく
とも1回に鋼板を100℃〜400℃の温度範囲で1分
以上の時間保持することを特徴とする低鉄損一方向性電
磁鋼板の製造方法であり、(2)前記最終冷間圧延工程
における途中板厚段階の少なくとも1回のパス間で鋼板
を150℃〜350℃の温度範囲で1分以上の時間保持
することを特徴とする前項(1)記載の低鉄損一方向性
電磁鋼板の製造方法であり、また(3)前記スラブを1
200℃以上の高温域に加熱する前に、50%以下の圧
下率で熱間変形を加えることを特徴とする前記(1),
(2)項記載の低鉄損一方向性電磁鋼板の製造方法であ
る。
That is, the present invention is as follows.
(1)% by weight, C: 0.015 to 0.100%, S
i: 2.0 to 4.0%, Mn: 0.03 to 0.12%,
Sol. Al: 0.010 to 0.065%, N: 0.00
40 to 0.0100%, one or two kinds selected from S and Se total: 0.005 to 0.050%, and further from Sb, Sn, Cu, Mo, Ge, B, Te, As and Bi One or two or more selected from 0.003 to
A continuous cast slab containing 0.3% and the balance being substantially Fe is heated and soaked at 1320 ° C to 1450 ° C, hot rolled, hot rolled sheet annealed, and pre-cold rolled. In the method for producing a grain-oriented electrical steel sheet by intermediate annealing, final cold rolling, decarburization / primary recrystallization annealing, and final finish annealing, heating the slab in a high temperature range of 1200 ° C or higher to 5 ° C.
At a temperature rising rate of not less than 1 minute / minute, and in the cooling process of hot-rolled sheet annealing, between 700 ° C. and 150 ° C. is cooled at 8 ° C./second or more, and at least once between the passes of multiple passes in the preliminary cold rolling. Is a method for producing a low iron loss unidirectional electrical steel sheet, characterized in that the steel sheet is held in a temperature range of 100 ° C. to 400 ° C. for 1 minute or more, and (2) an intermediate sheet in the final cold rolling step. The method for producing a low iron loss unidirectional electrical steel sheet according to the above item (1), characterized in that the steel sheet is held in a temperature range of 150 ° C. to 350 ° C. for at least 1 minute between at least one pass of the thickness step. And (3) 1 for the slab
Before heating to a high temperature range of 200 ° C. or higher, hot deformation is applied at a reduction rate of 50% or less, (1),
It is a method for producing a low iron loss unidirectional electrical steel sheet according to the item (2).

【0007】本発明者は、鉄損の低い一方向性電磁鋼板
を製造する方法を検討したところ、スラブ加熱時の高温
域におけるスラブ加熱を5℃/分以上の昇温速度で行
い、スラブ加熱時の結晶粒の成長を抑制し、かつ、熱延
板焼鈍の冷却過程において700℃〜150℃の間を8
℃/秒以上で冷却することにより、固溶C,N,微細炭
化物,微細窒化物を富化し、冷間圧延時のパス間時効温
度およびパス間時効時間をある範囲に制御することが非
常に有効であることを見出した。
The present inventor has studied a method for producing a grain-oriented electrical steel sheet having a low iron loss. As a result, the slab heating is performed at a temperature rising rate of 5 ° C./min or more in the high temperature range during slab heating. During the cooling process of hot-rolled sheet annealing while suppressing the growth of crystal grains at the time of
By cooling at ℃ / sec or more, it is possible to enrich solid solution C, N, fine carbides and fine nitrides, and to control the aging temperature between passes and the aging time between passes during cold rolling within a certain range. It was found to be effective.

