JPH0833231A - Portable power supply with battery charger - Google Patents

Portable power supply with battery charger

Info

Publication number
JPH0833231A
JPH0833231A JP6186579A JP18657994A JPH0833231A JP H0833231 A JPH0833231 A JP H0833231A JP 6186579 A JP6186579 A JP 6186579A JP 18657994 A JP18657994 A JP 18657994A JP H0833231 A JPH0833231 A JP H0833231A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
voltage
power
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6186579A
Other languages
Japanese (ja)
Inventor
Shigeo Yamamoto
重雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6186579A priority Critical patent/JPH0833231A/en
Publication of JPH0833231A publication Critical patent/JPH0833231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To increase the number of charging/discharging times of a secondary battery on the next stage by operating the primary of a battery charger with a voltage as low as possible and increasing the secondary voltage slightly higher than the voltage of a secondary battery before feeding power to the secondary battery on the next stage. CONSTITUTION:The secondary voltage for quick charging is temporarily lowered by means of a reverse flow prevention diode 2, a quick charging secondary battery 3 connected in parallel with the cell 1 in order to store the charges received therefrom, and a DC-DC converter 4. The DC output then passes through a chopper to produce pulsating power which is boosted and smoothed to obtain a voltage higher than that of a secondary battery on the next stage thus feeding power, as required, to the secondary battery through a voltage converter 5. The operating time of an electric double layer battery as long as that of a general battery is ensured by lowering the output voltage of the electric double layer battery as low as 1V, for example. The voltage is fed through a chopper and boosted again in order to charge a secondary battery on the following stage thus realizing a perpetual operation through the secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池電源の製作に係るも
のであり、特に太陽光を電気に変換し、変換された電気
を蓄える二次電池の製作を主体とする、ソーラー電池と
いう太陽光エネルギーを電気として蓄える電池がある。
ソーラー電池とは、太陽光を電気に換えたのち、これを
蓄電池に蓄え、蓄えらえた電気を少量づつ、もっぱら数
種類のトランジスタ機器に同時に与え、これらを並列に
稼働せしめることを可能にした電源である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery power source, and more particularly to a solar cell called a solar cell, which is mainly used for manufacturing a secondary battery which converts sunlight into electricity and stores the converted electricity. There is a battery that stores energy as electricity.
A solar battery is a power supply that converts sunlight into electricity, stores it in a storage battery, supplies the stored electricity in small amounts to a few types of transistor devices at the same time, and allows them to operate in parallel. is there.

【0002】太陽光を電気に換えるためのセルを日本人
は「太陽電池」とよんでいるが、これは誤りである。セ
ルは太陽光を電気に変換する変換器の機能を有するだけ
で蓄電の機能は全くない。発生した電気を貯めるには他
に蓄電池が必要なのである。ソーラー電池は、この言葉
のあいまいさを少なくすることから始まっている技術で
もある。
Japanese call a cell for converting sunlight into electricity a "solar cell", which is a mistake. The cell has only the function of a converter that converts sunlight into electricity, and has no function of storing electricity. A storage battery is needed to store the generated electricity. Solar cells are also a technology that started by reducing the ambiguity of this word.

【0003】太陽は地球上赤道を中心として南北緯各6
5°の範囲を平均1m2 (1m×1m)1KWのエネル
ギーを注いでいる。このエネルギーを電気に換えるのに
半導体単結晶では、15〜16%、多結晶では14%内
外、アモルファス(非結晶)では7〜8%の効率(変換
効率)のものが使われている。これらを使って家庭の電
球(100W)を光らせると、1m2 のセルには、太陽
が注がれている間、単結晶、多結晶セルでは電球1個だ
けが光る量の電気を生み、アモルファスではこの電球を
点灯することはできい。これらを技術の根本であるコス
ト面から比較してみると、単結晶の多くは、一旦、多結
晶を精製し、これを更に引き上げ法などの過程を通して
再精製して造るもので、そのコストは多結晶よりも高
い。変換効率が上記のように1〜2%のアップ差であっ
ても、そのコストは多結晶セルの倍以上かかっているの
が普通である。
The sun is centered on the equator on the earth, and is 6 north and south latitudes.
An average of 1 m 2 (1 m × 1 m) of 1 KW of energy is poured in the range of 5 °. To convert this energy into electricity, semiconductor single crystals having an efficiency (conversion efficiency) of 15 to 16%, polycrystals having an internal or external rate of 14%, and amorphous (non-crystalline) having an efficiency (conversion efficiency) of 7 to 8% are used. When these are used to illuminate a domestic light bulb (100 W), a single-cell or poly-crystal cell produces an amount of electricity that only one light bulb shines in a 1 m 2 cell while the sun is being poured. Then it is impossible to light this light bulb. Comparing these from the viewpoint of cost, which is the basis of the technology, most single crystals are produced by first refining a polycrystal and then refining it through a process such as a pulling method. Higher than polycrystalline. Even if the conversion efficiency is increased by 1 to 2% as described above, the cost is usually more than double that of the polycrystalline cell.

