JPH08308144A - Portable battery with battery charger - Google Patents
Portable battery with battery chargerInfo
- Publication number
- JPH08308144A JPH08308144A JP7135967A JP13596795A JPH08308144A JP H08308144 A JPH08308144 A JP H08308144A JP 7135967 A JP7135967 A JP 7135967A JP 13596795 A JP13596795 A JP 13596795A JP H08308144 A JPH08308144 A JP H08308144A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- power
- cell
- output
- double layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電池電源の制作に係わる
ものであり、特に太陽光を電気に変換し、変換された電
気を蓄える二次電池の制作を主体とする。ソーラー電池
という太陽光エネルギーを電気として蓄える電池があ
る。ソーラー電池とは、太陽光を電気に換えたのち、こ
れを蓄電池に蓄え、蓄えられた電気を少量づつ、もっぱ
ら数種類のトランジスタ機器に同時に与え、これらを並
列に稼働せしめることを可能にした電源である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a battery power source, and particularly to the production of a secondary battery that converts sunlight into electricity and stores the converted electricity. There is a battery called a solar battery that stores solar energy as electricity. A solar battery is a power supply that converts sunlight into electricity, stores it in a storage battery, supplies the stored electricity in small amounts to several types of transistor devices at the same time, and allows them to operate in parallel. is there.
【0002】太陽光を電気に換えるためのセルを日本人
は「太陽電池」とよんでいるが、これは誤りである。セ
ルは太陽光を電気に変換する変換器の機能を有するだけ
で蓄電の機能は全くない。発生した電気を電気を貯める
には他に蓄電池が必要なのである。ソーラー電池は、こ
の言葉のあいまいさを少なくすることから始まっている
技術でもある。Japanese call a cell for converting sunlight into electricity a "solar cell", which is a mistake. The cell has only the function of a converter that converts sunlight into electricity, and has no function of storing electricity. A storage battery is necessary to store the generated electricity. Solar cells are also a technology that started by reducing the ambiguity of this word.
【0003】太陽は地球上赤道を中心として南北緯各6
5°の範囲を平均1m2 (1m×1m)1KWのエネル
ギーを注いでいる。このエネルギーを電気に換えるのに
半導体単結晶では、15〜16%、多結晶では14%内
外、アモルファス(非結晶)では7〜9%の効率(変換
効率)のものが使われている。これらを使って家庭の電
球(100W)を光らせると、1m2 のセルには、太陽
が注がれている間、単結晶、多結晶セル電球1個だけが
光る量の電気を生み、アモルファスではこの電球を点灯
することはできない。これらの技術の根本であるコスト
面から比較してみると、単結晶の多くは、一旦多結晶を
精製し、これを更に引き上げ法などの過程を通して再精
製して造るもので、そのコストは多結晶よりも高い。変
換効率が上記のように1〜2%のアップ差であっても、
そのコストは多結晶セルの倍以上かかっているのが普通
である。The sun is centered on the equator on the earth, and is 6 north and south latitudes.
An average of 1 m 2 (1 m × 1 m) of 1 KW of energy is poured in the range of 5 °. In order to convert this energy into electricity, semiconductor single crystals having an efficiency (conversion efficiency) of 15 to 16%, polycrystals having an internal or external rate of 14%, and amorphous (non-crystalline) having an efficiency (conversion efficiency) of 7 to 9% are used. When these are used to illuminate a domestic light bulb (100 W), a single-cell or poly-crystal cell light bulb produces a quantity of electricity that can shine in a 1 m 2 cell while the sun is being poured. You can't light this bulb. From a cost perspective, which is the basis of these technologies, most single crystals are produced by first refining a polycrystal and then refining it through a process such as a pulling method. Higher than crystal. Even if the conversion efficiency is increased by 1-2% as described above,
The cost is usually more than double that of a polycrystalline cell.
【0004】一方アモルファスでは、その変換効率形結
晶の半分にしか達していない。その製造工程において、
非結晶と多結晶とのコスト差は殆どない。その上、非結
晶(アモルファス)のセルは経年変化という、日時がた
つにつれてその特性が劣化する不利がまとわりついてい
る。そうなると、同一性能を出すためには、多結晶のセ
ルの面積の倍の面積を必要とすることになる。さきほど
述べた1m2 当たり14%内外の変換効率を持つ多結晶
が130〜140Wの電気エネルギーを作り出すのにた
いし、アモルファスではセル平面が2倍の2m2 必要と
なる。すなわち、コスト的に余り合うものではない。On the other hand, in the case of amorphous, it reaches only half of the conversion efficiency type crystal. In the manufacturing process,
There is almost no cost difference between amorphous and polycrystalline. In addition, non-crystalline (amorphous) cells are subject to the disadvantage of deterioration over time, which is the deterioration of their characteristics over time. Then, in order to obtain the same performance, an area twice as large as the area of the polycrystalline cell is required. In contrast to the above-mentioned polycrystal having a conversion efficiency of 14% per 1 m 2 which produces an electric energy of 130 to 140 W, the amorphous cell requires twice the cell plane of 2 m 2 . That is, the costs do not match each other.
