JPH07298517A - Portable power supply with battery charger - Google Patents

Portable power supply with battery charger

Info

Publication number
JPH07298517A
JPH07298517A JP6107999A JP10799994A JPH07298517A JP H07298517 A JPH07298517 A JP H07298517A JP 6107999 A JP6107999 A JP 6107999A JP 10799994 A JP10799994 A JP 10799994A JP H07298517 A JPH07298517 A JP H07298517A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
double layer
electric double
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6107999A
Other languages
Japanese (ja)
Inventor
Shigeo Yamamoto
重雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6107999A priority Critical patent/JPH07298517A/en
Publication of JPH07298517A publication Critical patent/JPH07298517A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To improve the service life of a secondary battery by disposing an electric double layer cell in the post-stage of a solar cell, arranging secondary batteries in parallel and converting the outputs therefrom into pulses, combining the pulses into a high frequency composite pulse signal, and then feeding back the composite signal to the input side while converting it into DC power. CONSTITUTION:The power supply comprises a unit 8 for combining the output from an oscillator 9 with a pulse to produce a composite pulse, and an integrating circuit 10 for smoothing the composite pulse. A DC power supply 11 is fed back through a feedback circuit 12 to the input side of an electric double layer cell 3 and the electric capacity of the DC power supply 11 is one third or less that of a secondary battery 4. An electronic chopper 5 is disposed in the post-stage of the secondary battery 4 in order to convert DC power into pulses thus actuating the oscillator 9. It is combined again with pulses to produce high frequency mixture pulses 7 which are then returned through a smoothing circuit 10 back to DC power 11 and fed back through the feedback circuit to the input side of the electric double layer cell. This circuit enhances the service life of the secondary battery significantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池電源の製作に係るも
のであり、特に太陽光を電気に変換し、変換された電気
を蓄える二次電池の製作を主体とする。ソーラー電池と
いう太陽光エネルギーを電気として蓄える電池がある。
ソーラー電池とは、太陽光を電気に換えたのち、これを
蓄電池に蓄え、蓄えらえた電気を少量づつ、もっぱら数
種類のトランジスタ機器に同時に与え、これらを並列に
稼働せしめることを可能にした電源である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery power source, and particularly to a secondary battery which converts sunlight into electricity and stores the converted electricity. There is a battery called a solar battery that stores solar energy as electricity.
A solar battery is a power supply that converts sunlight into electricity, stores it in a storage battery, supplies the stored electricity in small amounts, to a few types of transistor devices simultaneously, and allows them to operate in parallel. is there.

【0002】太陽光を電気に換えるためのセルを日本人
は「太陽電池」とよんでいるが、これは誤りである。セ
ルは太陽光を電気に変換する変換器の機能を有するだけ
で蓄電の機能は全くない。発生した電気を貯めるには他
に蓄電池が必要なのである。ソーラー電池は、この言葉
のあいまいさを少なくすることから始まっている技術で
もある。
Japanese call a cell for converting sunlight into electricity a "solar cell", which is a mistake. The cell has only the function of a converter that converts sunlight into electricity, and has no function of storing electricity. A storage battery is needed to store the generated electricity. Solar cells are also a technology that started by reducing the ambiguity of this word.