【0004】一方アモルファスでは、その変換効率が多
結晶の半分にしか達していない。その製造工程におい
て、非結晶と多結晶とのコスト差は殆どない。その上、
非結晶(アモルファス)のセルは経年変化という、日時
がたつにつれてその特性が劣化する不利がまとわりつい
ている。そうなると、同一性能を出すためには、多結晶
のセルの面積の倍の面積を必要とすることになる。さき
ほど述べた1m2 当り14%内外の変換効率を持つ多結
晶が130〜140Wの電気エネルギーを作り出すのに
対し、アモルファスではセル平面が2倍の2m2 必要と
なる。すなわち、コスト的に余り合うものではない。
On the other hand, the conversion efficiency of amorphous is only half that of polycrystalline. In the manufacturing process, there is almost no cost difference between amorphous and polycrystalline. Moreover,
Amorphous cells suffer from the disadvantage of deterioration over time, which is a characteristic that deteriorates over time. Then, in order to obtain the same performance, an area twice as large as the area of the polycrystalline cell is required. While the polycrystal having a conversion efficiency of 14% per 1 m 2 described above produces electric energy of 130 to 140 W, the amorphous requires a cell plane of 2 m 2 which is twice as large. That is, the costs do not match each other.

【0005】現在、電灯や重工業の電源は100〜20
0Vの交流商用電源でまかなわれている。そのもとは、
水力、石炭火力、石油火力、LPG火力、または原子力
である。これらのエネルギー源は非常に大きなもので、
家庭の一軒一軒においてまかなえるような小さなエネル
ギーではない。同時に家庭一軒一軒で使うにはあまりに
も危険である。このために山や谷や海だとか、民家から
離れたところに大規模に設置し、このエネルギーを遠く
まで配達するために100V、200Vと電圧を高め、
送電線をとおして送り、各家庭や工場に配っているのが
現状である。こうしなければ管理ができず、またコスト
も安くならない。我々はこれを集中管理方式と呼んでお
り、この管理方式は電力会社、国にまかされている。
Currently, the electric power for electric lights and heavy industry is 100 to 20.
It is supplied by 0V AC commercial power supply. The source is
Hydropower, coal fired power, oil fired power, LPG fired power, or nuclear power. These energy sources are very large,
It is not a small energy that can be covered by each household. At the same time, it is too dangerous to use in each home. For this reason, it is installed on a large scale in a place away from private houses such as mountains, valleys and the sea, and the voltage is increased to 100V, 200V to deliver this energy to a long distance.
The current situation is that they are sent via power lines and distributed to homes and factories. If you do not do this, you will not be able to manage and the cost will not be cheap. We call this the centralized management method, and this management method is left up to the electric power company and the country.