【0008】図1は、本発明者が行った実験結果の一例
である。すなわち、本発明に従った成分範囲にあるC:
0.075%、Si:3.23%、Mn:0.071
%、S:0.025%、Sol.Al:0.030%、
N:0.0080%、Sn:0.11%を含有する鋳片
を、短時間加熱が可能な電気式雰囲気制御型誘導加熱炉
により到達温度1350℃とし、1200℃から135
0℃までを種々の昇温速度で加熱した鋳片を用いて板厚
2.30mmの熱延板を作製した。そして、これに100
0℃×2分均熱後15℃/秒で冷却する熱延板焼鈍を施
し、酸洗後、予備冷延を行って1.45mmの板厚とし
た。かかる予備冷間圧延の途中板厚2.00mmと1.7
0mmの段階で種々の温度で10分間のパス間時効を施し
た。しかる後、1000℃×2分均熱後急冷する中間焼
鈍後、最終冷間圧延0.17mmの最終仕上げ厚とした。
得られた冷延板を公知の方法で脱炭焼鈍し、焼付分離材
を塗布した後、最終仕上げ焼鈍を行い、コーティング液
を塗布し製品とした。かくして得られた製品板の鉄損と
スラブ昇温速度、パス間時効温度との関係について調べ
た結果を図1に示す。同図より明らかなように、スラブ
昇温速度を5℃/分以上とし、かつ、予備冷延工程で1
00〜400℃の温度でパス間時効を施すことにより良
好な磁気特性が得られることが分かる。
FIG. 1 shows an example of the result of an experiment conducted by the present inventor. That is, C in the component range according to the present invention:
0.075%, Si: 3.23%, Mn: 0.071
%, S: 0.025%, Sol. Al: 0.030%,
A slab containing N: 0.0080% and Sn: 0.11% is brought to a reaching temperature of 1350 ° C. by an electric atmosphere control type induction heating furnace capable of heating for a short time, and 1200 ° C. to 135 ° C.
Hot-rolled sheets having a plate thickness of 2.30 mm were produced using cast pieces heated to 0 ° C. at various heating rates. And 100 to this
A hot-rolled sheet was annealed at 0 ° C. for 2 minutes and then cooled at 15 ° C./sec. After pickling, preliminary cold rolling was performed to obtain a sheet thickness of 1.45 mm. During the preliminary cold rolling, the plate thickness is 2.00 mm and 1.7.
Aging was performed for 10 minutes at various temperatures at a step of 0 mm. Then, after intermediate annealing of soaking at 1000 ° C. for 2 minutes and rapid cooling, final cold rolling was performed to a final finished thickness of 0.17 mm.
The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a bake-separating material, final finishing annealing was performed and a coating liquid was applied to obtain a product. FIG. 1 shows the results of an examination of the relationship between the iron loss of the product sheet thus obtained, the slab heating rate, and the interpass aging temperature. As is clear from the figure, the slab temperature rising rate is set to 5 ° C./min or more, and 1
It can be seen that good magnetic characteristics can be obtained by performing aging between passes at a temperature of 00 to 400 ° C.

【0009】図2も実験結果の一例を示す。すなわち本
発明に従った成分範囲にあるC:0.070%、Si:
3.20%、Mn:0.070%、S:0.022%、
Sol.Al:0.031%、N:0.0075%、S
n:0.10%を含有する鋳片を、短時間加熱が可能な
通電加熱により到達温度1390℃とし、1200℃か
ら1390℃までを10℃/分の昇温速度で加熱したス
ラブを用いて板厚2.30mmの熱延板を作製した。そし
て、これに1000℃×2分均熱後15℃/秒で冷却す
る熱延板焼鈍を施し、酸洗後、予備冷延をして1.35
mmの板厚とした。かかる予備冷間圧延の途中板厚2.0
0mmと1.70mmの段階で鋼板を250℃に種々の時間
保持した。しかる後、1000℃×2分均熱後急冷する
中間焼鈍後、最終冷間圧延0.17mmの最終仕上げ厚と
した。得られた冷延板を公知の方法で脱炭焼鈍し、焼付
分離材を塗布した後、最終仕上げ焼鈍を行い、コーティ
ング液を塗布し製品とした。かくして得られた製品板の
磁束密度、鉄損とパス間時効温度との関係について調べ
た結果を図2に示す。同図より明らかなようにパス間時
効時間を1分以上とすると良好な磁気特性が得られるこ
とが分かる。
FIG. 2 also shows an example of experimental results. That is, C: 0.070% and Si: in the composition range according to the present invention.
3.20%, Mn: 0.070%, S: 0.022%,
Sol. Al: 0.031%, N: 0.0075%, S
A slab containing n: 0.10% was heated to a final temperature of 1390 ° C. by electric heating capable of heating for a short time, and a slab heated from 1200 ° C. to 1390 ° C. at a heating rate of 10 ° C./min was used. A hot rolled plate having a plate thickness of 2.30 mm was produced. Then, this is annealed at 1000 ° C. for 2 minutes and then annealed at 15 ° C./sec for annealing, hot-rolled after pickling, and cold-rolled at 1.35.
The plate thickness was mm. During the preliminary cold rolling, the plate thickness is 2.0
The steel plate was kept at 250 ° C. for various times at the steps of 0 mm and 1.70 mm. Then, after intermediate annealing of soaking at 1000 ° C. for 2 minutes and rapid cooling, final cold rolling was performed to a final finished thickness of 0.17 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a bake-separating material, final finishing annealing was performed and a coating liquid was applied to obtain a product. FIG. 2 shows the results of an examination of the relationship between the magnetic flux density and the iron loss of the product sheet thus obtained and the inter-pass aging temperature. As is clear from the figure, good magnetic characteristics can be obtained when the aging time between passes is 1 minute or more.