【0003】太陽は地球上赤道を中心として南北緯各6
5°の範囲を平均1m2 (1m×1m)1KWのエネル
ギーを注いでいる。このエネルギーを電気に換えるのに
半導体単結晶では、15〜16%、多結晶では14%内
外、アモルファス(非結晶)では7〜8%の効率(変換
効率)のものが使われている。これらを使って家庭の電
球(100W)を光らせると、1m2 のセルには、太陽
が注がれている間、単結晶、多結晶セルでは電球1個だ
けが光る量の電気を生み、アモルファスではこの電球を
点灯することはできい。これらを技術の根本であるコス
ト面から比較してみると、単結晶の多くは、一旦、多結
晶を精製し、これを更に引き上げ法などの過程を通して
再精製して造るもので、そのコストは多結晶よりも高
い。変換効率が上記のように1〜2%のアップ差であっ
ても、そのコストは多結晶セルの倍以上かかっているの
が普通である。
The sun is centered on the equator on the earth, and is 6 north and south latitudes
An average of 1 m 2 (1 m × 1 m) of 1 KW of energy is poured in the range of 5 °. To convert this energy into electricity, semiconductor single crystals having an efficiency (conversion efficiency) of 15 to 16%, polycrystals having an internal or external rate of 14%, and amorphous (non-crystalline) having an efficiency (conversion efficiency) of 7 to 8% are used. When these are used to illuminate a domestic light bulb (100 W), a single-cell or poly-crystal cell produces an amount of electricity that only one light bulb shines in a 1 m 2 cell while the sun is being poured. Then it is impossible to light this light bulb. Comparing these from the viewpoint of cost, which is the basis of the technology, most single crystals are produced by first refining a polycrystal and then refining it through a process such as a pulling method. Higher than polycrystalline. Even if the conversion efficiency is increased by 1 to 2% as described above, the cost is usually more than double that of the polycrystalline cell.

【0004】一方アモルファスでは、その変換効率が多
結晶の半分にしか達していない。その製造工程におい
て、非結晶と多結晶とのコスト差は殆どない。その上、
非結晶(アモルファス)のセルは経年変化という、日時
がたつにつれてその特性が劣化する不利がまとわりつい
ている。そうなると、同一性能を出すためには、多結晶
のセルの面積の倍の面積を必要とすることになる。さき
ほど述べた1m2 当り14%内外の変換効率を持つ多結
晶が130〜140Wの電気エネルギーを作り出すのに
対し、アモルファスではセル平面が2倍の2m2 必要と
なる。すなわち、コスト的に余り合うものではない。
On the other hand, the conversion efficiency of amorphous is only half that of polycrystalline. In the manufacturing process, there is almost no cost difference between amorphous and polycrystalline. Moreover,
Amorphous cells suffer from the disadvantage of deterioration over time, which is a characteristic that deteriorates over time. Then, in order to obtain the same performance, an area twice as large as the area of the polycrystalline cell is required. While the polycrystal having a conversion efficiency of 14% per 1 m 2 described above produces electric energy of 130 to 140 W, the amorphous requires a cell plane of 2 m 2 which is twice as large. That is, the costs do not match each other.

【0005】現在、電灯や重工業の電源は100〜20
0Vの交流商用電源でまかなわれている。そのもとは、
水力、石炭火力、石油火力、LPG火力、または原子力
である。これらのエネルギー源は非常に大きなもので、
家庭の一軒一軒においてまかなえるような小さなエネル
ギーではない。同時に家庭一軒一軒で使うにはあまりに
も危険である。このために山や谷や海だとか、民家から
離れたところに大規模に設置し、このエネルギーを遠く
まで配達するために100V、200Vと電圧を高め、
送電線をとおして送り、各家庭や工場に配っているのが
現状である。こうしなければ管理ができず、またコスト
も安くならない。我々はこれを集中管理方式と呼んでお
り、この管理方式は電力会社、国にまかされている。
Currently, the electric power for electric lights and heavy industry is 100 to 20.
It is supplied by 0V AC commercial power supply. The source is
Hydropower, coal fired power, oil fired power, LPG fired power, or nuclear power. These energy sources are very large,
It is not a small energy that can be covered by each household. At the same time, it is too dangerous to use in each home. For this reason, it is installed on a large scale in a place away from private houses such as mountains, valleys and the sea, and the voltage is increased to 100V, 200V to deliver this energy to a long distance.
The current situation is that they are sent via power lines and distributed to homes and factories. If you do not do this, you will not be able to manage and the cost will not be cheap. We call this the centralized management method, and this management method is left up to the electric power company and the country.