【0005】現在、電灯や重工業の電源は100〜20
0Vの交流商用電源でまかなわれている。そのもとは、
水力、石灰火力、石油火力、LPG火力、または原子力
である。これらのエネルギー源は非常に大きなもので、
家庭の一軒一軒においてまかなえるような小さなエネル
ギーではない。同時に家庭一件一件で使うにはあまりに
も危険である。このために山や谷や海だとか、民家から
離れたところに大規模に設置し、このエネルギーを遠く
まで配達するために100V、200Vと電圧を高め、
送電線をとおして送り、各家庭や工場に配っているのが
現状である。こうしなければ管理ができず、またコスト
も安くならない。我々はこれを集中管理方式と呼んでお
り、この管理方式は電力会社、国にまかされている。Currently, the electric power for electric lights and heavy industry is 100 to 20.
It is supplied by 0V AC commercial power supply. The source is
Hydropower, lime power, oil power, LPG power, or nuclear power. These energy sources are very large,
It is not a small energy that can be covered by each household. At the same time, it is too dangerous to use one by one at home. For this reason, it is installed on a large scale in a place away from private houses such as mountains, valleys and the sea, and the voltage is increased to 100V, 200V to deliver this energy to a long distance.
The current situation is that they are sent via power lines and distributed to homes and factories. If you do not do this, you will not be able to manage and the cost will not be cheap. We call this the centralized management method, and this management method is left up to the electric power company and the country.
【0006】一方、ソーラーセルは先に述べたように1
m2 のセルがたとえば100%の変換効率でも100W
電球10個がお天道様が照っている間発生するだけのエ
ネルギーでしかない。これを家庭や工場において、送電
線によってまかない、必要に応じては電力会社買っても
らうという方法を採用している。この方式はそれなりに
極めて定義があるが、技術面からみれば、あまりにもコ
ストが高くなり過ぎるし、これで20%以下のエネルギ
ーしかまかないきれない。更に日本のように送配電が行
き届いている国は世界でもまれで、お隣の中国をはじ
め、東南アジアや中近東諸国の多くでは、これら送電は
全く不可能である。会場や山中での配線のないところで
も、その生活は難しい。現在、各家庭の電化製品で使わ
れている半導体回路は、メモリー素子が3.3V駆動、
ドライバー回路素子が5.5V駆動のものが圧倒的に多
く、これら回路を動かすのにも、もっぱら100Vの商
用電源をして12V以下のIC回路様の電圧・電流に落
とす場合、 イ) 電気事業法による法的規制があり、取り扱いには
種々の制約を受け、家庭で勝手にいじることは許されな
い。 ロ) もしトランジスタ回路がPNP−NPNのコンプ
リメンタリーの構成である時は、両者が近似の特性でな
いと、開閉トランジスタ側の電極にアンバランス電流が
発生し、ショートしたり、大きな電流が流れて火災にな
るといった不本意な現象が起こることがある。PNPあ
るいはNPN単独の接地型トランジスタ回路素子による
電源では、大きな電流が流れるため、電源の消耗が激し
く、時には、この電流量が多くなりすぎて、回路もショ
ートしたり、負荷に過電流を流してこれをショートして
しまったりすることがある。On the other hand, the solar cell has one
For example, a cell of m 2 has a conversion efficiency of 100%, but 100 W
Only 10 bulbs generate enough energy while the sun shines. This is adopted in homes and factories, where it is covered by power transmission lines and, if necessary, purchased by an electric power company. This method has its own definition, but from a technical point of view, the cost is too high, and it can only consume less than 20% of energy. In addition, countries like Japan that are well equipped for power transmission and distribution are rare in the world, and in neighboring China, many countries in Southeast Asia and the Middle East, such power transmission is completely impossible. It is difficult to live in a venue or in a mountain without wiring. Currently, in semiconductor circuits used in home appliances, memory devices are driven by 3.3V,
There are overwhelmingly many driver circuit elements that are driven by 5.5V. To operate these circuits, if a commercial power supply of 100V is used and the voltage / current of the IC circuit is 12V or less, a. There are legal restrictions under the law, and there are various restrictions on handling, and it is not allowed to tamper with it at home. B) If the transistor circuit has a PNP-NPN complementary configuration, unless the two have similar characteristics, an unbalanced current will be generated in the electrodes on the switching transistor side, resulting in a short circuit or a large current flow, resulting in a fire. An unintended phenomenon such as is sometimes happened. A large current flows in a power supply with a grounded transistor circuit element of PNP or NPN alone, so the power consumption is great, and sometimes the amount of this current becomes too large, and the circuit shorts or overcurrent flows to the load. This may short out.
