JPH083317A - Sulfur polymer cement, its production and treating method for waste - Google Patents

Sulfur polymer cement, its production and treating method for waste

Info

Publication number
JPH083317A
JPH083317A JP15961094A JP15961094A JPH083317A JP H083317 A JPH083317 A JP H083317A JP 15961094 A JP15961094 A JP 15961094A JP 15961094 A JP15961094 A JP 15961094A JP H083317 A JPH083317 A JP H083317A
Authority
JP
Japan
Prior art keywords
sulfur
spc
product
waste
polymer cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15961094A
Other languages
Japanese (ja)
Other versions
JP3421688B2 (en
Inventor
Tsutomu Moriya
勉 守屋
Hiroshi Kato
弘 加藤
Kaoru Ichinomiya
薫 一ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15961094A priority Critical patent/JP3421688B2/en
Publication of JPH083317A publication Critical patent/JPH083317A/en
Application granted granted Critical
Publication of JP3421688B2 publication Critical patent/JP3421688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/36Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing sulfur, sulfides or selenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To improve treating characteristics in producing sulfur polymer cement (SPC) and a sequestering property for harmful heavy metals and a strength characteristic of a treated product obtained by treating a waste containing heavy metals into a solid by using the SPC. CONSTITUTION:This sulfur polymer cement comprises a polymerization reaction product between sulfur and a reaction agent comprising 10-90wt.% ethylidene norbornene and styrene monomer. This method for treating a waste containing heavy metals is to mix the sulfur polymer cement with the waste containing heavy metals, heat and melt the mixture and solidify the molten product by cooling after kneading. The product is used as a civil engineering material. The treating characteristics in producing the SPC and characteristics of the product are improved by this method. The waste containing harmful metals solidified with the SPC is excellent in compressive strength and inhibition of heavy metal elution and, accordingly, it is suitable for a civil engineering material and aggregate for the material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は硫黄を特定の石油系炭水
化物と反応生成させて得られる硫黄ポリマセメント、そ
の製造方法および前記硫黄ポリマセメントを用いて重金
属含有廃棄物を固形化することにより廃棄物を処分する
際に有害物質である重金属の環境への流出を防止し且つ
廃棄物を減容化するための方法並びに前記方法による処
理生成物から得られる土木建築用材料および骨材に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a sulfur polymer cement obtained by reacting sulfur with a specific petroleum-based carbohydrate, a method for producing the same, and solidifying a heavy metal-containing waste using the sulfur polymer cement to dispose of it. The present invention relates to a method for preventing outflow of heavy metals, which are harmful substances, to the environment when disposing of materials, and reducing the volume of waste, as well as civil engineering and construction materials and aggregates obtained from the processed products by the method.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】硫黄
をセメント剤として例えば舗装材料に用いることは以前
から行われており、1935年頃アメリカのオハイオ州
で実施された試験舗装では、アスファルトを140℃に
加熱して硫黄を50%加え激しく混合攪拌して使用され
ている(米国特許第2182837号)。1970年代
には硫黄を使用した舗装剤あるいはセメント剤としての
利用研究が最も盛んに行われていたが一般的な実用化の
段階には至っていない。
2. Description of the Related Art It has long been practiced to use sulfur as a cementing agent, for example, in pavement materials. In the test pavement conducted in Ohio, USA around 1935, asphalt was heated to 140 ° C. It is used by heating it to 50% of sulfur and mixing it vigorously with stirring (US Pat. No. 2,182,837). In the 1970s, the most active research was made on the use of sulfur as a paving agent or cement agent, but it has not reached the stage of general practical use.

【0003】硫黄をセメント剤として用いる場合、これ
をアスファルトまたはオレフィン系炭化水素と反応させ
る研究が従来から種々なされており、特にシクロペンタ
ジエン系炭化水素を用いた例が多く知られている。一般
に硫黄と石油系炭化水素との反応による生成物は硫黄ポ
リマセメント(SPC)と呼ばれている。SPCは従来
からコンクリートまたはアスファルト等の代替もしくは
改良剤として用いられており、硫黄と一種又はそれ以上
の石油系炭化水素とをたとえば硫黄60〜98重量%、
炭化水素40〜2重量%の混合比で120〜150℃で
反応させて得られている(米国特許第4190816お
よび4391969号等)。
When sulfur is used as a cement agent, various studies have been made so far to react it with asphalt or olefinic hydrocarbon, and many examples using cyclopentadiene hydrocarbon are known. The product of the reaction between sulfur and petroleum hydrocarbons is generally called sulfur polymer cement (SPC). SPC has been conventionally used as a substitute or improver for concrete or asphalt, and contains sulfur and one or more petroleum hydrocarbons, for example, 60 to 98% by weight of sulfur,
It is obtained by reacting hydrocarbons at a mixing ratio of 40 to 2% by weight at 120 to 150 ° C. (US Pat. Nos. 4,190,816 and 4391969).

【0004】一方、有害重金属含有廃棄物処理について
は、たとえば製鋼ダスト、一般焼却炉、フライアッシュ
等の発生量は年々増加する傾向にあり、反面それらの処
分用地は近年ますます逼迫している。特にこれら廃棄物
中にCd、Pd、Zn、Hg、Cr……等の有害重金属
が含まれている場合には、その投棄地周辺が重金属等の
溶出によって汚染される恐れがあるため、処分方法自体
が問題となっている。リサイクルによる廃棄物の再利用
の新技術開発の研究も多々行われているが決定的な方法
がないのが現状である。
On the other hand, regarding the treatment of waste containing heavy metals, for example, the amount of steelmaking dust, general incinerators, fly ash, etc., tends to increase year by year, while the sites for their disposal are becoming more and more tight in recent years. In particular, when these wastes contain harmful heavy metals such as Cd, Pd, Zn, Hg, Cr ..., the disposal area is likely to be contaminated by elution of heavy metals. It's a problem in itself. Many studies have been conducted on the development of new technologies for the reuse of waste by recycling, but there is currently no definitive method.

【0005】このような重金属含有廃棄物処理に関して
は、ポルトランドセメント(PC)による重金属封鎖方
法が一般的に試みられているが、種々の欠点があって重
金属を完全に封鎖する技術の完成には至っていない。こ
の方法はPCの水和反応によるものであるが凝固までに
長時間を要し、また廃棄物中に存在する多くの塩類その
他の不純物質等により凝固反応が妨害されるため、セメ
ント固化強度及び耐久力が劣化して亀裂等が発生し易
く、特に酸性に弱い欠点があって重金属が溶出して汚染
を生じる恐れがある。
Regarding the treatment of such heavy metal-containing wastes, a heavy metal sealing method using Portland cement (PC) has been generally attempted. However, there are various drawbacks and it is not possible to complete a technique for completely sealing heavy metals. I haven't arrived. Although this method is based on the hydration reaction of PC, it takes a long time to solidify, and many salts and other impurities present in the waste interfere with the solidification reaction. The durability is deteriorated and cracks and the like are likely to occur. Especially, there is a defect that acidity is weak and heavy metals may be eluted to cause contamination.