【0006】一方、ソーラーセルは先に述べたように1
2 のセルがたとえば100%の変換効率でも100W
電球10個がお天道様が照っている間発生するだけのエ
ネルギーでしかない。これを家庭や工場において、送配
電によってまかない、必要に応じては売電と称し、家庭
の屋根や塀にセルをつけ、その発生電源の一部を昼間は
電力会社に買ってもらうという方式を採用している。こ
の方式はそれなりに極めて意義があるが、技術面からみ
れば、余りにもコストが高くなり過ぎるし、これで20
%以下のエネルギーしかまかないきれない。さらに日本
のように送配電が行き届いている国は世界でもまれで、
お隣の中国をはじめ、東南アジアや中近東諸国の多くで
は、これら送電は全く不可能である。海上や山中での配
線のないところでも、その生活は難しい。現在、各家庭
の電化製品で使われている半導体回路は、メモリー素子
が3.3V駆動、ドライバー回路素子が5.5V駆動の
ものが圧倒的に多く、これら回路を動かすのにも、もっ
ぱら100Vの商用電源が使われている。100Vの交
流を電圧やアンペアを落とし、デジタル信号用直流電源
に直して、使用しているのである。100Vの商用電源
をして12V以下のIC回路用の電圧・電流に落とす場
合、 イ) 電気事業法による法的規制があり、取り扱いには
種々の制約を受け、家庭で勝手にいじることは許されな
い。 ロ) もしトランジスタ回路がPNP−NPNのコンプ
リメンタリーの構成であるときは、両者が近似の特性で
ないと、開閉トランジスタ側の電極にアンバランス電流
が発生し、ショートしたり、大きな電流が流れて火災に
なるといった不本意な現象が起きることがある。PNP
あるいはNPN単独の接地型トランジスタ回路素子によ
る電源では、大きな電流が流れるため、電源の消耗が激
しく、時には、この電流量が多くなりすぎて、回路もシ
ョートしたり、負荷に過電流を流してこれをショートし
てしまったりすることがある。
On the other hand, the solar cell has one
For example, a cell of m 2 has a conversion efficiency of 100% and is 100 W.
Only 10 bulbs generate enough energy while the sun shines. This is called electricity sale in homes and factories by transmitting and distributing electricity, and if necessary, selling cells, installing cells on the roofs and walls of homes, and having a power company buy some of the generated power during the day. It is adopted. This method is quite significant in its own way, but from a technical point of view, the cost is too high.
I can only cover less than% energy. Furthermore, a country like Japan that has excellent power transmission and distribution is rare in the world,
In neighboring countries such as China, many Southeast Asian countries, and the Middle East countries, such power transmission is completely impossible. Even if there is no wiring on the sea or in the mountains, its life is difficult. Currently, the majority of semiconductor circuits used in home appliances are those with 3.3V memory element drive and 5.5V driver circuit element drive, and it is 100V only to drive these circuits. Commercial power source is used. The AC voltage of 100 V is dropped and the amperage is converted to a DC power source for digital signals for use. When a commercial power supply of 100 V is used to reduce the voltage / current for IC circuits of 12 V or less, a) There are legal restrictions under the Electricity Business Law, and there are various restrictions on handling, and it is permissible to tamper with it at home. Not done. B) If the transistor circuit has a PNP-NPN complementary configuration, unless the two have similar characteristics, an unbalanced current will be generated in the electrodes on the switching transistor side, causing a short circuit or a large current flow, resulting in a fire. It may happen that an unintended phenomenon, such as PNP
Alternatively, a large current flows in a power supply of a grounded transistor circuit element of NPN alone, so that the power supply is heavily consumed. At times, this amount of current becomes too large, and the circuit shorts or overcurrent flows to the load. May be shorted.

【0007】そこで20V以下の電圧、2A以下の電流
にたよるトランジスタ回路に最もふさわしい電源は、ソ
ーラーセルで電気を起こし、その電気を貯めたソーラー
電池を電源として使うということになる。
Therefore, the most suitable power source for a transistor circuit depending on a voltage of 20 V or less and a current of 2 A or less is to generate electricity in a solar cell and use a solar battery that stores the electricity as a power source.