【0007】そこで20V以下の電圧、2A以下の電流
にたよるトランジスタ回路に最もふさわしい電源は、ソ
ーラーセルで電気を起こし、その電気を貯めたソーラー
電池を電源として使うということになる。Therefore, the most suitable power source for a transistor circuit depending on a voltage of 20 V or less and a current of 2 A or less is to generate electricity in a solar cell and use a solar battery that stores the electricity as a power source.
【0008】もう少し詳しくいうと、半導体を使ってい
る機器(その大部分は6V以下の電極で駆動している機
器)、あるいは、自動車のように12V電圧で駆動する
のに、セルと一緒に二次電池を積むことによって、(こ
の二次電池は自動車搭載鉛電池を兼用してもよい)、さ
らにこれにガソリンによるエネルギーとのハイブリッド
構成によって駆動させる機構−これは配線を使わない
で、一戸単位で処理できるので分散処理機構と呼んでい
るが−においては、機器を動かすエネルギーは従来の集
中管理システム電源エネルギーの数百・数千分の一で済
む分散処理システムでとは別に分散処理機構電源によっ
てその大部分をまかなうことができる。つまり集中管理
システムとは別に分散処理システムでソーラー電池技術
による電源は、機器にやさしく、また、何年、何十年と
電池交換をしないで済む電源として役に立つのである。
ソーラー電池はその意味ではトータル・エネルギー量の
1%程度のエネルギーで主として半導体回路機器の90
%以上をまかなえ得る「ピカッ」と光る技術なのであ
る。More specifically, a device using a semiconductor (most of which is driven by an electrode of 6 V or less), or a 12 V voltage like a car is used together with a cell. By loading a secondary battery (this secondary battery may also be used as a lead battery onboard an automobile), and a mechanism that is driven by a hybrid configuration with energy from gasoline-this is a unit without a wiring. It is called a distributed processing mechanism because it can be processed with the-, but in the case of the distributed processing system, the energy to move the equipment is several hundreds to several thousandths of the energy of the conventional centralized control system. Can cover most of it. In other words, in addition to the centralized management system, the power source using the solar battery technology is a decentralized processing system that is friendly to the equipment and can be used as a power source that does not require battery replacement for years and decades.
In that sense, a solar cell consumes about 1% of the total energy, and mainly 90% of semiconductor circuit equipment.
It is a technology that shines "bright" that can cover more than 100%.
【0009】[0009]
【従来の技術】従来の技術としては、シリコンセルから
の電気を自動車用鉛蓄電池やニッカド電池に蓄え、これ
を用いてトランジスタ機器を稼働せしめる方式がある。
しかしながらこの方式では、 二次電池の充放電が400回以下であること。 二次電池のうち鉛蓄電池の電極では硫酸塩(PbSO
4 )の絶縁層が形成され、このために充電が思うように
行かない。強力な充電をしないと硫酸塩を分解すること
ができない。このため充放電200回以下になってしま
う。 重量が重くなる。鉛蓄電池の場合12V用で8kgか
ら10kgぐらいになる。 ニッカド電池、リチウム電池は充放電回数には制限が
あるのでコストが高くなる。 それにこの電池では太陽電池セルからの充電はほとん
ど全くと言っていいほど出来ない。2. Description of the Related Art As a conventional technique, there is a system in which electricity from a silicon cell is stored in a lead acid battery or a nickel-cadmium battery for automobiles and the transistor device is operated by using this.
However, in this method, the secondary battery must be charged and discharged 400 times or less. Among the rechargeable batteries, the lead-acid battery electrode has a sulfate (PbSO
4 ) Insulation layer is formed, so charging does not go as expected. Without strong charging, sulfate can not be decomposed. For this reason, the charge and discharge will be 200 times or less. The weight becomes heavy. In the case of a lead storage battery, it will be about 8 to 10 kg for 12V. Since the nickel-cadmium battery and the lithium battery have a limited number of charge / discharge cycles, the cost is high. And with this battery, charging from solar cells is almost impossible.
【0010】[0010]
【発明が解決しようとする課題】本発明は上記の欠陥を
改良せんとするもので二次電池の寿命を大巾に改善し、
これまでの二次電池を連続して5年以上使用し続けるこ
とができるものである。SUMMARY OF THE INVENTION The present invention is intended to improve the above-mentioned deficiencies and significantly improves the life of a secondary battery.
The conventional secondary battery can be continuously used for 5 years or more.