【0006】一方、ソーラーセルは先に述べたように1
2 のセルがたとえば100%の変換効率でも100W
電球10個がお天道様が照っている間発生するだけのエ
ネルギーでしかない。これを家庭や工場において、送配
電によってまかない、必要に応じては売電と称し、家庭
の屋根や塀にセルをつけ、その発生電源の一部を昼間は
電力会社に買ってもらうという方式が一部採用されてい
る。しかしこの方式はそれなりに極めて意義があるが、
技術面からみれば、余りにもコストが高くなり過ぎる
し、これで20%以下のエネルギーしかまかないきれな
い。さらに日本のように送配電が行き届いている国は世
界でもまれで、お隣の中国をはじめ、東南アジアや中近
東諸国の多くでは、これら送電は全く不可能である。海
上や山中での配線のないところでも同様その生活は難し
い。現在、各家庭の電化製品で使われている半導体回路
は、メモリー素子が3.3V駆動、ドライバー回路素子
が5.5V駆動のものが圧倒的に多く、これら回路を動
かすのにも、もっぱら100Vの商用電源が使われてい
る。100Vの交流を電圧やアンペアを落とし、デジタ
ル信号用直流電源に直して、使用しているのである。1
00Vの商用電源をして12V以下のIC回路用の電圧
・電流に落とす場合、 イ) 電気事業法による法的規制があり、取り扱いには
種々の制約を受け、家庭で勝手にいじることは許されな
い。 ロ) もしトランジスタ回路がPNP−NPNのコンプ
リメンタリーの構成であるときは、両者が近似の特性で
ないと、開閉トランジスタ側の電極にアンバランス電流
が発生し、ショートしたり、大きな電流が流れて火災に
なるといった不本意な現象が起きることがある。PNP
あるいはNPN単独の接地型トランジスタ回路素子によ
る電源では、大きな電流が流れるため、電源の消耗が激
しく、時には、この電流量が多くなりすぎて、回路もシ
ョートしたり、負荷に過電流を流してこれをショートし
てしまったりすることがある。
On the other hand, the solar cell has one
For example, a cell of m 2 has a conversion efficiency of 100%, but 100 W
Only 10 bulbs generate enough energy while the sun shines. This is covered by power transmission and distribution in homes and factories, called power sale if necessary, with a cell on the roof or fence of the home, and having the power company buy some of the power generated during the day. Partly adopted. However, while this method is extremely significant,
From a technical point of view, the cost is too high, and this can only consume less than 20% of the energy. Furthermore, countries like Japan that are well equipped for power transmission and distribution are rare in the world, and in neighboring China, many countries in Southeast Asia and the Middle East, such power transmission is completely impossible. Even in the place where there is no wiring on the sea or in the mountains, its life is difficult as well. Currently, the majority of semiconductor circuits used in home appliances are those with 3.3V memory element drive and 5.5V driver circuit element, and it is 100V to operate these circuits. Commercial power source is used. The AC voltage of 100 V is dropped and the amperage is converted to a DC power source for digital signals for use. 1
When using a commercial power supply of 00V to drop the voltage and current for IC circuits of 12V or less, a) There are legal restrictions under the Electricity Business Act, and there are various restrictions on handling, and it is permissible to tamper with it at home. Not done. B) If the transistor circuit has a PNP-NPN complementary configuration, unless the two have similar characteristics, an unbalanced current will be generated in the electrodes on the switching transistor side, causing a short circuit or a large current flow, resulting in a fire. It may happen that an unintended phenomenon, such as PNP
Alternatively, since a large current flows in a power supply of a grounded transistor circuit element of NPN alone, the power supply is consumed so much that sometimes the current amount becomes too large, and the circuit is short-circuited or an overcurrent is applied to the load. May be shorted.

【0007】そこで20V以下の電圧、2A以下の電流
にたよるトランジスタ回路に最もふさわしい電源は、ソ
ーラーセルで電気を起こし、その電気を貯めたソーラー
電池を電源として使うということになる。
Therefore, the most suitable power source for a transistor circuit depending on a voltage of 20 V or less and a current of 2 A or less is to generate electricity in a solar cell and use a solar battery that stores the electricity as a power source.

【0008】もう少し詳しくいうと、半導体を使ってい
る機器(その大部分は6V以下の電極で駆動している機
器)、あるいは、自動車のように12V電圧で駆動する
のに、セルと一緒に二次電池を積むことによって、(こ
の二次電池は自動車搭載鉛電池を兼用しても良い)、さ
らにこれにガソリンによるエネルギーとのハイブリッド
構成によって駆動させる機構−これは配線を使わない
で、一戸単位で処理出来るので分散処理機構と呼んでい
るが−においては、機器を動かすエネルギーは従来の集
中管理システム電源エネルギーの数百・数千分の一で済
む分散処理機構電源によってその大部分をまかなうこと
が出来る。つまり、集中管理システムとは別に分散処理
システムでソーラー電池技術による電源は、機器に優し
く、また、何年、何十年と電池交換をしないで済む環境
破壊を防ぐ電源として役に立つのである。ソーラー電池
はその意味ではトータル・エネルギー量の1%程度のエ
ネルギーで主として半導体回路機器の90%以上を長時
間まかなえ得る技術なのである。
More specifically, a device using a semiconductor (most of which is driven by an electrode of 6 V or less), or a 12 V voltage like a car is used together with a cell. By loading a secondary battery (this secondary battery may also be used as an on-board lead battery), and a mechanism that drives it with a hybrid configuration with energy from gasoline-this is a single unit without wiring. It is called a distributed processing mechanism because it can be processed by the-, but in the case of-, the energy to move the equipment needs only a few hundredths / thousandth of the energy of the conventional centralized control system power supply, and most of it can be covered by the distributed processing mechanism power supply. Can be done. In other words, in addition to the centralized control system, the power source that is a distributed processing system and uses solar battery technology is kind to the equipment and also serves as a power source that prevents environmental damage that would not require battery replacement for years and decades. In that sense, the solar cell is a technology that can cover 90% or more of semiconductor circuit equipment for a long time with about 1% of the total energy.