【0006】またPCに硫化ソーダやキレート剤等を併
用して重金属を捕捉しPCで固化封鎖することも試みら
れているが、経時変化による不安定のため分解溶出する
恐れが多分にあるといわれており一般的な普及の域には
達していない。
Further, it has been attempted to use sodium sulfide or a chelating agent in combination with PC to capture heavy metals and solidify and seal them with PC, but it is said that there is a possibility of decomposition and dissolution due to instability due to aging. Therefore, it has not reached the level of general diffusion.

【0007】さらに硫黄の温度による形態変化に着目し
て産業廃棄物等に硫黄を混合して加熱し、熔融状態の硫
黄と混練された廃棄物粒子中の重金属を冷却時に凝固す
る硫黄の高分子鎖中に取り込んだ状態で廃棄物を固形化
することも提案されている。この方法は処理が迅速であ
り、かつ有害物質が硫黄と結合した状態で凝固した高分
子硫黄鎖中に取り込まれて外部に溶出し難い状態となる
ので重金属を含む廃棄物を最終処分形態とするのに適し
ている。
Further, paying attention to the morphological change due to the temperature of sulfur, sulfur is mixed with industrial waste and the like is heated, and the heavy metal in the waste particles mixed with the molten sulfur and kneaded is solidified during cooling. It has also been proposed to solidify the waste as it is incorporated into the chain. In this method, the treatment is quick, and the hazardous substance is incorporated into the solidified polymer sulfur chain in the state where it binds to sulfur and it becomes difficult to elute to the outside. Suitable for

【0008】しかし従来の硫黄処理方法においては廃棄
物中に多量の塩類が存在していたり、またはダストがミ
クロン以下の超微粒子の場合には、重金属を固定封鎖す
る際に被処理廃棄物以上の多量の硫黄を必要とする場合
があり、それでもなお完全に二次的な溶出をおさえられ
るとは限らない。
However, in the conventional sulfur treatment method, when a large amount of salts is present in the waste, or when the dust is ultrafine particles of micron or less, when the heavy metal is fixed and sequestered, it is more than the waste to be treated. Large amounts of sulfur may be needed and still may not completely suppress secondary elution.

【0009】本発明の目的は製造時の処理特性および固
化後の生成物の性状においてより優れた硫黄ポリマセメ
ント(SPC)を提供することにある。
An object of the present invention is to provide a sulfur polymer cement (SPC) which is more excellent in processing characteristics during production and properties of a product after solidification.

【0010】本発明の別の目的はSPCを用いて重金属
含有廃棄物を固形化処理する際、処理が容易でかつ得ら
れる処理生成物が緻密で有害金属の溶出がほとんどなく
かつ大きな強度を有する廃棄物の処理方法および前記方
法によって得られる土木建築用材料および骨材を提供す
ることにある。
Another object of the present invention is that when the heavy metal-containing waste is solidified by using SPC, it is easy to treat, the obtained treatment product is dense, hardly elutes harmful metals, and has high strength. It is an object of the present invention to provide a method for treating waste, and civil engineering and construction materials and aggregates obtained by the method.

【0011】前記SPCに用いられる石油系炭化水素の
例としてはC4〜C20のオレフィン系炭化水素、ジオ
レフィン系炭化水素、ジシクロペンタジエンやそのオリ
ゴマ等のジエン系炭化水素、その他ビニルトルエン、メ
チルスチレン等の芳香族炭化水素が知られているが、本
発明者等はこのようなSPCにおける反応剤としてより
適した石油系炭化水素について種々研究、実験を重ねた
結果エチリデンノルボルネン(ENB)を用いることに
着目した。
Examples of petroleum hydrocarbons used in the SPC are C4 to C20 olefinic hydrocarbons, diolefinic hydrocarbons, diene hydrocarbons such as dicyclopentadiene and its oligomers, other vinyltoluene, methylstyrene. Aromatic hydrocarbons such as are known, but the present inventors have conducted various studies and experiments on petroleum hydrocarbons more suitable as a reactant in such SPC, and as a result, have used ethylidene norbornene (ENB). I focused on.

【0012】ENBは反応性に富んだ二重結合を2個有
するノルボルネン誘導体の一種であり、常温では無色透
明な液体であって、たとえばENBの一種であるEBH
は従来から合成ゴム業界において主にエチレンプロピレ
ンゴムの第三成分として用いられている。エチレンプロ
ピレン共重合体はチーグラ−系触媒によりエチレンとプ
ロピレンを共重合させて得られるエラストマであって、
分子中に不飽和結合がなく従来のゴムには見られないす
ぐれた耐熱性、耐候性を有しているが、通常の硫黄加硫
系が適用できず使用面で障害があった。このため不飽和
結合を有する少量の前記第三成分を導入することにより
エチレン、プロピレンおよびジエンの三元共重合体とし
硫黄加硫性が付与されている。この様な加硫性の付与に
より合成ゴム共重合体の合成において粘質度が向上し重
合反応に寄与すると共に製品品位が向上される。
ENB is a kind of norbornene derivative having two highly reactive double bonds, and is a colorless and transparent liquid at room temperature, for example, EBH which is a kind of ENB.
Has been used as a third component of ethylene propylene rubber in the synthetic rubber industry. The ethylene-propylene copolymer is an elastomer obtained by copolymerizing ethylene and propylene with a Ziegler-based catalyst,
It has no unsaturated bond in the molecule and has excellent heat resistance and weather resistance that are not found in conventional rubbers, but the usual sulfur vulcanization system could not be applied and there was a problem in terms of use. Therefore, by introducing a small amount of the third component having an unsaturated bond, a terpolymer of ethylene, propylene and diene is obtained, and sulfur vulcanizability is imparted. By imparting such vulcanizability, in the synthesis of the synthetic rubber copolymer, the viscosity is improved to contribute to the polymerization reaction and the product quality is improved.