【0011】[0011]
【課題を解決するための手段】本発明のバッテリーチャ
ージャー付ポータブル電池は、コンデンサの電圧・電流
特性を有する電気二重層電池を太陽光を受光し発電する
セルの後段に設置するに際し、セルの出力パワーと電気
二重層電池のパワーとのバランスを計るためのインピー
ダンス変換回路を設置し、電気二重層電池出力側はその
後段に設置される後段二次電池との間に、二次電池の入
力側にこれとパワーのバランスがとれる出力を有するD
C/DCコンバーターを設置し、これを前記電気二重層
電池出力と結合してなることを特徴とする。The portable battery with a battery charger according to the present invention has an output of a cell when an electric double layer battery having a voltage-current characteristic of a capacitor is installed in a subsequent stage of the cell which receives sunlight and generates electricity. An impedance conversion circuit is installed to measure the balance between the power and the power of the electric double layer battery, and the output side of the electric double layer battery is located between the rear secondary battery installed in the subsequent stage and the input side of the secondary battery. D with an output that balances this and power
A C / DC converter is installed and is connected to the electric double layer battery output.
【0012】[0012]
【作用】本発明は上記の構成にすることにより、実用的
かつ有益な電源が得られる。With the above-mentioned structure of the present invention, a practical and useful power source can be obtained.
【0013】[0013]
(1)太陽電池セルは、太陽光を電気に変換する素子で
ある。蓄電能力はない。そこで太陽光による電気エネル
ギーを蓄電するためには別途二次電池を必要とする。鉛
蓄電池は典型的二次電池である。然し乍ら一般に、太陽
電池セルに鉛蓄電池を接続しても電池電源は動作しな
い。一週間や10日間続いて稼働したところで、この電
池電源は本特許出頭の電池であるとは言わない。ではど
ういう電池が電源電池であるかというと、例えば6V、
約1Aの二次電源を電源として稼働するワイヤレステレ
フォン(携帯電話)を接続したままで、3〜5年間(時
間的には30,000時間以上)稼働せしめる電源電池
を言う。ところで現在のワイヤレステレフォンは通話状
態で50mA乃至100mAの半導体回路電流で、電圧
は5.5Vが普通である。この通話状態で6V、0.9
A乃至1Aのニッカド二次電池、リチウム二次電池は4
時間程度しかもたない。そこで待機中受信可能な電圧を
パルス状にし、動作時の1/5程度にパワーを落とすこ
とによって18乃至19時間もたせることにより、常時
2個以上(3個が普通である)の電池を常備し、順次1
00V電源からのバッテリーチャージャーによってその
都度充電(充電は普通8時間以上)をしながら稼働せし
めているのが現状である。これでは電池の交換が大変
で、毎日二次電池を交換して充電をしなけば連続して使
用することができないのである。しかもこれら二次電池
はほぼ400回しか呼吸(充・放電の繰り返し)ができ
ず、毎日交換した場合には1年乃至1.5年しかもたな
い筈である。 (2)ここに図1のごとき充電回路図を有する太陽電池
電源が登場する。重要なことは負荷(10)のパワーに
よって電源側のパワーや時定数が決定されることであ
る。例えば、6V、0.9Aの負荷用二次電池(9)で
あるとすると、その前段の電源用二次電池は(8)はそ
のパワーにより10乃至20%上昇しておかなければな
らず、約7V乃至7.2V、1乃至1.1Aのパワーを
有するものでなければならない。であるとすると、さら
にその前段である電気二重層電池(6)のパワーはさら
に二次電池の10%乃至20%アップ、7.9乃至8.