【0009】[0009]

【従来の技術】従来の技術としては、シリコンセルから
の電気を自動車用鉛蓄電池やニッカド電池に蓄え、これ
を用いてトランジスタ機器を稼働せしめる方式がある。
しかしながらこの方式では 二次電池の充放電が400回以下であること。 二次電池のうち鉛蓄電池の電極では硫酸鉛(PbSO
4 )の絶縁層が形成され、このために充電が思うように
ゆかない。強力な充電をしないと硫酸鉛を分解すること
ができない。このため充放電200回以下になってしま
う。 重量がおもくなる。鉛蓄電池の場合12V用で8kg
から10kgぐらいになる。 ニッカド電池、リチウム電池は充放電回数には制限が
あるのでコストが高くなる。
2. Description of the Related Art As a conventional technique, there is a system in which electricity from a silicon cell is stored in a lead acid battery or a nickel-cadmium battery for automobiles and the transistor device is operated by using this.
However, with this method, the secondary battery must be charged and discharged 400 times or less. Among the rechargeable batteries, the lead storage battery electrode has lead sulfate (PbSO
4 ) An insulating layer is formed, which prevents charging from going as expected. Lead sulfate cannot be decomposed without strong charging. For this reason, the charge and discharge will be 200 times or less. Weight becomes heavy. 8kg for 12V in case of lead acid battery
It will be about 10kg. Since the nickel-cadmium battery and the lithium battery have a limited number of charge / discharge cycles, the cost is high.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の欠陥を
改良せんとするもので二次電池の寿命を大巾に改善し、
これ迄の二次電池を連続して5年以上ほぼ永久に連続使
用することが出来るものである。
SUMMARY OF THE INVENTION The present invention is intended to improve the above-mentioned deficiencies and significantly improves the life of a secondary battery.
The secondary battery thus far can be continuously used for more than 5 years almost permanently.

【0011】[0011]

【課題を解決するための手段】本発明のバッテリーチャ
ージャ付ポータブル電源は、高速で充電する二次電池、
例えば活性炭を電極とする電気二重層電池などを太陽光
を受光し発電するセルの後段に設置し、該二次電圧より
極めて低い電圧で作動し、一旦この電圧を昇圧して次段
にパワーを供給する一次コンバーターを設け、更に必要
に応じその後段に定電圧、供給用DC−DCコンバータ
ーを介して後、前記一次コンバーターの出力により充電
され、且つ後段の負荷に電力を供給する次段二次電池、
例えばニッカドやリチウム等の二次電池を設置したこと
を特徴とする。
A portable power source with a battery charger according to the present invention is a secondary battery which is charged at high speed,
For example, an electric double layer battery using activated carbon as an electrode is installed in the rear stage of a cell that receives sunlight and generates power, operates at a voltage extremely lower than the secondary voltage, and temporarily boosts this voltage to supply power to the next stage. A secondary converter that supplies a primary converter is provided, and a secondary voltage that is charged by the output of the primary converter after supplying a constant voltage and a DC-DC converter for supply to the subsequent stage, if necessary, and that supplies power to a load at the subsequent stage. battery,
For example, it is characterized in that a secondary battery such as NiCd or lithium is installed.

【0012】[0012]

【作用】日本の気象庁の発表によると日本の一年間にお
ける一日の平均日照時間は3.8時間である。一方、1
2V用一般電池、例えば鉛二次電池、ニッカド二次電
池、リチウム二次電池の1V以下からの充電時間は早く
て4乃至6時間である。これは平均一日では充電を完了
しないことを意味する。本発明は上記の手段を講ずるこ
とにより、少なくとも1時間以内(数10分)でセルに
ての発生電力を初段の二次電池に蓄積完了し、この二次
電池の蓄電量(F=1×T/V)を有効に活用するた
め、できるだけ小電圧、例えば1Vで、一次側を稼働
し、2次側を次段二次電池の電圧より若干高い電圧まで
上昇せしめた上でこのパワーを次段二次電池に供給する
ことにより、次段二次電池の充放電回数−普通これを二
次電池の呼吸という−を延ばすことにより(普通の二次
電池の呼吸は400回が限度であるとされているが、そ
の電池の呼吸時間を長くすることにより)実質1000
回以上の呼吸回数を可能とするもので、次段二次電池の
寿命を5年以上ほぼ永久に連続して使用することを可能
にしたものである。尚初段の高速充電用二次電池は普通
は電気二重層電池を使用することにより、充・放電の回
数はほぼ無限とすることができる。
[Function] According to the Japan Meteorological Agency's announcement, the average daily sunshine time in one year of Japan is 3.8 hours. On the other hand, 1
The charging time for a general battery for 2V, for example, a lead secondary battery, a nickel cadmium secondary battery, or a lithium secondary battery from 1V or less is 4 to 6 hours at the earliest. This means that charging is not completed in an average day. The present invention, by taking the above-mentioned means, completes the accumulation of the power generated in the cell in the secondary battery of the first stage within at least one hour (tens of minutes), and the storage amount of this secondary battery (F = 1 × In order to effectively utilize T / V), the primary side is operated with a voltage as small as possible, for example, 1 V, the secondary side is raised to a voltage slightly higher than the voltage of the secondary battery of the next stage, and then this power is next By extending the number of charge / discharge cycles of the next-stage secondary battery-usually this is called breathing of the secondary battery-by supplying the secondary-stage secondary battery (the normal secondary battery breathing is limited to 400 times. However, by increasing the breathing time of the battery)
It allows more than one breathing, and makes it possible to use the next-stage secondary battery for almost 5 years or more continuously. As the secondary battery for high-speed charging at the first stage, an electric double layer battery is usually used so that the number of times of charging and discharging can be made almost infinite.