【0008】もう少し詳しくいうと、半導体を使ってい
る機器(その大部分は6V以下の電極で駆動している機
器)、あるいは、自動車のように12V電圧で駆動する
のに、セルと一緒に二次電池を積むことによって、(こ
の二次電池は自動車搭載鉛電池を兼用しても良い)、さ
らにこれにガソリンによるエネルギーとのハイブリッド
構成によって駆動させる機構−これは配線を使わない
で、一戸単位で処理出来るので分散処理機構と呼んでい
るが−においては、機器を動かすエネルギーは従来の集
中管理システム電源エネルギーの数百・数千分の一で済
む分散処理機構電源によってその大部分をまかなうこと
が出来る。つまり、集中管理システムとは別に分散処理
システムでソーラー電池技術による電源は、機器に優し
く、また、何年、何十年と電池交換をしないで済む電源
として役に立つのである。ソーラー電池はその意味では
トータル・エネルギー量の1%程度のエネルギーで主と
して半導体回路機器の90%以上をまかなえ得る「ピカ
ッ」と光る技術なのである。
More specifically, a device using a semiconductor (most of which is driven by an electrode of 6 V or less), or a 12 V voltage like a car is used together with a cell. By loading a secondary battery (this secondary battery may also be used as an on-board lead battery), and a mechanism that drives it with a hybrid configuration with energy from gasoline-this is a single unit without wiring. It is called a distributed processing mechanism because it can be processed by the-, but in the case of-, the energy to move the equipment needs only a few hundredths / thousandth of the energy of the conventional centralized control system power supply, and most of it can be covered by the distributed processing mechanism power supply. Can be done. In other words, in addition to the centralized control system, the distributed processing system and the solar battery technology power source are equipment friendly and can be used as a power source that does not require battery replacement for years and decades. In that sense, the solar cell is a “shining” technology that can cover more than 90% of semiconductor circuit equipment with 1% of the total energy.

【0009】[0009]

【従来の技術】従来の技術としては、シリコンセルから
の電気を自動車用鉛蓄電池やニッカド電池に蓄え、これ
を用いてトランジスタ機器を稼働せしめる方式がああ
る。しかしながらこの方式では 二次電池の充放電が400回以下であること。 二次電池のうち鉛蓄電池の電極では硫酸鉛(PbSO
4 )の絶縁層が形成され、このために充電が思うように
ゆかない。強力な充電をしないと硫酸鉛を分解すること
ができない。このため充放電200回以下になってしま
う。 重量がおもくなる。鉛蓄電池の場合12V用で8kg
から10kgぐらいになる。 ニッカド電池、リチウム電池は充放電回数には制限が
あるのでコストが高くなる。
2. Description of the Related Art As a conventional technique, there is a system in which electricity from a silicon cell is stored in a lead acid battery or a nickel-cadmium battery for automobiles and the transistor device is operated by using this. However, with this method, the secondary battery must be charged and discharged 400 times or less. Among the rechargeable batteries, the lead storage battery electrode has lead sulfate (PbSO
4 ) An insulating layer is formed, which prevents charging from going as expected. Lead sulfate cannot be decomposed without strong charging. For this reason, the charge and discharge will be 200 times or less. Weight becomes heavy. 8kg for 12V in case of lead acid battery
It will be about 10kg. Since the nickel-cadmium battery and the lithium battery have a limited number of charge / discharge cycles, the cost is high.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の欠陥を
改良せんとするもので二次電池の寿命を大巾に改善し、
これ迄の二次電池を連続して5年以上使用し続けること
が出来るものである。
SUMMARY OF THE INVENTION The present invention is intended to improve the above-mentioned deficiencies and significantly improves the life of a secondary battery.
The secondary battery thus far can be continuously used for more than 5 years.

【0011】[0011]

【課題を解決するための手段】本発明のバッテリーチャ
ージャ付ポータブル電源は、コンデンサの電圧・電流特
性を有する電気二重層電池を太陽光を受光し発電するセ
ルの後段に設置し、該電気二重層電池と並列に二次電池
を配置し、該二次電池出力をパルスに変換した後、その
出力の一端を発振器を介した後、前記パルスと合成する
ことによりパルス高周波合成信号を形成し、しかる後に
平滑回路を介して直流に変換し、その出力を前記電気二
重層電池の入力側に供給してなることを特徴とする。
A portable power source with a battery charger according to the present invention has an electric double layer battery having a voltage / current characteristic of a capacitor installed in a subsequent stage of a cell for receiving sunlight and generating power. A secondary battery is arranged in parallel with the battery, the output of the secondary battery is converted into a pulse, and one end of the output is passed through an oscillator and then combined with the pulse to form a pulse high frequency combined signal. After that, it is converted into direct current through a smoothing circuit, and the output is supplied to the input side of the electric double layer battery.