【0013】本発明者等はこのEBHとスチレンモノマ
と硫黄との組合せがSPCを製造する際にそのすぐれた
粘性度による混練効果が極めて優れており、冷却固化後
の処理物質が緻密で均質度が非常によいことを発見し
た。
The present inventors have found that this combination of EBH, styrene monomer and sulfur has an extremely excellent kneading effect due to its excellent viscosity when producing SPC, and the treated substance after cooling and solidification is dense and homogeneous. Have found it very good.

【0014】また前記重金属含有廃棄物に対してかゝる
SPCを溶融混練することによって得られる処理混合物
はこれを加圧成形等によって加工することにより重金属
の溶出を充分に抑止しかつ優れた圧縮強度を有する土木
建築材料が得られ、または混合物が冷却後に適宜な粒径
に粉砕することにより、従来の天然の砂利、割栗石等の
代替としてコンクリートの骨材として充分実用化出来る
ことを発見した。
The processing mixture obtained by melt-kneading such SPC with the heavy metal-containing waste is processed by pressure molding or the like to sufficiently suppress the elution of heavy metals and to achieve excellent compression. It was discovered that a civil engineering building material having strength can be obtained, or the mixture can be crushed to an appropriate particle size after cooling, and can be sufficiently put into practical use as an aggregate of concrete as a substitute for conventional natural gravel, split stone, etc. .

【0015】前記本発明の目的はエチリデンノルボルネ
ン10〜90重量%およびスチレンモノマからなる反応
剤と硫黄との重合反応生成物からなる硫黄ポリマセメン
ト製剤によって達成される。
The above object of the present invention is achieved by a sulfur polymer cement preparation comprising a reaction product of ethylidene norbornene of 10 to 90% by weight and a reaction product of styrene monomer and a polymerization reaction product of sulfur.

【0016】本発明の別の目的は有害重金属含有廃棄物
に対して前記の硫黄ポリマセメントを混合し加熱、熔
融、混練した生成物を冷却と共に加圧成形して得られる
土木建築用材料によって達成される。
Another object of the present invention is achieved by a material for civil engineering and construction, which is obtained by mixing the above-mentioned sulfur polymer cement with a waste containing a harmful heavy metal, heating, melting, and kneading a product obtained by cooling and press-molding the product. To be done.

【0017】[0017]

【作用】一般にSPC製品は硫黄と各種反応剤、たとえ
ばシクロペンタジエンまたはその誘導体等を混合加熱し
て熔融反応を行ない、反応終了後冷却固化して得られる
が、本発明においては硫黄に反応させる反応剤としてE
NB例えば5−エチリデンビシクロ(2・2・1)ヘプ
ト−2−エン(EBH)を主剤としスチレンモノマを併
用して反応させることによりSPCを製造する。EBH
はジシクロベンタ−2−エン(DCPD)とブタジエン
の反応で次式により生成される。
In general, an SPC product is obtained by mixing and heating sulfur and various reactants such as cyclopentadiene or its derivative to carry out a melting reaction, and cooling and solidifying after completion of the reaction. In the present invention, a reaction to react with sulfur E as an agent
SPC is produced by reacting NB, for example, 5-ethylidene bicyclo (2.2.1) hept-2-ene (EBH) as a main component with styrene monomer in combination. EBH
Is produced by the reaction of dicyclobenz-2-ene (DCPD) and butadiene according to the following formula.

【0018】[0018]

【化1】 DCPD ジシクロペンタ2エン EBH 5−エチリデンビシクロ(2・2・1)ヘプト
─2−エン CPD シクロペンタ2エン VCH 4−ビニル−1−シクロヘキセン VBH 5−ビニルシクロ(2・2・1)ペプト−2−
エン THI 3a,4,7,7aテトラヒドロインデン BD ブタジエン
Embedded image DCPD dicyclopenta2ene EBH 5-ethylidene bicyclo (2.2.1) hept-2-ene CPD cyclopenta2ene VCH 4-vinyl-1-cyclohexene VBH 5-vinylcyclo (2.2.1) pept-2-
EN THI 3a, 4,7,7a tetrahydroindene BD butadiene

【0019】EBHおよびスチレンモノマを反応剤とし
てを用いるSPCの製造は具体的にはたとえば次のよう
にして行われる。 攪拌機付き密閉反応タンクに硫黄を投入し、内部温
度を125〜140℃に維持する。 硫黄投入後5分以内にスチレンモノマを投入し10
〜15分間混合する。 さらにEBHを投入し2〜4時間混合を続ける。 スチレンモノマ、EBHを投入直後はタンク内の温
度が下がるが、硫黄との反応の進行に従って温度粘度が
徐々に上昇する。混合の際の温度は140℃以下を維持
する。粘度の許容範囲は25〜100cp/135℃で
あり最適粘度は40cp/135℃である。 反応終了後、反応タンクより生成物を排出し冷却固
化することにより目的のSPCを得ることが出来る。
The production of SPC using EBH and styrene monomer as a reactant is specifically carried out, for example, as follows. Sulfur is charged into a closed reaction tank equipped with a stirrer, and the internal temperature is maintained at 125 to 140 ° C. Add styrene monomer within 5 minutes after adding sulfur 10
Mix for ~ 15 minutes. Further, EBH is added and mixing is continued for 2 to 4 hours. Immediately after adding the styrene monomer and EBH, the temperature in the tank decreases, but the temperature viscosity gradually increases as the reaction with sulfur progresses. The temperature during mixing is maintained at 140 ° C or lower. The allowable range of viscosity is 25 to 100 cp / 135 ° C, and the optimum viscosity is 40 cp / 135 ° C. After the reaction is completed, the target SPC can be obtained by discharging the product from the reaction tank and cooling and solidifying.

【0020】ENB例えばEBHによりSPCを生成す
る際の硫黄とEBHとの反応は硫黄の溶融状態120〜
130℃の存在下において次に示す反応により進行す
る。ただし反応による発熱の点に注意し取扱い制御に対
して慎重に行う必要がある。
The reaction between sulfur and EBH in producing SPC by ENB, for example, EBH, is carried out in the molten state of sulfur 120 to
The following reaction proceeds in the presence of 130 ° C. However, it is necessary to pay attention to the heat generated by the reaction and to carefully control the handling.

【0021】[0021]

【化2】 Embedded image

【0022】反応(1)によりEBHと硫黄との反応が
行われる。さらに反応条件次第により(2)に移行す
る。(1)〜(2)により生成された生成物が(3)に
よりポリマ化され、次いでENB(EBH)系SPCの
必要成分である直鎖状のSPC(4)を得ることができ
る。
The reaction (1) causes the reaction of EBH with sulfur. Further, depending on the reaction conditions, the process moves to (2). The products produced by (1) to (2) are polymerized by (3), and then linear SPC (4) which is a necessary component of ENB (EBH) -based SPC can be obtained.