6V、1.1A乃至1.3A以上のものが使用されなけ
ればならない。そのためには太陽電池セル(4)は10
V以上、1.5A内外のパワーが出るものが使われなけ
ればならない。而して(5)、(7)はそれぞれ後段回
路と整合するインピーダンス変換器等に電気二重層電池
(6)と二次電池(8)との間には入力パワーに関係の
少ないDC/DCコンバーターが必要である。尚、(1
1)は逆流防止ダイオード、(1)、(1)′はセルの
出力ターミナル、(3)、(3)′は負荷用電池のター
ミナルを示す。この場合、電源用二次電池(8)と負荷
用二次電池(9)との間で、パワー電圧値、電池値が不
整いの時は、勿論負荷用二次電池(9)のみをもって、
電源用二次電池として差し支えない。また、セル(4)
は例えば図2の(a)(b)に示す如く折り畳んだ構造
にしておけばこの内部に電気二重層電池や二次電池、ま
た半導体回路や配線に至る全ての素子がおさまり、かつ
全体の大きさが半分以下になり持ち運びが極めて便利に
なる。尚電池供給電流の過剰は熱を持つもので、これを
防止として図3乃至図5の如き過電流防止回路をインピ
ーダンス変換器(5)(7)と一緒に組み込めばさらに
安定した二次電池(9)の充電が行われる。ちなみに多
結晶半導体によるセルは蓄変換効率が14乃至15%で
あり、約10cm2 のもので1Wの出力が得られること
を憶えておくと便利である。 (3)さらに必要に応じて、(5)のインピーダンス変
換器内に図3の如き、SCRで太陽電池セルを短絡して
充電を停止する回路や図4の如きSCR短絡で充電を停
止する回路をコンデンサ電圧の低下でリセットする方式
を採用したり、図5の如き充電用トランジスタをオン・
オフすることによってセル出力を制御する方式を採用す
ることができる。ここで図3のSCRで太陽電池セルを
短絡して充電を停止する回路に於て、 SCR1:例えば2A、400Vのサイリスタを使用。
耐圧は400Vは必要ないが、放熱板をつけることが必
要。 ZD1:定電圧ダイード、6Vよりツェナー電圧が低い
場合、立ち上がり特性がソフトなための調整が必要。 R1:100ΩでSCR1の保持電流が5mA以下にな
るとSCR1はオフとなる。 D1:2A、100V以上の整流ダイオード R2 、R3 :コンデンサの電圧のバランスをとるための
抵抗で、充電時の漏れ電流や容量の違い、ばらつきを考
慮して決める。 等の選択が肝要である。(1) A solar battery cell is an element that converts sunlight into electricity. There is no storage capacity. Therefore, a separate secondary battery is required to store electric energy from sunlight. Lead acid batteries are typical secondary batteries. However, in general, the battery power source does not operate even if a lead storage battery is connected to the solar battery cell. The battery power source is not said to be the battery disclosed in this patent when it is continuously operated for one week or 10 days. Then what kind of battery is a power supply battery?
A power supply battery that can be operated for 3 to 5 years (30,000 hours or more in time) with a wireless telephone (mobile phone) operating using a secondary power supply of about 1 A as a power supply. By the way, a current wireless telephone normally has a semiconductor circuit current of 50 mA to 100 mA and a voltage of 5.5 V in a call state. 6V, 0.9 in this call state
A to 1A NiCd secondary battery, lithium secondary battery is 4
It only takes about time. Therefore, the voltage that can be received during standby is pulsed, and the power is reduced to about ⅕ of that at the time of operation so that it can last for 18 to 19 hours, so that two or more batteries (3 batteries are normal) are always available. , Sequentially 1
The current situation is that a battery charger from a 00V power supply is used to charge each time (normally over 8 hours). This makes it difficult to replace the battery, and it cannot be used continuously unless the secondary battery is replaced and recharged every day. In addition, these secondary batteries can only breathe (repeated charging / discharging) approximately 400 times, and should be replaced every day for only one year to 1.5 years. (2) A solar battery power source having a charging circuit diagram as shown in FIG. 1 appears here. What is important is that the power of the power supply side and the time constant are determined by the power of the load (10). For example, if it is a load secondary battery (9) of 6V, 0.9A, the power source secondary battery of the preceding stage (8) must be raised by 10 to 20% due to its power, It should have a power of about 7V to 7.2V, 1 to 1.1A. If so, the electric power of the electric double layer battery (6), which is the preceding stage, is 10% to 20% higher than that of the secondary battery, and 7.9 to 8.
6V, 1.1A to 1.3A or more must be used. For that purpose, the number of solar cells (4) is 10
A power source with a power of 1.5 A or more and 1.5 A or more must be used. Thus, (5) and (7) are, for example, impedance converters which are matched with the latter-stage circuits, and DC / DC between the electric double layer battery (6) and the secondary battery (8) has little relation to the input power. Need a converter. In addition, (1
Reference numeral 1) is a backflow prevention diode, (1) and (1) 'are cell output terminals, and (3) and (3)' are load battery terminals. In this case, when the power voltage value and the battery value are not uniform between the power source secondary battery (8) and the load secondary battery (9), of course, only the load secondary battery (9) is used.
Can be used as a secondary battery for power supply. Also, the cell (4)
2 has a folded structure as shown in FIGS. 2 (a) and 2 (b), for example, the electric double layer battery, the secondary battery, all the elements including the semiconductor circuit and the wiring can be accommodated therein, and the entire size can be reduced. Since it is less than half, it becomes extremely convenient to carry. It should be noted that the excess battery supply current causes heat, and if this is prevented by incorporating an overcurrent prevention circuit as shown in FIGS. 3 to 5 together with the impedance converters (5) and (7), a more stable secondary battery ( 9) Charging is performed. By the way, it is convenient to remember that a cell made of a polycrystalline semiconductor has a storage conversion efficiency of 14 to 15%, and an output of 1 W can be obtained with a cell of about 10 cm 2 . (3) If necessary, in the impedance converter of (5), a circuit that short-circuits solar cells by SCR as shown in FIG. 3 to stop charging, or a circuit that stops charging by SCR short-circuiting as shown in FIG. Is adopted when the capacitor voltage drops and the charging transistor as shown in Fig. 5 is turned on.