【0010】図3は、冷却速度と磁性の関係を調べた実
験結果の一例を示す。すなわち本発明に従った成分範囲
にあるC:0.069%、Si:3.23%、Mn:
0.070%、S:0.028%、Sol.Al:0.0
30%、N:0.0074%、Sn:0.10%を含有
する鋳片を、短時間加熱が可能な通電加熱により到達温
度1400℃とし、1200℃から1400℃までを1
0℃/分の昇温速度で加熱したスラブを用いて板厚2.
30mmの熱延板を作製した。1000℃×2分均熱後、
Cの析出温度域と考えられる700℃〜150℃を種々
の冷却速度で冷却する熱延板焼鈍を行い、酸洗後、板厚
1.25mmまで予備冷間圧延を施した。かかる予備冷間
圧延の途中板厚2.00mmと1.60mmの段階で鋼板を
250℃に5分保持した。しかる後、1000℃×2分
均熱後急冷する中間焼鈍後、最終冷間圧延して0.17
mmの最終仕上げ厚とした。得られた冷延板を公知の方法
で脱炭焼鈍し、焼付分離材を塗布した後、最終仕上げ焼
鈍を行い、コーティング液を塗布し製品とした。かくし
て得られた製品板の鉄損と熱延板焼鈍での700℃〜1
50℃の冷却速度との関係について調べた結果を図3に
示す。同図より明らかなように熱延板焼鈍での700℃
〜150℃の冷却速度を8℃/秒以上とすることにより
良好な磁気特性が得られることが分かる。
FIG. 3 shows an example of the experimental results for examining the relationship between the cooling rate and magnetism. That is, C: 0.069%, Si: 3.23%, Mn: in the composition range according to the present invention.
0.070%, S: 0.028%, Sol. Al: 0.0
A slab containing 30%, N: 0.0074%, and Sn: 0.10% is brought to a reaching temperature of 1400 ° C by electric heating capable of heating for a short time, and the temperature from 1200 ° C to 1400 ° C is set to 1
Plate thickness using a slab heated at a heating rate of 0 ° C./min 2.
A 30 mm hot rolled sheet was prepared. After soaking at 1000 ℃ for 2 minutes,
Hot-rolled sheet annealing was performed at 700 ° C to 150 ° C, which is considered to be the precipitation temperature range of C, at various cooling rates, and after pickling, preliminary cold rolling was performed to a sheet thickness of 1.25 mm. During the preliminary cold rolling, the steel plate was held at 250 ° C. for 5 minutes at the stages of the plate thickness of 2.00 mm and 1.60 mm. After that, after the intermediate annealing of soaking at 1000 ° C. for 2 minutes and the rapid cooling, the final cold rolling is performed to 0.17.
The final finished thickness was mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a bake-separating material, final finishing annealing was performed and a coating liquid was applied to obtain a product. The iron loss of the product sheet thus obtained and 700 ° C to 1 in hot-rolled sheet annealing
The result of having investigated the relationship with the cooling rate of 50 ° C. is shown in FIG. As is clear from the figure, 700 ° C during hot-rolled sheet annealing
It can be seen that good magnetic properties can be obtained by setting the cooling rate of ˜150 ° C. to 8 ° C./sec or more.

【0011】このようにこの発明は、高温スラブ加熱を
スラブの昇温速度を5℃/分以上とし、かつ、熱延板焼
鈍の冷却過程において700℃〜150℃の間を8℃/
秒以上で冷却し、かつ、予備冷延工程で100℃〜40
0℃の温度で1分以上のパス間時効を施すことにより磁
気特性が向上するという全く新しい知見に基づいて完成
されたものである。
As described above, according to the present invention, the high temperature slab heating is performed at a slab temperature rising rate of 5 ° C./min or more, and in the cooling process of the hot-rolled sheet annealing, the temperature between 700 ° C. and 150 ° C. is 8 ° C./min.
It cools for more than a second, and 100 ℃ -40 in the preliminary cold rolling process.
It was completed on the basis of a completely new finding that magnetic properties are improved by performing aging for 1 minute or more at a temperature of 0 ° C.

【0012】以下に本発明の諸条件を限定した理由を説
明する。Siは、下限2%未満では良好な鉄損が得られ
ず、上限4%を超えると冷延性が著しく劣化する。C
は、下限0.015%未満であれば2次再結晶が不安定
となり、上限の0.100%はこれよりCが多くなると
脱炭所要時間が長くなり経済的に不利となるために限定
した。
The reasons for limiting the conditions of the present invention will be described below. If Si is less than the lower limit of 2%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4%, cold ductility is significantly deteriorated. C
When the lower limit is less than 0.015%, the secondary recrystallization becomes unstable, and the upper limit of 0.100% is limited because the time required for decarburization becomes longer and the economically disadvantageous if the C content exceeds the upper limit. .