【0023】またENB(EBH)系SPCを調製する
際にスチレンモノマを併用すると、重合性の高いスチレ
ンモノマがスチレンポリマとなって反応中に於ける粘度
の安定性の保持と、調製したSPCをセメント剤として
使用した場合の成型物の強度増加につながる。強度の増
加はスチレンの添加量に略比例する。
When a styrene monomer is used together in the preparation of an ENB (EBH) type SPC, the highly polymerizable styrene monomer becomes a styrene polymer to maintain the stability of the viscosity during the reaction and to prepare the prepared SPC. This will increase the strength of the molded product when used as a cement agent. The increase in strength is approximately proportional to the amount of styrene added.

【0024】前記硫黄とEBHとスチレンモノマの反応
において70〜99重量%の硫黄に対して1〜30重量
%の反応剤、好ましくは85〜97重量%の硫黄に対し
て3〜15重量%の反応剤を用いることが望ましい。ま
た反応剤としてのEBHとスチレンモノマの重量比率は
EBHを10〜90重量%とし、SPC剤の使用目的に
よりスチレンモノマの比率を変えて調製する。尚EBH
に替え下記式に示すようにその前駆体であるVBH又は
副生物であるVCHを使用することにより同様の目的を
達することも出来る。
In the reaction of the above sulfur, EBH and styrene monomer, 1 to 30% by weight of the reactant is added to 70 to 99% by weight of the sulfur, preferably 3 to 15% by weight of 85 to 97% by weight of the sulfur. It is desirable to use a reactant. The weight ratio of EBH as a reactant to styrene monomer is 10 to 90% by weight of EBH, and the ratio of styrene monomer is changed depending on the purpose of use of the SPC agent. EBH
Alternatively, the same purpose can be achieved by using VBH which is its precursor or VCH which is a by-product as shown in the following formula.

【0025】[0025]

【化3】 Embedded image

【0026】有害重金属含有廃棄物の処理において、S
PCはダスト中の重金属塩と反応して硫化物を形成し、
温度による形態変化時において廃棄物粒子中の重金属を
冷却時に凝固するSPCの高分子鎖中に取込みかつ廃棄
物を固形化する。重金属封鎖安定剤は溶融状態のSPC
と混合され、化学的、物理的に重金属を封鎖する。
In the treatment of wastes containing harmful heavy metals, S
PC reacts with heavy metal salts in the dust to form sulfides,
When the morphology changes due to temperature, the heavy metal in the waste particles is taken into the polymer chain of SPC that solidifies during cooling and the waste is solidified. Heavy metal sequestration stabilizer is SPC in molten state
It is mixed with and chemically and physically sequesters heavy metals.

【0027】本発明の好ましい態様においては、有害重
金属含有廃棄物に対し、硫黄とエチリデンノルボルネン
およびスチレンモノマとの反応によって生成するSPC
ならびに珪酸ソーダ、硫化ソーダ、及び又はキレート剤
からなる重金属封鎖安定剤を混合し約120℃〜150
℃の温度で加熱熔融混練し、次いで冷却固化させ、また
は冷却固化時にさらに適当寸法形状に粉砕する。
In a preferred embodiment of the present invention, SPC produced by the reaction of sulfur with ethylidene norbornene and styrene monomer on hazardous heavy metal containing waste.
And a heavy metal sequestering stabilizer composed of sodium silicate, sodium sulfide, and / or a chelating agent, and mixed at about 120 ° C to 150 ° C.
It is melted and kneaded by heating at a temperature of ℃, and then solidified by cooling, or further crushed into an appropriate size and shape at the time of solidifying by cooling.

【0028】珪酸ソーダ、硫化ソーダおよび/又はキレ
ート剤からなる重金属封鎖安定剤は重金属を水に不溶な
化合物として安定化させる。本発明において処理対象と
する有害重金属含有廃棄物はCd、Pb、Zn、Hg、
Cr等の有害重金属を一種又はそれ以上含有する廃棄物
であり、特に重金属その他有害物質を含む恐れのある産
業廃棄物は例えば製鋼ダスト、一般焼却灰およびフライ
アッシュ等である。
The heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or a chelating agent stabilizes the heavy metal as a water-insoluble compound. The hazardous heavy metal-containing wastes to be treated in the present invention include Cd, Pb, Zn, Hg,
Industrial wastes that contain one or more harmful heavy metals such as Cr, and may contain heavy metals and other harmful substances, are, for example, steelmaking dust, general incineration ash, and fly ash.

【0029】これらの廃棄物100重量部に対しSPC
5〜100重量部ならびに珪酸ソーダ(Na2 Si
3 )、硫化ソーダ(Na2 S)および/又はキレート
剤からなる重金属封鎖安定剤1〜30重量部が混合され
る。SPCはそれらの溶融状態で混練された廃棄物粒子
中の重金属を冷却時に凝固する硫黄の高分子鎖中に取り
込んだ状態で固形化する。熱溶融状態のSPCは廃棄物
中の重金属塩と反応して硫化物を生成しこれらが冷却に
よって生成したガラス状SPCと結合し、さらに前記重
金属封鎖安定剤による処理生成物も含めて高分子化し、
廃棄物ダストの微粒子がSPCに覆われた状態で結合さ
れて一体化する。
SPC for 100 parts by weight of these wastes
5 to 100 parts by weight and sodium silicate (Na 2 Si
O 3 ), sodium sulfide (Na 2 S), and / or 1 to 30 parts by weight of a heavy metal sequestering stabilizer composed of a chelating agent are mixed. SPC is solidified in a state in which heavy metals in waste particles kneaded in a molten state are taken into a polymer chain of sulfur that solidifies during cooling. The heat-melted SPC reacts with the heavy metal salts in the waste to form sulfides, which combine with the glassy SPC formed by cooling, and further polymerize, including the product treated with the heavy metal sequestering stabilizer. ,
Fine particles of waste dust are combined and integrated in a state of being covered with SPC.

【0030】この場合、SPC中の炭化水素は攪拌混練
の際の混合物の粘度を低下させて混合を効率化し、さら
にそれによって反応の促進および均一に寄与し、重金属
封鎖安定剤との併用による効果をより一層向上させ効率
的な処理が行われる。
In this case, the hydrocarbon in the SPC lowers the viscosity of the mixture at the time of stirring and kneading to make the mixing more efficient, thereby further promoting the reaction and contributing to the homogeneity, and the effect of the combined use with the heavy metal sequestering stabilizer. Is further improved and efficient processing is performed.