A method of controlling the cell output by turning it off can be adopted. Here, in the circuit that short-circuits the solar cells by the SCR in FIG. 3 to stop charging, SCR1: For example, a 2A, 400V thyristor is used.
Withstand voltage does not need to be 400V, but a heat sink is required. ZD1: Constant voltage diode, adjustment is necessary because the rising characteristics are soft when the Zener voltage is lower than 6V. When R1: 100Ω and the holding current of SCR1 becomes 5 mA or less, SCR1 is turned off. D1: 2A, rectifier diodes of 100 V or more R 2 , R 3 : resistors for balancing the voltage of the capacitors, which are determined in consideration of leakage current at the time of charging, difference in capacity, and variation. It is important to select such as.
【0014】図4に於てはSC1がオンするまでは、通
常の充電動作であり、コンデンサの電圧がZD2のツェ
ナー電圧が高くなると充電電流の一部はZD2に流れる
が、0.5mA程度である。SCR1がオンすると、T
r2もオンしコレクタ電流が流れるがZD2を通じてT
r1のベース電流がバイパスされる。コンデンサの電圧
がZD2のVzより小さくなるとTr3がオフ、Tr1
がオンしSCR1の電流をバイパスするのでSCR1が
オフ→Tr2がオフ→Tr1がオフし充電が再開する。
Tr1のオフを少し遅らせるためCが必要な場合もあ
る。In FIG. 4, the normal charging operation is performed until SC1 is turned on, and when the zener voltage of the capacitor ZD2 becomes high, a part of the charging current flows to ZD2, but at about 0.5 mA. is there. When SCR1 turns on, T
r2 also turns on and collector current flows, but T
The base current of r1 is bypassed. When the voltage of the capacitor becomes lower than Vz of ZD2, Tr3 is turned off and Tr1 is turned off.
Turns on and bypasses the current of SCR1, so SCR1 turns off → Tr2 turns off → Tr1 turns off and charging resumes.
C may be necessary in order to delay the turning off of Tr1 a little.
【0015】図5に於てはコンデンサの充電電圧が低い
時Tr2、Tr3、Tr4はオフでR1 を通じてTr1
がオン充電する。コンデンサの充電電圧が上昇しZD1
のツェナー電圧になるとTr3、Tr4はお互いをオン
し、スイッチとして動作する。Tr3、Tr4のオンに
よりTr2がオンし、Tr1がオフとなって充電を停止
する。コンデンサの充電電圧が低下しZD2のツェナー
電圧近くになるとTr4のエミッタ電流がほぼゼロにな
りTr3、Tr4はそれぞれオフするのでTr2もオ
フ、Tr1がオンして充電が再開されるといった回路を
必要とする場合がある。これは電池間のバランス上必要
に応じて設置するものである。 (4)気象庁によれば日本の年平均1日の日照時間は
3.8時間である。そこでこの3.8時間以内にセルに
よるパワーを蓄積しておかなければならず、このために
はコンデンサタイプの電池である電気二重層電池が絶対
に必要である。要は、 イ)セルから電気二重層電池への充電は急速であること
を要す。 ロ)過電流は熱を発するので、バイパスを必要とする。 ハ)電気二重層電池はパンクしやすいので、電圧制限が
必要。 ニ)電気二重層電池のエネルギーは全てゆっくりと次段
電池(例えばニッカド二次電池)へ移し、常時からの状
態にしておき、次の充電に備えさせることを要す。 (5)さらにこのような回路は必要の都度図1の7、D
C/DCコンバーターに接続する場合がある。[0015] When a low charging voltage of the capacitor At a Figure 5 Tr2, Tr3, Tr1 Tr4 is off through R 1
Turns on to charge. The charging voltage of the capacitor rises and ZD1
When the Zener voltage becomes, the Tr3 and Tr4 turn on each other and operate as a switch. Turning on of Tr3 and Tr4 turns on Tr2 and turns off Tr1 to stop charging. When the charging voltage of the capacitor is lowered and becomes close to the Zener voltage of ZD2, the emitter current of Tr4 becomes almost zero and Tr3 and Tr4 are turned off respectively. Therefore, Tr2 is also turned off, Tr1 is turned on and charging is restarted. There is a case. This is to be installed if necessary due to the balance between batteries. (4) According to the Japan Meteorological Agency, the average daily sunshine time per day in Japan is 3.8 hours. Therefore, the power from the cell must be accumulated within the 3.8 hours, and for this purpose, an electric double layer battery which is a capacitor type battery is absolutely necessary. In short, a) it is necessary to charge the electric double layer battery from the cell rapidly. B) Overcurrent generates heat and requires bypass. C) Electric double layer batteries are prone to flatness, so voltage limitation is necessary. D) It is necessary to transfer all the energy of the electric double layer battery slowly to the next-stage battery (for example, NiCd secondary battery), keep it in the state from the usual time, and prepare for the next charging. (5) Further, such a circuit is required, as shown in FIG.