【0013】Mnは、下限0.03%未満であれば熱間
脆化を起こし、上限0.12%を超えるとかえって磁気
特性を劣化させる。S,Seは、MnS,MnSeを形
成するために必要な元素で、これらの1種または2種の
合計が下限0.005%未満ではMnS,MnSeの絶
対量が不足し、上限0.050%を超えると熱間割れを
生じ、また、最終仕上げ焼鈍での純化が困難となる。
If the lower limit of Mn is less than 0.03%, hot embrittlement occurs, and if it exceeds the upper limit of 0.12%, the magnetic properties deteriorate rather. S and Se are elements necessary for forming MnS and MnSe. If the total of one or two of these is less than the lower limit of 0.005%, the absolute amount of MnS and MnSe is insufficient, and the upper limit is 0.050%. If it exceeds, hot cracking occurs, and purification in final finish annealing becomes difficult.

【0014】Sol.Alは、AlNを形成するために必
要な元素で、下限0.010%未満ではAlNの絶対量
が不足し、上限0.065%を超えるとAlNの適当な
分散状態が得られない。Nは、AlNを形成するために
必要な元素で、下限0.0040%未満ではAlNの絶
対量が不足し、上限0.0100%を超えるとAlNの
適当な分散状態が得られない。
Sol. Al is an element necessary for forming AlN, and if the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and if it exceeds the upper limit of 0.065%, a proper dispersed state of AlN cannot be obtained. N is an element necessary for forming AlN. If the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient, and if it exceeds the upper limit of 0.0100%, a proper dispersed state of AlN cannot be obtained.

【0015】Sb,Sn,Cu,Mo,Ge,B,T
e,As,およびBiは粒界に偏析させ、2次再結晶を
安定化させるが、下限0.03%未満では偏析量が不足
し、上限0.3%は経済的理由と脱炭性の悪化によるも
のである。
Sb, Sn, Cu, Mo, Ge, B, T
e, As, and Bi segregate at the grain boundaries to stabilize the secondary recrystallization, but if the lower limit is less than 0.03%, the segregation amount is insufficient, and the upper limit of 0.3% is for economic reasons and decarburization. It is due to deterioration.

【0016】スラブ加熱温度は、1320℃〜1450
℃とするが、1320℃未満であると製品の鉄損のばら
つきが大きい。1450℃を超えるとスラブが溶融す
る。高温域におけるスラブ加熱に関しては、加熱時の結
晶粒径の粗大化の抑制および組織、集合組織の改善のた
めに、1200℃以上の昇温速度を5℃/分以上とする
が、1200℃未満では粒成長への影響が少ないために
昇温速度を規定する必要はない。昇温速度5℃/分未満
では、磁気特性の改善効果が少ないためである。
The slab heating temperature is 1320 ° C. to 1450.
However, if the temperature is lower than 1320 ° C., the iron loss of the product varies greatly. When it exceeds 1450 ° C, the slab melts. Regarding slab heating in a high temperature range, the temperature rising rate of 1200 ° C or higher is set to 5 ° C / min or higher, but less than 1200 ° C, in order to suppress coarsening of the crystal grain size during heating and to improve the texture and texture. In this case, since the influence on grain growth is small, it is not necessary to specify the heating rate. This is because if the heating rate is less than 5 ° C./minute, the effect of improving the magnetic properties is small.

【0017】熱延板焼鈍での700℃〜150℃の冷却
速度は、図3に示すように8℃/秒未満だと磁気特性の
改善効果が少ない。700℃〜150℃としたのは、そ
の温度域が、Cの析出温度域と考えられるためである。
When the cooling rate of 700 ° C. to 150 ° C. in the annealing of hot rolled sheet is less than 8 ° C./sec as shown in FIG. 3, the effect of improving the magnetic properties is small. The reason why the temperature range is 700 ° C. to 150 ° C. is that the temperature range is considered to be the precipitation temperature range of C.

【0018】予備冷間圧延時のパス間時効温度は、図
1,2に示すように、100℃より低温だと磁気特性の
改善効果に乏しく、また400℃を超えても磁気特性の
改善効果が少ない。時効処理は1回でも効果があるが、
圧延と時効処理を交互に繰り返すと製品の磁気特性が一
層向上する。パス間時効時間は、1分未満だと磁気特性
の改善効果が少ない。
As shown in FIGS. 1 and 2, the interpass aging temperature at the time of pre-cold rolling is lower than 100 ° C., the effect of improving the magnetic properties is poor, and even if it exceeds 400 ° C., the effect of improving the magnetic properties is low. Less is. The aging treatment is effective even once,
By repeating rolling and aging treatment alternately, the magnetic properties of the product are further improved. If the aging time between passes is less than 1 minute, the effect of improving the magnetic properties is small.