【0031】廃棄物量100重量部に対してSPCの量
が5重量部以下であると廃棄物中の重金属を完全に取り
込むことが困難となる。一方SPCの量を100重量部
より多くしてもそれによって得られる効果はそれ程向上
せず、むしろコスト面で不利となる。廃棄物100重量
部に対するSPCの好ましい混合量は処理対象とする廃
棄物によって異なるが、例えば電炉からの製鋼ダストの
場合SPC15〜30重量部で充分である。
When the amount of SPC is 5 parts by weight or less with respect to 100 parts by weight of waste, it becomes difficult to completely take in heavy metals in the waste. On the other hand, even if the amount of SPC is more than 100 parts by weight, the effect obtained by that does not improve so much, which is rather disadvantageous in terms of cost. The preferred amount of SPC mixed with 100 parts by weight of waste varies depending on the waste to be treated, but for example, in the case of steelmaking dust from an electric furnace, 15 to 30 parts by weight of SPC is sufficient.

【0032】重金属封鎖安定剤は溶融状態のSPCとよ
く混和し、化学的、物理的に重金属の封鎖に寄与する。
即ち珪酸ソーダは廃棄物中の重金属塩と反応して珪酸金
属塩または金属水酸化物、さらに脱水されて金属酸化物
となる。また硫化ソーダは重金属と反応して金属硫化物
となり水に不溶な化合物として安定化される。さらに珪
酸ソーダは脱水により強固な被膜をつくりその接着効果
により粉状廃棄物ダストの減容化、即見掛け比重の上昇
に寄与しSPCの使用量を減少させる。
The heavy metal sequestering stabilizer is well miscible with the SPC in the molten state and chemically and physically contributes to sequestering the heavy metal.
That is, sodium silicate reacts with the heavy metal salt in the waste to be a metal silicate or metal hydroxide, and further dehydrated to a metal oxide. Also, sodium sulfide reacts with heavy metals to form metal sulfides and is stabilized as a water-insoluble compound. Furthermore, sodium silicate forms a strong film by dehydration, and its adhesive effect reduces the volume of powdery waste dust and contributes to an increase in apparent specific gravity, thus reducing the amount of SPC used.

【0033】キレート剤は廃棄物中の重金属をキレート
化合物として安定化する。この様なキレート剤として
は、一般に金属塩の分離、製精および分析等に用いられ
て、アルカリ土類金属、希土類および遷移金属等の安定
な錯塩を形成する所謂キレート試薬が用いられ、エチレ
ンジアミン、EDTA、NTA、アセチルアセトン、グ
リシン等が挙げられる。本発明に特に好ましく用いられ
る市販のキレート剤としては例えばエポルバ500(登
録商標:ミヨシ油脂(株))およびNKK重金属安定剤
Aー100(日本鋼管(株))等が挙げられる。
The chelating agent stabilizes heavy metals in waste as a chelating compound. As such a chelating agent, a so-called chelating agent that is commonly used for separation of metal salts, refinement and analysis, and forms stable complex salts of alkaline earth metals, rare earths and transition metals, ethylenediamine, Examples thereof include EDTA, NTA, acetylacetone, glycine and the like. Examples of commercially available chelating agents that are particularly preferably used in the present invention include Epolba 500 (registered trademark: Miyoshi Yushi Co., Ltd.) and NKK heavy metal stabilizer A-100 (Nippon Steel Tube Co., Ltd.).

【0034】前記珪酸ソーダ、硫化ソーダおよび/又は
キレート剤からなる重金属封鎖安定剤は単独で又は二種
以上の混合物として使用される。廃棄物100重量部に
対する重金属封鎖安定剤の混合量が1重量部よりも少な
いと、意図する封鎖効果が不安定となり、一方30重量
部以上の量で加えても封鎖効果はそれに伴って向上せず
コスト面で不利となる。
The heavy metal sequestering stabilizer comprising sodium silicate, sodium sulfide and / or chelating agent may be used alone or as a mixture of two or more kinds. If the mixing amount of the heavy metal sequestration stabilizer with respect to 100 parts by weight of waste is less than 1 part by weight, the intended sequestering effect becomes unstable. On the other hand, even if added in an amount of 30 parts by weight or more, the sequestering effect is improved accordingly. It is disadvantageous in terms of cost.

【0035】廃棄物に対しSPCと重金属封鎖安定剤を
混合し、加熱混練する際の温度は約120℃から150
℃である。温度が120℃よりも低いと硫黄またはSP
Cの溶融が不充分で混練が困難となる。一方150℃よ
りも高いと硫黄が粘調度の高いμ相に移行して混練作業
効率を低下させる。
The temperature at which the SPC and the heavy metal sequestering stabilizer are mixed with the waste and the mixture is heated and kneaded is about 120 to 150 ° C.
° C. If the temperature is lower than 120 ° C, sulfur or SP
The melting of C is insufficient and kneading becomes difficult. On the other hand, when the temperature is higher than 150 ° C., sulfur shifts to the μ phase having a high viscosity and the kneading work efficiency is reduced.

【0036】SPC及び重金属封鎖安定剤は廃棄物に対
して同時に混合してもよく又あらかじめ重金属封鎖安定
剤を廃棄物に混合して加熱した後SPCを添加してもよ
い。あらかじめ重金属封鎖安定剤を廃棄物に混合する場
合には約60〜120℃程度に加熱することが好まし
く、これによって重金属封鎖安定剤が廃棄物中に充分に
混合されて反応が起るためその後SPCを加え加熱溶融
混練する際の作業時間を同時添加の場合に比べて著しく
短縮することができる。
The SPC and the heavy metal sequestration stabilizer may be mixed into the waste material at the same time, or the heavy metal sequestration stabilizer may be mixed with the waste material in advance and heated before adding the SPC. When the heavy metal sequestration stabilizer is mixed with the waste in advance, it is preferable to heat it to about 60 to 120 ° C., so that the heavy metal sequestration stabilizer is sufficiently mixed in the waste to cause a reaction, and thereafter SPC is performed. It is possible to remarkably shorten the working time when adding, heating, melting and kneading, as compared with the case of simultaneous addition.