It may be connected to a C / DC converter.
【0016】[0016]
【発明の効果】これを要するに本発明バッテリーチャー
ジャ付ポータブル電源によれば半導体電気機器の90%
以上のものが分散処理により各家庭で扱う事が出来、自
動車のイグニションをはじめとする瞬間パルス電圧、電
流の供給等搬送車の電源の一部にも使用できる電源が得
られる。In summary, according to the portable power source with the battery charger of the present invention, 90% of the semiconductor electric equipment can be obtained.
The above can be handled in each home by distributed processing, and a power source that can be used as a part of the power source of a carrier vehicle such as the supply of instantaneous pulse voltage and current including the ignition of the vehicle can be obtained.
【図1】 充電回路図を有する太陽電池電源図である。FIG. 1 is a solar cell power supply diagram having a charging circuit diagram.
【図2】 セルの構造図である。FIG. 2 is a structural diagram of a cell.
【図3】 SCRで太陽電池セルを短絡して充電を停止
する回路図である。FIG. 3 is a circuit diagram for short-circuiting the solar cells by SCR to stop charging.
【図4】 SCR短絡で充電を停止する回路図である。FIG. 4 is a circuit diagram for stopping charging due to an SCR short circuit.
【図5】 過電流防止回路図である。FIG. 5 is an overcurrent prevention circuit diagram.
1,1′ セルの出力ターミナル 3,3′ 負荷用電池のターミナル 4 太陽電池セル 5,7 インピーダンス変換器 6 電気二重層電池 8 電源用二次電池 9 負荷用二次電池 10 負荷 11 逆流防止ダイオード 1,1 'Cell output terminal 3,3' Load battery terminal 4 Solar cell 5,7 Impedance converter 6 Electric double layer battery 8 Power supply secondary battery 9 Load secondary battery 10 Load 11 Reverse current prevention diode
Claims (1)
二重層電池を太陽光を受光し発電するセルの後段に設置
するに際し、セルの出力パワーと電気二重層電池のパワ
ーとのバランスを計るためのインピーダンス変換回路を
設置し、電気二重層電池出力側はその後段に設置される
後段二次電池との間に、二次電池の入力側にこれとパワ
ーのバランスがとれる出力を有するDC/DCコンバー
ターを設置し、これを前記電気二重層電池出力と結合し
てなるバッテリーチャージャー付ポータブル電源。1. To balance the output power of a cell and the power of the electric double layer battery when the electric double layer battery having the voltage / current characteristics of a capacitor is installed in the subsequent stage of the cell that receives sunlight and generates electricity. DC / DC which has an output that can balance the power of the electric double layer battery on the output side between the output side of the electric double layer battery and the rear stage secondary battery installed on the subsequent stage. A portable power supply with a battery charger that is equipped with a converter and is connected to the output of the electric double layer battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7135967A JPH08308144A (en) | 1995-05-08 | 1995-05-08 | Portable battery with battery charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7135967A JPH08308144A (en) | 1995-05-08 | 1995-05-08 | Portable battery with battery charger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08308144A true JPH08308144A (en) | 1996-11-22 |
Family
ID=15164050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7135967A Pending JPH08308144A (en) | 1995-05-08 | 1995-05-08 | Portable battery with battery charger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08308144A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001160498A (en) * | 1999-12-01 | 2001-06-12 | Sony Corp | Charging semiconductor device |
KR20040028424A (en) * | 2002-09-30 | 2004-04-03 | 엘지전자 주식회사 | Battery charge apparatus for mobile communication terminal |
JP2005033868A (en) * | 2003-07-08 | 2005-02-03 | Eel Inc | Charger for cordless apparatus |
JP2007526730A (en) * | 2003-06-17 | 2007-09-13 | エコソル ソーラー テクノロジーズ,リミテッド | Two-stage energy storage device |
US20080122518A1 (en) * | 2006-11-27 | 2008-05-29 | Besser David A | Multi-Source, Multi-Load Systems with a Power Extractor |
JP2008532467A (en) * | 2005-02-25 | 2008-08-14 | エルジー・ケム・リミテッド | Secondary battery protection device and method |
CN101647172A (en) * | 2007-02-06 | 2010-02-10 | 艾克斯兰能源技术公司 | Multi-source, multi-load systems with a power extractor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277470A (en) * | 1987-05-06 | 1988-11-15 | Fuji Electric Co Ltd | Power generating system |
JPH05219663A (en) * | 1992-01-31 | 1993-08-27 | Kyocera Corp | Solar light power generating system |