【0019】予備冷間圧延でパス間時効を施し、かつ最
終冷間圧延でパス間時効を施すことにより、更に磁気特
性が向上する。最終冷間圧延時のパス間時効温度は、1
50℃より低温だと磁気特性の改善効果に乏しく、また
350℃を超えても磁気特性の改善効果が少ない。時効
処理は1回でも効果があるが圧延と時効処理を交互に繰
り返すと製品の磁気特性が一層向上する。パス間時効時
間は、1分未満だと磁気特性の改善効果が少ない。
Magnetic properties are further improved by pre-pass cold aging in pre-cold rolling and pass inter-aging in final cold rolling. The aging temperature between passes during final cold rolling is 1
If the temperature is lower than 50 ° C, the effect of improving the magnetic properties is poor, and if the temperature exceeds 350 ° C, the effect of improving the magnetic properties is low. The aging treatment is effective even once, but the magnetic properties of the product are further improved by repeating rolling and aging treatment alternately. If the aging time between passes is less than 1 minute, the effect of improving the magnetic properties is small.

【0020】1200℃以上の高温域のスラブ加熱前に
50%以下の圧下で熱間変形を加えることは、スラブの
柱状晶を破壊し、熱延板の組織の均一化に有効で製品の
磁気特性のばらつきを少なくする。圧下率の上限を50
%としたのは、これ以上圧下率を高くしても、磁気特性
の値に変化がないからである。
Applying hot deformation under a pressure of 50% or less before heating the slab in a high temperature range of 1200 ° C. or higher destroys the columnar crystals of the slab and is effective in homogenizing the structure of the hot-rolled sheet. Reduce the variation in characteristics. The upper limit of the rolling reduction is 50
The reason why the percentage is set is that the value of the magnetic characteristics does not change even if the rolling reduction is further increased.

【0021】[0021]

【実施例】【Example】

〔実施例1〕〔C〕0.075%、〔Si〕3.25
%、〔Mn〕0.088%、〔S〕0.025%、〔S
ol.Al〕0.022%、〔N〕0.0080%、〔S
n〕0.10%、〔Cu〕0.05%を含有する鋳片
を、予備加熱をガス燃焼型加熱炉で鋳片中心部の温度が
1200℃の温度域に達するまで加熱し、その後、試料
番号7,8は、25%の圧下率で熱間変形を加え、それ
以外の試料については、熱間変形を加えることなく、雰
囲気制御型誘導加熱炉に導き、その後1380℃まで昇
温速度1℃/分または、12℃/分の条件で高温加熱を
行った鋳片を熱間圧延し2.2mm厚の熱延板とした。そ
の熱延板に1000℃×2分均熱後、700℃〜150
℃の温度域を平均30℃/秒で冷却する熱延板焼鈍を施
し、酸洗後、予備冷間圧延を実施して1.50mm厚とし
た。かかる予備冷間圧延の途中板厚1.85mmの段階で
種々の温度で3分間のパス間時効を施した。しかる後、
1000℃×2分均熱後急冷する中間焼鈍後、最終冷間
圧延で0.17mmの最終仕上げ厚とした。
[Example 1] [C] 0.075%, [Si] 3.25
%, [Mn] 0.088%, [S] 0.025%, [S
ol. Al] 0.022%, [N] 0.0080%, [S
n] 0.10%, [Cu] 0.05% containing slab is preheated in a gas combustion type heating furnace until the temperature of the slab center reaches a temperature range of 1200 ° C., and thereafter, Sample Nos. 7 and 8 were subjected to hot deformation at a reduction rate of 25%, and the other samples were introduced into an atmosphere-controlled induction heating furnace without hot deformation and then heated up to 1380 ° C. A slab that was heated at a high temperature under the condition of 1 ° C / min or 12 ° C / min was hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm. After soaking at 1000 ° C for 2 minutes on the hot rolled sheet, 700 ° C to 150 ° C
A hot-rolled sheet was annealed to cool the temperature range of 30 ° C. at an average of 30 ° C./sec. After pickling, preliminary cold rolling was performed to obtain a thickness of 1.50 mm. During the preliminary cold rolling, a pass aging was performed for 3 minutes at various temperatures at a stage of a plate thickness of 1.85 mm. After a while
After intermediate annealing of soaking at 1000 ° C for 2 minutes and rapid cooling, final cold rolling was performed to a final finished thickness of 0.17 mm.