【0037】SPCおよび重金属封鎖安定剤と廃棄物と
を加熱溶融混練した後適当な型に移し放冷固化する。こ
の固化物は適宜処分用地に廃棄される。尚得られた溶融
混練物を放冷固化させる際に、半溶融状態で加圧成型機
によりブリケット化及び放冷することにより完全に重金
属を封鎖し、それらの溶出による二次汚染をおさえるこ
とが出来、かつ固化成形物に150〜200kg/cm
2 以上の圧縮強度が得られ土木及び建築材料としての再
利用も可能である。
The SPC, the heavy metal sequestering stabilizer and the waste are heated, melted and kneaded, transferred to an appropriate mold and allowed to cool and solidify. This solidified product is appropriately disposed of at the disposal site. When the resulting melt-kneaded product is allowed to cool and solidify, it is possible to completely block heavy metals by briquetting and allowing to cool in a semi-molten state by a pressure molding machine, and to prevent secondary pollution due to their elution. It is possible, and it is 150-200kg / cm
It has a compressive strength of 2 or more and can be reused as a civil engineering and building material.

【0038】さらにこれらを適宜な寸法および形状に破
砕して砂利、砕石、割栗石、玉石、沈石等の代替品とし
て利用することができ、さらにこれらを骨材としてポル
トランドセメント等と配合することにより強度の点で従
来のPCコンクリートに匹敵しかつ有害重金属の溶出の
おそれのほとんどないコンクリートを製造することがで
きる。
Further, these can be crushed to an appropriate size and shape and used as a substitute for gravel, crushed stone, crushed stone, cobblestone, crushed stone, etc. Further, these can be blended with Portland cement etc. as an aggregate. Thus, it is possible to produce concrete which is comparable in strength to conventional PC concrete and which has almost no risk of elution of harmful heavy metals.

【0039】[0039]

【実施例】【Example】

SPC製造実施例 表1に示す重量組成を用い下記に示す反応条件でSPC
の製造を行った。
SPC Production Example Using the weight composition shown in Table 1, SPC was prepared under the reaction conditions shown below.
Was manufactured.

【0040】[0040]

【表1】 a b c (kg) (%) (kg) (%) (kg) (%) 硫黄 9.5 95 9.0 90 9.7 97 EBH 0.4 4 0.6 6 0.2 2 スチレンモノマ 0.1 1 0.4 4 0.1 1 反応時間(時間) 3 4 3 反応温度(℃) 125 〜 135 125 〜 140 125 〜 135 排出時粘度 40 50 30 (cp/135 ℃) 反応条件 (1) 10リットルの攪拌機付密閉反応タンクを12
5℃に加温し硫黄を投入し溶融攪拌した。 (2) 硫黄投入後5分以内にスチレンモノマを投入1
0〜15分間混合を行った。 (3) EBHを間欠的に投入し2〜4時間攪拌混合反
応を行った。原料投入直後は材料温度は低下するが反応
の進行に従って温度と粘度が上昇する。温度は135〜
145℃に維持し、運転管理を行った。 (4) 反応終了後生成物を反応タンクより排出して冷
却し、フレーク状に固化させた。
[Table 1] a b c (kg) (%) (kg) (%) (kg) (%) Sulfur 9.5 95 9.0 90 9.7 97 EBH 0.4 4 0.6 6 0.2 2 Styrene monomer 0.1 1 0.4 4 0.1 1 Reaction time ( Time) 3 43 Reaction temperature (° C) 125-135 125-140 125-135 Viscosity at discharge 40 50 30 (cp / 135 ° C) Reaction conditions (1) 10-liter sealed reaction tank with a stirrer 12
The mixture was heated to 5 ° C, sulfur was added, and the mixture was melted and stirred. (2) Add styrene monomer within 5 minutes after adding sulfur 1
Mixing was performed for 0 to 15 minutes. (3) EBH was intermittently charged and a stirring and mixing reaction was performed for 2 to 4 hours. Immediately after feeding the raw materials, the material temperature decreases, but the temperature and viscosity increase as the reaction progresses. The temperature is 135-
The temperature was maintained at 145 ° C. and the operation was controlled. (4) After completion of the reaction, the product was discharged from the reaction tank, cooled, and solidified into flakes.

【0041】廃棄物処理実施例Example of waste treatment

【表2】 Fe 28 % Zn 14 Cd 3 Mn 2 Pb 2 Cr 3 Cu 1 Cl 4Table 2 Fe 28% Zn 14 Cd 3 Mn 2 Pb 2 Cr 3 Cu 1 Cl 4

【0042】実施例1 表2に示す組成の製鋼ダスト10kgに珪酸ソーダ3号
品0.5kg、水0.3kgを加え、温度60〜100
℃で10分間攪拌混合し、次いでSPCー(a)2.5
kgを加え、温度130〜140℃にて加熱溶融し充分
均一になるように20分間攪拌混練を行い、直径5c
m、高さ10cmの円筒状の容器に移して放冷固化させ
た。分析試験結果は表3に示す。
Example 1 To 10 kg of steelmaking dust having the composition shown in Table 2, 0.5 kg of sodium silicate No. 3 product and 0.3 kg of water were added, and the temperature was 60 to 100.
Stir and mix for 10 minutes at ℃, then SPC- (a) 2.5
kg, and the mixture is heated and melted at a temperature of 130 to 140 ° C. and stirred and kneaded for 20 minutes so as to be sufficiently uniform, and the diameter is 5 c.
It was then transferred to a cylindrical container having a height of 10 cm and a height of 10 cm and allowed to cool and solidify. The analytical test results are shown in Table 3.

【0043】実施例2 表2に示す組成の製鋼ダスト10kgに珪酸ソーダ3号
品0.25kg、硫化ソーダ0.25kg、水0.3k
gを加え温度60〜100℃で10分間攪拌混合し、次
いでSPCー(b)2.5kgを加え、温度130〜1
40℃にて加熱溶融し充分均一になるように20分間攪
拌混練を行い、直径5cm、高さ10cmの円筒状の容
器に移して放冷固化させた。分析試験結果は表3に示
す。
Example 2 To 10 kg of steelmaking dust having the composition shown in Table 2, 0.25 kg of sodium silicate No. 3 product, 0.25 kg of sodium sulfide, and 0.3 k of water
g, and the mixture is stirred and mixed at a temperature of 60 to 100 ° C. for 10 minutes, then 2.5 kg of SPC- (b) is added, and a temperature of 130 to 1 is added.
The mixture was heated and melted at 40 ° C., stirred and kneaded for 20 minutes so as to be sufficiently uniform, transferred to a cylindrical container having a diameter of 5 cm and a height of 10 cm, and allowed to cool and solidify. The analytical test results are shown in Table 3.