【0012】[0012]

【作用】本発明は上記の構成にすることにより、実用的
かつ有益な電源が得られる。
With the above-mentioned structure of the present invention, a practical and useful power source can be obtained.

【0013】[0013]

【実施例】本実施例を図面の説明を交えた実施例によっ
て説明してゆきたい。1は太陽光を電気に変換するセ
ル、2は逆流防止ダイオード、3はセル1と並列に接続
し、セルより送られてくる電気を蓄える電気二重層電
池、4はニッカド電池のような二次電池、5は該二次電
池の直流出力をパルスに変換するためのチョッパ、6は
該チョッパ5の出力波形、9はこの出力パルス6により
発振する発振器で一般に数KHzの周波数の発振が望ま
しい。8は9の発振器の出力と前記パルス6とを合成す
ることにより合成パルスを発生するための合成器であ
る。この合成器8はトランス等により電圧を上昇するの
に有効である。10は合成パルスを平滑化し、直流11
を生成せしめるための平滑用積分回路である。直流11
はフィードバック回路12を介して前記電気二重層電池
3の入力側へフィードバックされる。電気二重層電池は
前述の如くその電気容量は二次電池4の1/3以下であ
る。
The present embodiment will be described with reference to the accompanying drawings. Reference numeral 1 is a cell that converts sunlight into electricity, 2 is a backflow prevention diode, 3 is an electric double layer battery that is connected in parallel with the cell 1 and stores electricity sent from the cell, and 4 is a secondary battery such as a nicad battery. A battery 5 is a chopper for converting the DC output of the secondary battery into a pulse, 6 is an output waveform of the chopper 5, and 9 is an oscillator which oscillates by the output pulse 6, and it is generally desirable to oscillate at a frequency of several KHz. Reference numeral 8 denotes a combiner for generating a combined pulse by combining the output of the oscillator 9 and the pulse 6. This combiner 8 is effective for increasing the voltage by a transformer or the like. 10 smoothes the composite pulse, direct current 11
Is a smoothing integration circuit for generating. DC 11
Is fed back to the input side of the electric double layer battery 3 via the feedback circuit 12. As mentioned above, the electric capacity of the electric double layer battery is 1/3 or less of that of the secondary battery 4.

【0014】それならば役に立たないかというとそうで
ない。電気二重層の電圧特性は人も知るコンデンサの特
性、即ち図2に示す如く右肩下りの低電流型特性であ
る。そこでセル2の出力を12V以下16〜18V程度
にし短時間で電気二重層電池3に蓄えるようにする。ち
なみに電気二重層電池3の電気容量を200Fとすると
If so, it is not so useful. The voltage characteristic of the electric double layer is a characteristic of a capacitor known to humans, that is, a low-current type characteristic with a downward slope as shown in FIG. Therefore, the output of the cell 2 is set to 12 V or less and about 16 to 18 V so that the electric double layer battery 3 can store the output in a short time. By the way, if the electric capacity of the electric double layer battery 3 is 200F,

【0015】[0015]

【数1】 [Equation 1]

【0016】と14分程度で飽和に達する。ちなみに純
電池、例えば自動車用12Vの鉛電池では5Aで充電し
ても
Saturation is reached in about 14 minutes. By the way, a pure battery, such as a 12V lead battery for an automobile, can be charged at 5A.

【0017】[0017]

【数2】 [Equation 2]

【0018】と約3時間、2A充電では7〜8時間を要
することとなり、2日間掛かりで充電しなければならな
いことは日頃自動車をもつ者にとっては衆知の事柄であ
る。このように電気二重層電池3は現在の容量では単独
で電池としての役割を過すのは難しい。勿論0.001
A(1mA)内外の時計とか液晶製品の一部には電池と
して使用出来るが1A程度のトランジスタ機器にたいし
ては難しいのである。なぜかそれは前述の計算の如く
It takes about 3 hours and 7 to 8 hours for 2A charging, and it is a well-known matter for a person who owns a car to have to charge for 2 days. As described above, it is difficult for the electric double layer battery 3 to serve as a battery by itself at the present capacity. Of course 0.001
It can be used as a battery for internal and external A (1mA) watches and some liquid crystal products, but it is difficult for transistor devices of about 1A. For some reason it is like the calculation above