【0022】得られた冷延板を公知の方法で脱炭焼鈍し
焼付分離材を塗布した後最終仕上げ焼鈍を行いコーティ
ング波を塗布し製品とした。この時のスラブ昇温速度、
予備冷延でのパス間時効圧延温度、高温加熱前鋳片圧下
の有無および得られた製品n=10の平均の磁束密度B
8 、鉄損W17/50 を表1に示す。これより、本発明例は
比較例と比べて低鉄損材料が得られることが分かる。
The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a baking separating material, final finishing annealing was performed and a coating wave was applied to obtain a product. Slab heating rate at this time,
Interpass aging rolling temperature in pre-cold rolling, presence / absence of billet reduction before high temperature heating, and average magnetic flux density B of obtained product n = 10
8 and iron loss W 17/50 are shown in Table 1. From this, it is understood that the example of the present invention can obtain a low iron loss material as compared with the comparative example.

【0023】[0023]

【表1】 [Table 1]

【0024】〔実施例2〕〔C〕0.074%、〔S
i〕3.24%、〔Mn〕0.087%、〔S〕0.0
14%、〔Se〕0.014%、〔Sb〕0.025
%、〔Mo〕0.03%、〔Sol.Al〕0.024
%、〔N〕0.0077%を含有する鋳片を雰囲気制御
型誘導加熱炉で到達温度を1370℃とし、1200℃
〜1370℃まで15℃/秒の昇温速度にて高温加熱を
行った鋳片を熱間圧延し2.3mm厚の熱延板とした。そ
の熱延板に1000℃×2分均熱後、700℃〜150
℃を平均40℃/秒で冷却する熱延板焼鈍を施し、1.
45mmに予備冷却した。しかる後、1100℃×2分の
均熱後急冷する中間焼鈍をし、最終冷間圧延工程で0.
17mmの最終仕上げ板厚とした。かかる圧延に際して下
記の3種の処理を施した。予備冷延、最終冷延ともに
パス間時効を施さなかった。予備冷延の途中板厚2.
0mmと1.7mmの時に300℃で10分間のパス間時効
を施した。最終冷延でのパス間時効は施さなかった。
予備冷延の途中板厚2.0mmと1.7mmの時に300℃
で10分間のパス間時効を施すと共に、最終冷延の途中
板厚0.7mmの時に300℃×10分間のパス間時効を
施した。
[Example 2] [C] 0.074%, [S
i] 3.24%, [Mn] 0.087%, [S] 0.0
14%, [Se] 0.014%, [Sb] 0.025
%, [Mo] 0.03%, [Sol. Al] 0.024
%, [N] 0.0077% in a slab containing an induction-controlled induction furnace with an ultimate temperature of 1370 ° C. and 1200 ° C.
The slab that had been heated at a high temperature of 15 ° C / sec to -1370 ° C was hot-rolled into a hot-rolled sheet having a thickness of 2.3 mm. After soaking at 1000 ° C for 2 minutes on the hot rolled sheet, 700 ° C to 150 ° C
The hot-rolled sheet is annealed at an average temperature of 40 ° C / sec.
Precooled to 45 mm. After that, an intermediate anneal of 1100 ° C. × 2 minutes soaking and then rapid cooling was performed, and the final cold rolling step was performed in a 0.
The final finished plate thickness was 17 mm. During the rolling, the following three types of treatment were performed. Pre-pass cold rolling and final cold rolling were not aged between passes. Plate thickness during pre-cold rolling 2.
Aging was performed for 10 minutes at 300 ° C. at 0 mm and 1.7 mm. No aging was performed during the final cold rolling.
300 ° C when plate thickness is 2.0 mm and 1.7 mm during pre-cold rolling
During the final cold rolling, the interpass aging was performed for 10 minutes at 300 ° C. for 10 minutes when the plate thickness was 0.7 mm.

【0025】かくして得られた冷延板を公知の方法で脱
炭焼鈍し焼付分離材を塗布した後、最終仕上げ焼鈍を行
いコーティング液を塗布し製品とした。得られた製品n
=10の平均磁束密度B8 、鉄損W17/50 を表2に示
す。これより、本発明例は比較例と比べ低鉄損材料が得
られることが分かる。
The cold-rolled sheet thus obtained was decarburized and annealed by a known method, and after applying a bake-separating material, final finishing annealing was performed to apply a coating liquid to obtain a product. The obtained product n
Table 2 shows the average magnetic flux density B 8 and the iron loss W 17/50 of = 10. From this, it can be seen that the inventive example can obtain a lower iron loss material than the comparative example.