【0013】[0013]

【実施例】本実施例を図面の説明を交えた実施例によっ
て説明してゆきたい。図1に於いて1は太陽光を電気に
変換するセルで具体的には同図に示す如き大きさ、出力
のものを用いた。2は逆流防止ダイオード、3はセル1
と並列に接続し、セルより送られてくる電気を蓄える高
速充電用二次電池(電気二重層電池を用いたが、高速充
電が可能であれば必ずしも電気二重層電池に限らな
い)、4はDC−DCコンバーターで該高速充電用二次
電池を一旦低電圧とし、更にその直流出力をチョッパで
パルスに変換し、その出力を昇圧した後平滑し、次段の
二次電池より高圧とした後、必要に応じて電圧変換装置
5を介して後二次電池(ニッカド電池又はリチウム電池
など)にパワーを供給する。なお6は逆流防止ダイオー
ド、8は負荷である。具体的値をそれぞれの下部に記載
しておいた。又、ここで用いた電気二重層電池の容量は
一般電池のおよそ1/10であることに注意を要する。
The present embodiment will be described with reference to the accompanying drawings. In FIG. 1, reference numeral 1 is a cell for converting sunlight into electricity, and specifically, a cell having a size and an output as shown in the figure was used. 2 is a backflow prevention diode, 3 is a cell 1
Secondary battery for high-speed charging that is connected in parallel with and stores the electricity sent from the cell (the electric double-layer battery was used, but it is not limited to the electric double-layer battery if high-speed charging is possible), 4 After the secondary battery for high-speed charging is once made into a low voltage by the DC-DC converter, the direct current output is further converted into a pulse by the chopper, the output is boosted and smoothed, and the voltage is made higher than the secondary battery at the next stage. Power is supplied to the rear secondary battery (NiCd battery, lithium battery, or the like) via the voltage conversion device 5 as necessary. Reference numeral 6 is a backflow prevention diode, and 8 is a load. Specific values are shown below each. Also, note that the capacity of the electric double layer battery used here is about 1/10 of that of a general battery.

【0014】それならば電気二重層電池は役に立たない
かというとそうでない。電気二重層の電圧特性は人も知
るコンデンサの特性、即ち図2に示す如く右肩下りの低
電流型特性である。そこでセル2の出力を12V程度に
し短時間で電気二重層電池3に蓄えるようにする。ちな
みに電気二重層電池3の電気容量を75Fとすると
If so, whether the electric double layer battery is useful or not is not so. The voltage characteristic of the electric double layer is a characteristic of a capacitor known to humans, that is, a low-current type characteristic with a downward slope as shown in FIG. Therefore, the output of the cell 2 is set to about 12 V so that the electric double layer battery 3 can be stored in a short time. By the way, if the electric capacity of the electric double layer battery 3 is 75F,

【0015】[0015]

【数1】 [Equation 1]

【0016】と30分以内(計算上では27.5分)で
飽和に達し、以後230mAhの電流を出力側に供給す
る。ちなみに純電池、例えば自動車用12Vの鉛電池で
は5Aで充電しても
Within 30 minutes (27.5 minutes in calculation), saturation is reached, and then a current of 230 mAh is supplied to the output side. By the way, a pure battery, such as a 12V lead battery for an automobile, can be charged at 5A.