JPH06121471A (en) * | 1991-10-25 | 1994-04-28 | Tatsuhiro Matsuyama | Solar generator |
JPH0759271A (en) * | 1991-09-13 | 1995-03-03 | S Ii Project Kk | Solar power generating/storing system |
-
1995
- 1995-05-08 JP JP7135967A patent/JPH08308144A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277470A (en) * | 1987-05-06 | 1988-11-15 | Fuji Electric Co Ltd | Power generating system |
JPH0759271A (en) * | 1991-09-13 | 1995-03-03 | S Ii Project Kk | Solar power generating/storing system |
JPH06121471A (en) * | 1991-10-25 | 1994-04-28 | Tatsuhiro Matsuyama | Solar generator |
JPH05219663A (en) * | 1992-01-31 | 1993-08-27 | Kyocera Corp | Solar light power generating system |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001160498A (en) * | 1999-12-01 | 2001-06-12 | Sony Corp | Charging semiconductor device |
KR20040028424A (en) * | 2002-09-30 | 2004-04-03 | 엘지전자 주식회사 | Battery charge apparatus for mobile communication terminal |
JP2007526730A (en) * | 2003-06-17 | 2007-09-13 | エコソル ソーラー テクノロジーズ,リミテッド | Two-stage energy storage device |
JP2005033868A (en) * | 2003-07-08 | 2005-02-03 | Eel Inc | Charger for cordless apparatus |
JP2008532467A (en) * | 2005-02-25 | 2008-08-14 | エルジー・ケム・リミテッド | Secondary battery protection device and method |
US7589501B2 (en) | 2005-02-25 | 2009-09-15 | Lg Chem, Ltd. | Apparatus and method for protecting secondary battery |
US20080122518A1 (en) * | 2006-11-27 | 2008-05-29 | Besser David A | Multi-Source, Multi-Load Systems with a Power Extractor |
US9431828B2 (en) * | 2006-11-27 | 2016-08-30 | Xslent Energy Technologies | Multi-source, multi-load systems with a power extractor |
US10158233B2 (en) | 2006-11-27 | 2018-12-18 | Xslent Energy Technologies, Llc | Multi-source, multi-load systems with a power extractor |
US11201475B2 (en) | 2006-11-27 | 2021-12-14 | Apparent Labs, LLC | Multi-source, multi-load systems with a power extractor |
CN101647172A (en) * | 2007-02-06 | 2010-02-10 | 艾克斯兰能源技术公司 | Multi-source, multi-load systems with a power extractor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5811958A (en) | Portable electric power source with attached battery charger | |
CN102113192B (en) | Multipurpose portable storage and supply system | |
CN103166325B (en) | Energy storage system and the method controlling this energy storage system | |
US20150048794A1 (en) | Battery charge balancing device and battery charge balancing system | |
JPH06178461A (en) | System-linked power supply system | |
US11705752B1 (en) | Low-voltage direct supply system capable of switching between solar energy and mains supply | |
CN107477506B (en) | Energy-saving street lamp head powered by solar energy, weak light and commercial power in hybrid mode | |
CN102148515A (en) | Electric power system | |
CN102044902A (en) | Lithium-ion automobile starting storage battery with super capacitor function | |
JPH08308144A (en) | Portable battery with battery charger | |
TWI686564B (en) | Hybrid green-energy street light apparatus | |
CN104638746A (en) | Two-way alternative charge-discharge solar photovoltaic controller | |
CN201829984U (en) | Solar power supply system | |
CN109606394B (en) | Electric locomotive control system | |
JP2004064855A (en) | Power supply device using photoelectric cell | |
CN208986668U (en) | Compound off-network battery energy storage system | |
JP2003209936A (en) | Charger for solar battery powered mobile device | |
JPH0833231A (en) | Portable power supply with battery charger | |
JPH09215224A (en) | Portable power supply unit with battery charger | |
JP3530519B2 (en) | Voltage equalizing device for power storage device and power storage system provided with the device | |
CN2396511Y (en) | Multipurpose solar power supply device | |
CN211184361U (en) | Illumination control system | |
JPH07298517A (en) | Portable power supply with battery charger | |
KR101563949B1 (en) | Led solar cell lighting system having a power unit using secondary batteries | |
CN209840026U (en) | Intelligent controller for solar lamp |