【0026】[0026]

【表2】 [Table 2]

【0027】〔実施例3〕〔C〕0.074%、〔S
i〕3.20%、〔Mn〕0.075%、〔Se〕0.
023%、〔Sol.Al〕0.025%、〔N〕0.0
080%、〔Sb〕0.025%を含有する鋳片を通電
加熱炉で到達温度を1370℃とし、1200℃〜13
70℃まで20℃/秒の昇温速度にて高温加熱を行った
鋳片を熱間圧延し2.3mm厚の熱延板とした。その熱延
板に1000℃×2分均熱の熱延板焼鈍を施した。熱延
板焼鈍での700℃〜150℃の平均冷却速度は、
0.2℃/秒、20℃/秒の2水準とした。引き続き
酸洗後、1.80mmに予備冷延した。かかる予備冷延の
途中板厚段階で、(a)2.1mm厚、1.95mm厚の時
に250℃×10分のパス間時効を施す、(b)処理な
し、の2通りの処理を施した。しかる後、1100℃×
2分の均熱後急冷する中間焼鈍をし、最終冷間圧延工程
で0.22mmの最終仕上げ板厚とした。
[Example 3] [C] 0.074%, [S
i] 3.20%, [Mn] 0.075%, [Se] 0.
023%, [Sol. Al] 0.025%, [N] 0.0
A slab containing 080% and [Sb] 0.025% is set to a temperature of 1370 ° C in an electric heating furnace and 1200 ° C to 13 ° C.
The slab that had been heated to 70 ° C. at a heating rate of 20 ° C./sec at a high temperature was hot-rolled into a hot-rolled sheet having a thickness of 2.3 mm. The hot rolled sheet was annealed at 1000 ° C. for 2 minutes to anneal the hot rolled sheet. The average cooling rate of 700 ° C to 150 ° C in hot-rolled sheet annealing is
There were two levels of 0.2 ° C./sec and 20 ° C./sec. After pickling, it was pre-cold rolled to 1.80 mm. At the stage of the plate thickness during the pre-cold rolling, there are two kinds of treatments: (a) 2.1 mm thickness, 1.95 mm thickness, 250 ° C. × 10 minutes pass aging, and (b) no treatment. did. After that, 1100 ℃ ×
After soaking for 2 minutes, it was subjected to intermediate annealing in which it was rapidly cooled to a final finished thickness of 0.22 mm in the final cold rolling step.

【0028】かくして得られた冷延板を公知の方法で脱
炭焼鈍し焼付分離材を塗布した後、最終仕上げ焼鈍を行
いコーティング液を塗布し製品とした。得られた製品n
=10の平均磁束密度B8 、鉄損W17/50 を表3に示
す。これより、本発明例は比較例と比べ低鉄損材料が得
られることが分かる。
The cold-rolled sheet thus obtained was decarburized and annealed by a known method, and a baking separator was applied, followed by final finish annealing and application of a coating solution to obtain a product. The obtained product n
Table 3 shows the average magnetic flux density B 8 and the iron loss W 17/50 of = 10. From this, it can be seen that the inventive example can obtain a lower iron loss material than the comparative example.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】以上のごとく本発明によれば、鉄損の低
い一方向性電磁鋼板を工業的に安定して製造でき、その
工業的効果は非常に大きい。
As described above, according to the present invention, a grain-oriented electrical steel sheet having a low iron loss can be manufactured industrially stably, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続鋳造スラブの1200℃以上の高温域の加
熱における昇温速度と予備冷間圧延時のパス間時効温度
と製品の鉄損W17/50 の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a temperature rising rate in heating a continuously cast slab in a high temperature range of 1200 ° C. or higher, an aging temperature between passes during pre-cold rolling, and an iron loss W 17/50 of a product.

【図2】予備冷間圧延時のパス間時効時間と製品の磁束
密度B8 、鉄損W17/50 の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an aging time between passes during pre-cold rolling, a magnetic flux density B 8 of a product, and an iron loss W 17/50 .