【0017】[0017]

【数2】 [Equation 2]

【0018】と約3時間、2A充電では7〜8時間を要
することとなり、2日間掛かりで充電しなければならな
いことは日頃自動車をもつ者にとっては納得の事柄であ
る。このように電気二重層電池3は現在の容量では単独
で電池としての役割を過すのは難しい。勿論0.001
A(1mA)内外の時計とか液晶製品の一部には電池と
して使用出来るが1A程度のトランジスタ機器にたいし
ては難しいのである。なぜかそれは前述の計算の如く
It takes about 3 hours and 2 to 8 hours to charge 2A, which means that it takes 2 days to charge the battery. As described above, it is difficult for the electric double layer battery 3 to serve as a battery by itself at the present capacity. Of course 0.001
It can be used as a battery for internal and external A (1mA) watches and some liquid crystal products, but it is difficult for transistor devices of about 1A. For some reason it is like the calculation above

【0019】[0019]

【数3】 (Equation 3)

【0020】約14分で電池の作用がなくなるからであ
る。勿論お天道さんが出ていれば1A以上の充電がなさ
れるのでこれでまかなえるが、要は日没後の問題であ
る。
This is because the battery will cease to function in about 14 minutes. Of course, if Mr. Omichi is out, it will be charged more than 1A, so this can be covered, but the point is the problem after sunset.

【0021】そこでどうしても純二次電池のお世話にな
らなければならない。二次電池例えばニッカド二次電池
がメイン電池として必要になってくる。ところがこの二
次電池は充放電が400回程度が最高である。1000
回程度のものも出来るそうであるが現在は存在しない
し、又コスト的にもまったく合わない。400回程度の
充放電といえばせいぜい1年間か多くても2年間でだめ
になってしまう。そこでこの400回程度の充電を充電
パワーは少ない乍ら常時行うことによって二次電池の有
効時間を図3の如く実質的に長時間にしてやることであ
る。その為には初段の高速充電用二次電池3を電気二重
層電池とし、数1で示したように30分以内で満タンに
するようにする。このとき重要なことは満タン以後の高
速充電用二次電池の電圧はともかく、電池はカットする
ような回路を出来れば構成してやることである。これは
余分の電流により二次電池内の熱発生を出来るだけ小に
してやるためである。今図1のセル1の出力を16V、
300mA、5.3W級のものを使用したとし、電気二
重層75F、230mA出力のものを使用したときは数
1の式の如く25分内外で満タンとなり、これ以降は2
30mAhの出力で電流を供給出来る。ところで電気二
重層電池は先にも述べた如く、又図2にもある如く右肩
下りの低電流型特性を有している。そこでこの電気二重
層電池の出力電圧を例えば1Vという低電圧まで下げる
ことによって電気二重層電池の稼働時間を一般電池並に
長時間確保し、次いでチョッパ等により交流化しこれを
再度昇圧し、例えば8V、100mAの出力とするよう
になし、然る後に後段の二次電池例えば通常のニッカド
電池(定格6V,900mAh)のワイヤレステレホン
用電池を充電してやれば、この二次電池により作動する
ワイヤレステレホン(例えば6V,50mA,0.3
W)を万年稼働しうることが出来る。その根拠今市販さ
れている次段二次電池のうちニッカド電池はその定格が
6.0V、900mAであり、連続通話時間は120分
450mA、連続待ち受け時間は21時間43mAであ
るので、もしワイヤレステレホンが通話中であるなら
ば、230mA≒450mA/2で約30分間電気二重
層電池で電流を供給出来、次段二次電池はなお900m
A−230mA=670mAでこれが連続待ち受け時間
とすれば、670÷43≒16時間となる。平均日照時
間は、前述の如く3.8時間/日であるのでこの時間は
完全に電気二重層電池によってまかなえるし、ほぼ24
時間電源をオフにすることなく使用することが出来る。
Therefore, the pure secondary battery must be taken care of. Secondary batteries such as NiCd secondary batteries are needed as main batteries. However, this secondary battery is best charged and discharged about 400 times. 1000
It seems that it can be used only once, but it does not currently exist and it does not match the cost at all. Speaking of about 400 times of charge and discharge, it will be useless within a year or at most two years. Therefore, it is necessary to make the effective time of the secondary battery substantially long as shown in FIG. 3 by constantly performing the charging about 400 times while the charging power is low. For that purpose, the secondary battery 3 for high-speed charging at the first stage is made to be an electric double layer battery, and as shown in Formula 1, it is filled up within 30 minutes. At this time, what is important is the voltage of the secondary battery for high-speed charging after the tank is full, and the battery should be configured if it can be cut. This is because the heat generation in the secondary battery is made as small as possible by the extra current. The output of cell 1 in FIG. 1 is 16V,
Assuming that a 300 mA, 5.3 W class is used, and an electric double layer 75 F, 230 mA output is used, the tank will be full within 25 minutes as shown in the formula 1 and then 2
It can supply current with an output of 30 mAh. By the way, the electric double layer battery has a low-current characteristic of a downward sloping rightward as described above and as shown in FIG. Therefore, by lowering the output voltage of the electric double layer battery to a low voltage of, for example, 1 V, the operating time of the electric double layer battery is secured as long as a general battery, and then it is converted into an alternating current by a chopper or the like to boost the voltage again, for example, 8 V. , 100 mA, and after that, if a secondary secondary battery, for example, a normal NiCd battery (rated 6 V, 900 mAh) wireless telephone battery is charged, a wireless telephone operated by this secondary battery (for example, 6V, 50mA, 0.3
W) can be operated for many years. The grounds for this are NiCd batteries, which are currently on the market and have a rating of 6.0V and 900mA, continuous talk time of 120 minutes and 450mA, and continuous standby time of 21 hours and 43mA. If you are on a call, the electric double layer battery can supply current at 230mA ≈ 450mA / 2 for about 30 minutes, and the next-stage secondary battery is still 900m.
If A-230 mA = 670 mA and this is the continuous standby time, then 670 ÷ 43≈16 hours. Since the average sunshine time is 3.8 hours / day as described above, this time can be completely covered by the electric double layer battery, and is approximately 24 hours.
It can be used without turning off the power for an hour.