【0019】[0019]

【数3】 [Equation 3]

【0020】約20分で電池の作用がなくなるからであ
る。勿論お天道さんが出ていれば1A以上の充電がなさ
れるのでこれでまかなえるが、要は日没後の問題であ
る。
This is because the battery will cease to function in about 20 minutes. Of course, if Mr. Omichi is out, it will be charged more than 1A, so this can be covered, but the point is the problem after sunset.

【0021】そこでどうしても純二次電池のお世話にな
らなければならない。二次電池例えばニッカド二次電池
がメイン電池として必要になってくる。ところがこの二
次電池は充放電が400回程度が最高である。1000
回程度のものも出来るそうであるが現在は存在しない
し、又コスト的にもまったく合わない。400回程度の
充放電といえばせいぜい1年間か多くても2年間でだめ
になっています。そこでこの400回程度の充電を充電
パワーは少ない乍ら常時行うことによって二次電池の有
効時間を図3の如く実質的に長時間にしてやることであ
る。その為には二次電池4の後段に電子チョッパ5を設
けこれにより直流を30〜60Hzのパルス6に変換
し、変換したパルス6を基に30KHz内外の発振を発
振器9により起こさせ、これを先のパルス6と再び合成
することにより高周波混合パルス7を形成する。このと
き必要に応じ、昇圧用トランスにより任意の電圧にする
ことが出来る。出来上がった高周波混合パルス7は平滑
回路(積分回路)10により直流11にもどされ、これ
はフィードバック回路を介して電気二重層電池の入力側
にフィードバックしてやれば、セルからの電流による電
気二重層電池の出力電流を二次電池4の出力電流の1/
4程度をすれば3/4の直流をフィードバックで補って
やれば常に負荷14側に有効電流を供給してやることが
出来る。
Therefore, the pure secondary battery must be taken care of. Secondary batteries such as NiCd secondary batteries are needed as main batteries. However, this secondary battery is best charged and discharged about 400 times. 1000
It seems that it can be used only once, but it does not currently exist and it does not match the cost at all. Speaking of about 400 times of charge and discharge is no good in one year or at most two years. Therefore, it is necessary to make the effective time of the secondary battery substantially long as shown in FIG. 3 by constantly performing the charging about 400 times while the charging power is low. For that purpose, an electronic chopper 5 is provided in the subsequent stage of the secondary battery 4 to convert direct current into a pulse 6 of 30 to 60 Hz, and based on the converted pulse 6, oscillation of 30 KHz or less is generated by an oscillator 9, and this is generated. The high frequency mixed pulse 7 is formed by combining the pulse 6 with the previous pulse 6 again. At this time, an arbitrary voltage can be set by a step-up transformer if necessary. The high-frequency mixed pulse 7 thus produced is returned to the direct current 11 by the smoothing circuit (integrating circuit) 10, and if this is fed back to the input side of the electric double layer battery via the feedback circuit, the electric double layer battery is supplied with the current from the cell. The output current is 1 / the output current of the secondary battery 4.
If it is set to about 4, if 3/4 of the direct current is supplemented by feedback, an effective current can be always supplied to the load 14 side.

【0022】尚13はDC−DCコンバータで近時IC
で1.5V乃至12V出力用のコンバータが日本で多種
類販売されているので負荷に報じて設置してやればよ
い。今ニッカド二次電池を1500F程度とし、電気に
重層電池を500F程度のものを使うと、どうなるかに
ついて述べておこう。
Reference numeral 13 is a DC-DC converter, which is an IC recently used.
There are various types of converters for 1.5 V to 12 V output sold in Japan, so you can install them by reporting the load. Now let's talk about what happens if the NiCd secondary battery is about 1500F and the multi-layer battery is about 500F for electricity.