【図3】熱延板焼鈍での700℃〜150℃の冷却速度
と製品の磁束密度B8 、鉄損W17/50 の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a cooling rate of 700 ° C. to 150 ° C. in a hot rolled sheet annealing, a magnetic flux density B 8 of a product, and an iron loss W 17/50 .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.015〜0.100%、 Si:2.0〜4.0%、 Mn:0.03〜0.12%、 Sol.Al:0.010〜0.065%、 N :0.0040〜0.0100%、 SおよびSeのうちから選んだ1種または2種合計:
0.005〜0.050%、更にSb,Sn,Cu,M
o,Ge,B,Te,AsおよびBiから選ばれる1種
または2種以上を0.003〜0.3%を含有し、残部
は実質的にFeの組成になる連続鋳造スラブを、132
0℃〜1450℃に加熱均熱したのち熱延し、熱延板焼
鈍を施し、予備冷間圧延、中間焼鈍、最終冷間圧延、脱
炭・1次再結晶焼鈍、最終仕上げ焼鈍によって一方向性
電磁鋼板を製造する方法において、上記スラブの120
0℃以上の高温域の加熱を5℃/分以上の昇温速度で行
うと共に、熱延板焼鈍の冷却過程において700℃〜1
50℃の間を8℃/秒以上で冷却し、予備冷間圧延にお
ける複数パスのパス間の少なくとも1回に鋼板を100
℃〜400℃の温度範囲で1分以上の時間保持すること
を特徴とする低鉄損一方向性電磁鋼板の製造方法。
1. By weight%, C: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol. Al: 0.010 to 0.065%, N: 0.0040 to 0.0100%, one or two kinds selected from S and Se in total:
0.005-0.050%, Sb, Sn, Cu, M
A continuous cast slab containing 0.003 to 0.3% of one or more selected from o, Ge, B, Te, As and Bi, and the balance being substantially Fe composition.
Heat soaked at 0 ° C to 1450 ° C, then hot rolled, hot-rolled sheet annealed, unidirectional by preliminary cold rolling, intermediate annealing, final cold rolling, decarburization / primary recrystallization annealing, and final finishing annealing. Of the above slab in a method for producing a magnetic electrical steel sheet
Heating in a high temperature range of 0 ° C. or higher is performed at a temperature rising rate of 5 ° C./min or higher, and 700 ° C. to 1 ° C. in the cooling process of hot rolled sheet annealing.
The steel sheet is cooled at a rate of 8 ° C./sec or more between 50 ° C., and the steel plate is cooled to 100 times at least once between the passes of the preliminary cold rolling.
A method for producing a low iron loss grain-oriented electrical steel sheet, which is characterized by holding at a temperature range of ℃ to 400 ℃ for 1 minute or more.
【請求項2】 最終冷間圧延工程における途中板厚段階
の少なくとも1回のパス間で鋼板を150℃〜350℃
の温度範囲で1分以上の時間保持することを特徴とする
請求項1記載の低鉄損一方向性電磁鋼板の製造方法。
2. The steel sheet is heated to 150 ° C. to 350 ° C. during at least one pass of the intermediate thickness step in the final cold rolling process.
The method for producing a low iron loss unidirectional electrical steel sheet according to claim 1, wherein the temperature is maintained for 1 minute or more.
【請求項3】 スラブを1200℃以上の高温域に加熱
する前に、50%以下の圧下率で熱間変形を加えること
を特徴とする請求項1或いは2記載の低鉄損一方向性電
磁鋼板の製造方法。
3. A low iron loss unidirectional electromagnetic field according to claim 1, wherein hot deformation is applied at a rolling reduction of 50% or less before heating the slab to a high temperature region of 1200 ° C. or higher. Steel plate manufacturing method.
JP13807395A 1995-06-05 1995-06-05 Manufacturing method of low iron loss unidirectional electrical steel sheet Expired - Lifetime JP3338238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13807395A JP3338238B2 (en) 1995-06-05 1995-06-05 Manufacturing method of low iron loss unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13807395A JP3338238B2 (en) 1995-06-05 1995-06-05 Manufacturing method of low iron loss unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH08333631A true JPH08333631A (en) 1996-12-17
JP3338238B2 JP3338238B2 (en) 2002-10-28

Family

ID=15213338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13807395A Expired - Lifetime JP3338238B2 (en) 1995-06-05 1995-06-05 Manufacturing method of low iron loss unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3338238B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159349A1 (en) * 2015-04-02 2016-10-06 新日鐵住金株式会社 Manufacturing method for unidirectional electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159349A1 (en) * 2015-04-02 2016-10-06 新日鐵住金株式会社 Manufacturing method for unidirectional electromagnetic steel sheet
JPWO2016159349A1 (en) * 2015-04-02 2018-01-18 新日鐵住金株式会社 Manufacturing method of unidirectional electrical steel sheet
US10669600B2 (en) 2015-04-02 2020-06-02 Nippon Steel Corporation Method of manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3338238B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH04301035A (en) Production of grain-oriented silicon steel sheet having magnetic property uniform in longitudinal direction
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPH07316657A (en) Production of grain oriented silicon steel sheet reduced in iron loss
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH08176665A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH05117751A (en) Method for hot-rolling continuously cast slab for grain-oriented electrical steel sheet
JP2574583B2 (en) Method for manufacturing oriented silicon steel sheet with good iron loss
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPH09111349A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH0678573B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JPH06158168A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term