【0022】ここでDC−DCコンバーター4について
少し述べておく必要がある。電気二重層電池は右肩下り
の電圧特性を有する。そこでこれを有効に使用する為に
は、コンバーター4の入力は低く保つべきで今1V内外
とする(尚電流は230mAと定電流が得られる)。こ
れをチョッパなどで一旦交流にし、次に昇圧、平滑によ
り8V・100mA程度の出力とすることが出来、これ
によって、次段二次電池を充分充電することが出来る。
又ワイヤレステレホンは普通6V、50mA、0.3W
程度であるので、この稼働にも差し支えない。
Here, it is necessary to briefly describe the DC-DC converter 4. The electric double layer battery has a voltage characteristic that drops to the right. Therefore, in order to use this effectively, the input of the converter 4 should be kept low and now it is set to 1 V inside or outside (the constant current is 230 mA and a constant current can be obtained). This can be once converted into an alternating current by a chopper or the like, and then boosted and smoothed to provide an output of about 8 V · 100 mA, which allows the secondary battery of the next stage to be sufficiently charged.
Also, the wireless telephone is usually 6V, 50mA, 0.3W
Since it is only a degree, there is no problem in this operation.

【0023】以上ワイヤレステレホン用ソーラー電池電
源について述べた。
The solar battery power source for wireless telephones has been described above.

【0024】では、60V、3A、18Wを消費するラ
ップトップパソコン用電源をソーラー電池で賄うにはど
うしたらよいか。
Then, how can a solar battery supply power for a laptop computer that consumes 60V, 3A and 18W?

【0025】先ずセルを少し大型とし(0.8V、3
A、2.4Wのもので一枚10cm×10cm×0.5
mmのウェハがある)16V、6A、100Wのセル
(50cm×40cm×0.5mmのもの二枚)を用意
しなければならない。
First, make the cell a little larger (0.8 V, 3
A, 2.4 W, 10 cm x 10 cm x 0.5 per sheet
It is necessary to prepare 16V, 6A, 100W cells (two wafers having a size of 50 cm × 40 cm × 0.5 mm) having a wafer of mm).

【0026】[0026]

【数4】 [Equation 4]

【0027】の容量のソーラー電池が必要となる。A solar battery having a capacity of is required.

【0028】今パソコンの不稼働時を稼働時の1/3以
下の電流におさえるとすれば、このソーラー電池で充分
賄える筈である。
If the current when the PC is not operating is reduced to 1/3 or less of the current when the PC is operating, this solar battery should be sufficient.

【0029】[0029]

【発明の効果】之れを要するに本発明バッテリーチャー
ジャ付ポータブル電源によれば半導体電気機器の90%
以上のものが分散処理により各家庭であつかうことが出
来、自動車のイグニションをはじめとする瞬間パルス電
圧、電流の供給等搬送車の電源の一部にも使用できる電
源が得られる。
In summary, according to the portable power source with the battery charger of the present invention, 90% of the semiconductor electric equipment can be obtained.
By the distributed processing, the above can be used in each home, and a power source that can be used as a part of the power source of the carrier vehicle such as the supply of instantaneous pulse voltage and current including the ignition of the vehicle can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバッテリーチャージャ付ポータブル電
源の回路図である。
FIG. 1 is a circuit diagram of a portable power supply with a battery charger of the present invention.

【図2】電気二重層電池3の電圧特性である。2 is a voltage characteristic of the electric double layer battery 3. FIG.