【0023】レリコン多結晶化セルの変換効率15%の
ものを40枚使用したとすると、10cm×10cmの
セルが1.2W(0.6V×2A)の出力を出すとし
て、40枚で48W(24V×2A)のものが得られ
る。このセルを二つ折りにし、一方を20枚で構成すれ
ば、縦40cm横50cm程度の小さなアタッシュケー
スの大きさの箱状のセルが得られる。電池の方は、12
Vの小型ニッカド電池で普通2000F程度あるから、
If 40 sheets of relicon polycrystallized cells having a conversion efficiency of 15% are used, it is assumed that a cell of 10 cm × 10 cm produces an output of 1.2 W (0.6 V × 2 A), and 40 sheets of 48 W ( 24V × 2A) is obtained. If this cell is folded in half and one of them is made up of 20 sheets, a box-shaped cell having a size of about 40 cm in length and about 50 cm in width and the size of a small attache case can be obtained. Batteries are 12
A small Ni-Cd battery with a voltage of about 2000F,

【0024】[0024]

【数4】 [Equation 4]

【0025】から3時間以内で満タンとなる。一方、半
導体機器は普通電流1A重圧9Vのものが多いので、こ
れを平均として、1日の使用量は
It is full within 3 hours. On the other hand, since most semiconductor devices have a normal current of 1 A and a heavy pressure of 9 V, the average daily usage is

【0026】[0026]

【数5】 [Equation 5]

【0027】と13時間も持たない。And I do not have 13 hours.

【0028】今、半導体機器の待ち時間の出力を情報交
換の時期の1/3とし、かつ直流の1/3の時間間隔の
DC−DCコンバータを用いれば、連続して27時間使
用できる。さらにお天道様が照っていれば、500F、
二次電池なしで増加するから、24時間連続して使用す
ることができる。将来、二次電池電極が改良され、電池
の保持エネルギーが高まれば、3〜4Kgのソーラー電
池で、7年以上ほぼ永久稼働のソーラー電池電源が得ら
れるはずである。
Now, if the output of the waiting time of the semiconductor device is set to 1/3 of the time of exchanging information and a DC-DC converter with a time interval of 1/3 of DC is used, it can be continuously used for 27 hours. Furthermore, if Tendorama is shining, 500F,
Since it increases without a secondary battery, it can be used continuously for 24 hours. In the future, if the secondary battery electrode is improved and the holding energy of the battery is increased, it is expected that a solar battery power of 3 to 4 kg can provide a solar battery power source that is almost permanently operated for 7 years or more.

【0029】将来、6V3A電圧電流を消費するラップ
トップパソコン用電源がソーラー電池で出来たとする
と、
In the future, if a power source for a laptop computer that consumes a voltage of 6V3A can be made of a solar battery,

【0030】[0030]

【数6】 [Equation 6]

【0031】の容量のソーラー電池が必要となる。A solar battery with a capacity of is required.

【0032】今パソコンの不稼働時を平常の1/3にお
さえればこのソーラー電池電源で充分まかなうことがで
きる。
If the time when the personal computer is not operating is reduced to 1/3 of the normal time, this solar battery power source can sufficiently cover the demand.

【0033】[0033]

【発明の効果】之れを要するに本発明バッテリーチャー
ジャ付ポータブル電源によれば半導体電気機器の90%
以上のものが分散処理により各家庭であつかうことが出
来、自動車のイグニションをはじめとする瞬間パルス電
圧、電流の供給等搬送車の電源の一部にも使用できる電
源が得られる。
In summary, according to the portable power source with the battery charger of the present invention, 90% of the semiconductor electric equipment can be obtained.
By the distributed processing, the above can be used in each home, and a power source that can be used as a part of the power source of the carrier vehicle such as the supply of instantaneous pulse voltage and current including the ignition of the vehicle can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバッテリーチャージャ付ポータブル電
源の回路図である。
FIG. 1 is a circuit diagram of a portable power supply with a battery charger of the present invention.

【図2】電気二重層電池3の電圧特性である。2 is a voltage characteristic of the electric double layer battery 3. FIG.

【図3】純二次電池4の電圧特性である。FIG. 3 shows voltage characteristics of the pure secondary battery 4.