【0044】実施例3 表2に示す組成の製鋼ダスト10kgに硫化ソーダ0.
5kg、水0.3kgを加え温度60〜100℃で10
分間攪拌混合し、次いでSPCー(c)2.5kgを加
え、温度130〜140℃にて加熱溶融し充分均一にな
るように20分間攪拌混練を行い、直径5cm、高さ1
0cmの円筒状の容器に移して放冷固化させた。分析試
験結果を表3に示す。
Example 3 10 kg of steelmaking dust having the composition shown in Table 2 was mixed with sodium sulfide of 0.
5 kg and 0.3 kg of water are added, and the temperature is 60 to 100 ° C.
Stir and mix for 2 minutes, then add 2.5 kg of SPC- (c), heat and melt at a temperature of 130 to 140 ° C., and stir and knead for 20 minutes to obtain a sufficiently uniform mixture, diameter 5 cm, height 1
It was transferred to a 0 cm cylindrical container and allowed to cool and solidify. The analytical test results are shown in Table 3.

【0045】実施例4 表2に示す組成の製鋼ダスト10kgに市販のキレート
剤エボルバ500:0.2kg、水0.3kgを加え温
度60〜100℃で10分間攪拌混合し、次いでSPC
ー(a)2.5kgを加え、温度130〜140℃にて
加熱溶融し充分均一になるように20分間攪拌混練を行
い、直径5cm、高さ10cmの円筒状の容器に移して
放冷固化させた。分析試験結果を表3に示す。
Example 4 To 10 kg of steelmaking dust having the composition shown in Table 2, 0.2 kg of a commercially available chelating agent Evolver and 0.3 kg of water were added, and the mixture was stirred and mixed at a temperature of 60 to 100 ° C. for 10 minutes, and then SPC.
-(A) Add 2.5 kg, heat and melt at a temperature of 130-140 ° C., stir and knead for 20 minutes so as to be sufficiently uniform, and transfer to a cylindrical container having a diameter of 5 cm and a height of 10 cm to solidify by cooling. Let The analytical test results are shown in Table 3.

【0046】[0046]

【表3】 分析結果 実施例 1 2 3 4 (ppm) (ppm) (ppm) (ppm) Fe ND ND ND ND Zn <1.0 <1.0 <1.0 <1.0 Cd <0.03 <0.03 <0.03 <0.03 Mn ND ND ND ND Pb <0.3 <0.3 <0.3 <0.3 Cr <0.15 <0.15 <0.15 <0.15 Cu ND ND ND ND 圧縮強度 >250 >300 >200 >250 (kg/cm2) (NDは検出限界以下)[Table 3] Analysis results Example 1 2 3 4 (ppm) (ppm) (ppm) (ppm) Fe ND ND ND ND Zn <1.0 <1.0 <1.0 <1.0 Cd <0. 03 <0.03 <0.03 <0.03 Mn ND ND ND ND Pb <0.3 <0.3 <0.3 <0.3 Cr <0.15 <0.15 <0.15 <0 .15 Cu ND ND ND ND Compressive strength>250>300>200> 250 (kg / cm 2 ) (ND is below detection limit)

【0047】[0047]

【発明の効果】本発明によればSPC製造の際の処理特
性および生成物の特性が向上し、かつこのSPCを用い
て固化処理した有害金属含有廃棄物は圧縮強度に優れか
つ重金属の溶出抑止に優れているため土木建築用材料又
はその骨材としての用途に適している。
EFFECTS OF THE INVENTION According to the present invention, the processing characteristics in the production of SPC and the characteristics of the product are improved, and the hazardous metal-containing waste solidified using this SPC has excellent compressive strength and suppresses elution of heavy metals. Its excellent properties make it suitable for use as a material for civil engineering and construction or its aggregate.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B09B 3/00 (72)発明者 加藤 弘 千葉県千葉市中央区椿森3ー12ー11 (72)発明者 一ノ宮 薫 千葉県習志野市東習志野3ー5ー12 ラフ ォーレ実籾206号Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location B09B 3/00 (72) Inventor Hiroshi Kato 3-12-11 Tsubakimori, Chuo-ku, Chiba-shi, Chiba (72) Inventor Kaoru Ichinomiya 3-5-12 Higashi Narashino, Narashino City, Chiba Prefecture La Fole No. 206

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エチリデンノルボルネン10〜90重量
%およびスチレンモノマからなる反応剤と硫黄との重合
反応生成物からなる硫黄ポリマセメント。
1. A sulfur polymer cement comprising 10 to 90% by weight of ethylidene norbornene and a reaction product of styrene monomer and a polymerization reaction product of sulfur.
【請求項2】 硫黄70〜99重量%に対して反応剤を
1〜30重量%反応させて得られる請求項1記載の硫黄
ポリマセメント。
2. The sulfur polymer cement according to claim 1, which is obtained by reacting 1 to 30% by weight of a reactant with 70 to 99% by weight of sulfur.
【請求項3】 エチリデンノルボルネン10〜90重量
%およびスチレンモノマとからなる反応剤と硫黄とを1
10〜160℃で反応させることから成る硫黄ポリマセ
メントの製造方法。
3. A reactant comprising 10 to 90% by weight of ethylidene norbornene and styrene monomer and 1% of sulfur.
A method for producing a sulfur polymer cement, which comprises reacting at 10 to 160 ° C.
【請求項4】 有害重金属含有廃棄物に対して請求項1
または2記載の硫黄ポリマセメントを混合し、加熱、熔
融、混練、冷却固化処理することによる有害重金属含有
廃棄物の処理方法。
4. Claim 1 for waste containing hazardous heavy metals.
Alternatively, a method for treating hazardous heavy metal-containing waste by mixing the sulfur polymer cement according to 2 and heating, fusing, kneading, cooling and solidifying the mixture.
【請求項5】 有害重金属含有廃棄物に対して請求項1
または2記載の硫黄ポリマセメントを混合し加熱、熔
融、混練した生成物を冷却と共に加圧成形して得られる
土木建築用材料。
5. Claim 1 for waste containing hazardous heavy metals
Alternatively, a material for civil engineering and construction, which is obtained by mixing the sulfur polymer cement according to 2 and heating, melting, and kneading the product, and cooling and press-molding the product.
【請求項6】 有害重金属含有廃棄物に対して請求項1
または2記載の硫黄ポリマセメントを混合し加熱、熔
融、混練した生成物を冷却後に粉砕して得られる骨材。
6. Claim 1 for waste containing hazardous heavy metals
Alternatively, an aggregate obtained by mixing the sulfur polymer cement described in 2, heating, melting, and kneading the product, and then pulverizing the product after cooling.
JP15961094A 1994-06-20 1994-06-20 Sulfur polymer cement, its production method and waste treatment method Expired - Fee Related JP3421688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15961094A JP3421688B2 (en) 1994-06-20 1994-06-20 Sulfur polymer cement, its production method and waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15961094A JP3421688B2 (en) 1994-06-20 1994-06-20 Sulfur polymer cement, its production method and waste treatment method