【符号の説明】[Explanation of symbols]

1 セル 2・6 逆流防止ダイオード 3 高速充電用二次電池 4 DC−DCコンバーター 5 電圧変換装置 7 二次電池 8 負荷 1 cell 2.6 reverse-current prevention diode 3 secondary battery for high-speed charging 4 DC-DC converter 5 voltage converter 7 secondary battery 8 load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高速で充電する二次電池を太陽光を受光
し発電するセルの後段に配置し、該二次電池と並列に該
二次電池電圧より極めて低い電圧で作動し、一旦この電
圧を昇圧して次段にパワーを供給するコンバーターを設
け、このコンバーターの出力により充電され、且つ後段
の負荷に電力を供給する次段二次電池を設置してなるバ
ッテリーチャージャー付ポータブル電源。
1. A secondary battery which is charged at high speed is arranged in a subsequent stage of a cell which receives sunlight and generates electric power, operates in parallel with the secondary battery at a voltage extremely lower than the voltage of the secondary battery, and temporarily operates this voltage. A portable power supply with a battery charger, which is equipped with a converter that boosts the voltage to supply power to the next stage, and is equipped with a secondary battery that is charged by the output of this converter and that supplies power to the load in the subsequent stage.
JP6186579A 1994-07-14 1994-07-14 Portable power supply with battery charger Pending JPH0833231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6186579A JPH0833231A (en) 1994-07-14 1994-07-14 Portable power supply with battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6186579A JPH0833231A (en) 1994-07-14 1994-07-14 Portable power supply with battery charger

Publications (1)

Publication Number Publication Date
JPH0833231A true JPH0833231A (en) 1996-02-02

Family

ID=16191015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6186579A Pending JPH0833231A (en) 1994-07-14 1994-07-14 Portable power supply with battery charger

Country Status (1)

Country Link
JP (1) JPH0833231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033868A (en) * 2003-07-08 2005-02-03 Eel Inc Charger for cordless apparatus
JP2005328662A (en) * 2004-05-14 2005-11-24 Nec Tokin Corp Power supply device and control method for use in power supply device
JP2007526730A (en) * 2003-06-17 2007-09-13 エコソル ソーラー テクノロジーズ,リミテッド Two-stage energy storage device
US20110095538A1 (en) * 2009-10-28 2011-04-28 Joseph Akwo Tabe Wind and hydropower plant
JP2014150711A (en) * 2013-01-22 2014-08-21 Ryuji Maeda Energy collection mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526730A (en) * 2003-06-17 2007-09-13 エコソル ソーラー テクノロジーズ,リミテッド Two-stage energy storage device
JP2005033868A (en) * 2003-07-08 2005-02-03 Eel Inc Charger for cordless apparatus
JP2005328662A (en) * 2004-05-14 2005-11-24 Nec Tokin Corp Power supply device and control method for use in power supply device
US20110095538A1 (en) * 2009-10-28 2011-04-28 Joseph Akwo Tabe Wind and hydropower plant
JP2014150711A (en) * 2013-01-22 2014-08-21 Ryuji Maeda Energy collection mechanism

Similar Documents

Publication Publication Date Title
JPH09140071A (en) Portable power supply with battery charger
CN103166325B (en) Energy storage system and the method controlling this energy storage system
JPH06178461A (en) System-linked power supply system
EP2566004B1 (en) Photovoltaic powered system with adaptive power control and method of operating the same
JP2007330057A (en) Charge control method of solar light system with secondary battery
JP2007252146A (en) Power supply system
CN102148515A (en) Electric power system
CN114899913A (en) Battery charging and discharging current control method under off-grid mode of hybrid energy storage inverter
CN107477506B (en) Energy-saving street lamp head powered by solar energy, weak light and commercial power in hybrid mode
CN101277028B (en) Solar battery power supply system storing power using double accumulators
CN104953927A (en) Novel solar and diesel hybrid power generation system
WO2021185167A1 (en) System for charging electric vehicle by using solar energy, and related apparatus and method
CN212373170U (en) System for charging electric vehicle by utilizing solar energy, DC/DC electric energy transmission device, portable battery pack, electric vehicle and solar charging station
JPH1146458A (en) Solar power generating system
JPH0833231A (en) Portable power supply with battery charger
JP2001045677A (en) Power supplying device using solar cell
JP2004064855A (en) Power supply device using photoelectric cell
JPH08308144A (en) Portable battery with battery charger
CN208986668U (en) Compound off-network battery energy storage system
JP3485445B2 (en) Solar powered power supply
JP2003209936A (en) Charger for solar battery powered mobile device
JPH09215224A (en) Portable power supply unit with battery charger
JP2018129980A (en) Photovoltaic power generation system
JPH07298517A (en) Portable power supply with battery charger
JPH11155242A (en) Operating method of sunlight power generation device