【符号の説明】[Explanation of symbols]

1 セル 3 電気二重層電池 4 二次電池 8 合成 9 発振器 10 積分回路 11 直流 12 電気二重層入力側フィードバック 1 cell 3 electric double layer battery 4 secondary battery 8 synthesis 9 oscillator 10 integrating circuit 11 direct current 12 electric double layer input side feedback

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 H02J 1/00 306 L 7429−5G 9/06 505 C H01L 31/04 Q ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number for FI Technical indication H01L 31/04 H02J 1/00 306 L 7429-5G 9/06 505 C H01L 31/04 Q

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンデンサの電圧・電流特性を有する電
気二重層電池を太陽光を受光し発電するセルの後段に設
置し、該電気二重層電池と並列に二次電池を配置し、該
二次電池出力をパルスに変換した後、その出力の一端を
発振器を介した後、前記パルスと合成することによりパ
ルス高周波合成信号を形成し、しかる後に平滑回路を介
して直流に変換し、その出力を前記電気二重層電池の入
力側に供給してなるバッテリーチャージャ付ポータブル
電源。
1. An electric double layer battery having a voltage / current characteristic of a capacitor is installed in a subsequent stage of a cell that receives sunlight and generates electricity, and a secondary battery is arranged in parallel with the electric double layer battery, and the secondary battery is used. After converting the battery output into a pulse, one end of the output is passed through an oscillator and then combined with the pulse to form a pulse high frequency synthesized signal, which is then converted into a direct current through a smoothing circuit, and the output is A portable power supply with a battery charger, which is supplied to the input side of the electric double layer battery.
JP6107999A 1994-04-22 1994-04-22 Portable power supply with battery charger Pending JPH07298517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6107999A JPH07298517A (en) 1994-04-22 1994-04-22 Portable power supply with battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6107999A JPH07298517A (en) 1994-04-22 1994-04-22 Portable power supply with battery charger

Publications (1)

Publication Number Publication Date
JPH07298517A true JPH07298517A (en) 1995-11-10

Family

ID=14473425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6107999A Pending JPH07298517A (en) 1994-04-22 1994-04-22 Portable power supply with battery charger

Country Status (1)

Country Link
JP (1) JPH07298517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191386A (en) * 1988-01-26 1989-08-01 Nec Home Electron Ltd Disk cassette and loading device
JP2005033868A (en) * 2003-07-08 2005-02-03 Eel Inc Charger for cordless apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191386A (en) * 1988-01-26 1989-08-01 Nec Home Electron Ltd Disk cassette and loading device
JP2005033868A (en) * 2003-07-08 2005-02-03 Eel Inc Charger for cordless apparatus

Similar Documents

Publication Publication Date Title
US10857897B2 (en) Energy generation and storage system with electric vehicle charging capability
US5811958A (en) Portable electric power source with attached battery charger
CN103166325B (en) Energy storage system and the method controlling this energy storage system
US4315163A (en) Multipower electrical system for supplying electrical energy to a house or the like
EP1684397A2 (en) Portable compound battery unit management system
US20050006958A1 (en) Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
US7148637B2 (en) Portable compound battery unit management system
JPH06178461A (en) System-linked power supply system
JP3153468U (en) Multi-function power storage
EP2566004B1 (en) Photovoltaic powered system with adaptive power control and method of operating the same
JP2013090560A (en) Dc power feeding system
CN102148515A (en) Electric power system
JP2001045677A (en) Power supplying device using solar cell
JPH1169659A (en) Solar power generation and charging system
CN212373170U (en) System for charging electric vehicle by utilizing solar energy, DC/DC electric energy transmission device, portable battery pack, electric vehicle and solar charging station
JPH1146458A (en) Solar power generating system
JPH08308144A (en) Portable battery with battery charger
JPH0833231A (en) Portable power supply with battery charger
JPH07298517A (en) Portable power supply with battery charger
JPH05252671A (en) Control system for photovoltaic power generation
JPH09215224A (en) Portable power supply unit with battery charger
JP2000166124A (en) Auxiliary power unit
JP2021048028A (en) Power storage system
JP4120142B2 (en) Fuel cell power generation system
CN205070585U (en) 48V direct current poE illumination power supply system of dual power supply mode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302