Publications (2)

Publication Number Publication Date
JPH083317A true JPH083317A (en) 1996-01-09
JP3421688B2 JP3421688B2 (en) 2003-06-30

Family

ID=15697479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15961094A Expired - Fee Related JP3421688B2 (en) 1994-06-20 1994-06-20 Sulfur polymer cement, its production method and waste treatment method

Country Status (1)

Country Link
JP (1) JP3421688B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001236A1 (en) * 1997-07-01 1999-01-14 Idemitsu Kosan Co., Ltd. Method of disposal of waste containing heavy metal and sealing compound suitable for the disposal
US6083431A (en) * 1995-05-26 2000-07-04 Ikari-Laboratory For Environmental Science Co., Ltd. Method for solidifying and sealing in a toxic substance with sulfur
JP2002060491A (en) * 2000-08-16 2002-02-26 Nippon Mitsubishi Oil Corp Method for manufacturing sulfur binder, sulfur binder, and method for manufacturing sulfur composition
JP2002097060A (en) * 2000-09-19 2002-04-02 Nippon Mitsubishi Oil Corp Method for manufacturing sulfur material
WO2007055351A1 (en) 2005-11-14 2007-05-18 Nippon Oil Corporation Binder containing modified sulfur and process for producing material containing modified sulfur
EP1896377A1 (en) 2005-06-17 2008-03-12 Shell Internationale Research Maatschappij B.V. Modified sulphur and product comprising modified sulphur as binder
EP2281788A1 (en) 2009-08-06 2011-02-09 Shell Internationale Research Maatschappij B.V. Modified sulphur composition and product comprising modified sulphur composition as binder
GB2480686A (en) * 2010-05-28 2011-11-30 Philip Sutton Construction products made from sulfur polymer cement
KR101321116B1 (en) * 2012-07-27 2013-10-23 최진성 Sulfur polymer cement and methods for making same
JP2019519625A (en) * 2016-04-20 2019-07-11 フリンダーズ ユニバーシティ オブ サウス オーストラリアFlinders University of South Australia Metal adsorbent and use thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083431A (en) * 1995-05-26 2000-07-04 Ikari-Laboratory For Environmental Science Co., Ltd. Method for solidifying and sealing in a toxic substance with sulfur
US6547712B1 (en) 1995-05-26 2003-04-15 Ikari-Laboratory For Environmental Science Co., Ltd. Method for solidifying and sealing in a toxic substance with sulfur
US6638204B2 (en) 1997-07-01 2003-10-28 Idemitsu Kosan Co., Ltd. Method of disposal of waste containing heavy metal
WO1999001236A1 (en) * 1997-07-01 1999-01-14 Idemitsu Kosan Co., Ltd. Method of disposal of waste containing heavy metal and sealing compound suitable for the disposal
JP2002060491A (en) * 2000-08-16 2002-02-26 Nippon Mitsubishi Oil Corp Method for manufacturing sulfur binder, sulfur binder, and method for manufacturing sulfur composition
JP2002097060A (en) * 2000-09-19 2002-04-02 Nippon Mitsubishi Oil Corp Method for manufacturing sulfur material
JP2008543709A (en) * 2005-06-17 2008-12-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Modified sulfur and products containing modified sulfur as a binder
EP1896377A1 (en) 2005-06-17 2008-03-12 Shell Internationale Research Maatschappij B.V. Modified sulphur and product comprising modified sulphur as binder
WO2007055351A1 (en) 2005-11-14 2007-05-18 Nippon Oil Corporation Binder containing modified sulfur and process for producing material containing modified sulfur
EP2281788A1 (en) 2009-08-06 2011-02-09 Shell Internationale Research Maatschappij B.V. Modified sulphur composition and product comprising modified sulphur composition as binder
WO2011015647A1 (en) 2009-08-06 2011-02-10 Shell Internationale Research Maatschappij B.V. Modified sulphur composition and product comprising modified sulphur composition as binder
GB2480686A (en) * 2010-05-28 2011-11-30 Philip Sutton Construction products made from sulfur polymer cement
KR101321116B1 (en) * 2012-07-27 2013-10-23 최진성 Sulfur polymer cement and methods for making same
JP2019519625A (en) * 2016-04-20 2019-07-11 フリンダーズ ユニバーシティ オブ サウス オーストラリアFlinders University of South Australia Metal adsorbent and use thereof

Also Published As

Publication number Publication date
JP3421688B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
Nunes et al. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials
JP3421688B2 (en) Sulfur polymer cement, its production method and waste treatment method
CN104119043A (en) Road paving material taking building waste as main material and preparation method of road paving material
CN104086131A (en) Road paving material prepared by compounding building rubbish and limestone flour and preparation method of road paving material
CN104870396A (en) Use of a cement accelerator and electric arc furnace dust in cement
US5439505A (en) Treatment of steel mill waste for recycling
Liu et al. Valorization of municipal solid waste incineration bottom ash (MSWIBA) into cold-bonded aggregates (CBAs): Feasibility and influence of curing methods
US5935618A (en) Apparatus for manufacturing molded materials solidified by sulfur
JPH07290024A (en) Construction and architectural material obtained by reutilizing harmful heavy metal-containing waste
JP4013168B2 (en) Ground improvement material
JPH02160895A (en) Foundation conditioner
JPH0788458A (en) Treatment of harmful heavy metal-containing waste
EP1328488A1 (en) Catalyzed hydraulic mixtures containing inert materials for making non polluting articles and the articles made thereby
Baricova et al. Recycling possibilities of the slag from cupola furnace
CN112250362A (en) Permeable asphalt mixture with vitrified product as admixture and preparation method thereof
JP3156037B2 (en) How to recycle construction sludge
JP2002131481A (en) Method of solidification of radioactive waste
KR100460096B1 (en) Waste treatment method and solidified material obtained by the same method
JP3735439B2 (en) concrete
JPH10338564A (en) Elution preventing material of heavy metal from hardened body, and hardened body
KR102161834B1 (en) Concrete admixture for preventing of heavy metals extraction for radiation shielding mortar composition
JPH11207291A (en) Solidifying agent for incineration residue and residue solidifying method
JPH0910732A (en) Solidification treatment of industrial waste
JPH0533304A (en) Manufacture of water-permeable pavement slab utilizing sewage sludge slag
JP2008050189A (en) Ready mixed concrete sludge regenerating method and regenerated material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees