JPH08330134A - Magnetoresistance effect laminated film and its manufacture - Google Patents

Magnetoresistance effect laminated film and its manufacture

Info

Publication number
JPH08330134A
JPH08330134A JP7165967A JP16596795A JPH08330134A JP H08330134 A JPH08330134 A JP H08330134A JP 7165967 A JP7165967 A JP 7165967A JP 16596795 A JP16596795 A JP 16596795A JP H08330134 A JPH08330134 A JP H08330134A
Authority
JP
Japan
Prior art keywords
film
metal film
magnetic
ferromagnetic
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7165967A
Other languages
Japanese (ja)
Inventor
Jun Tsunoda
純 角田
Masakatsu Fukuda
方勝 福田
Daigo Ito
大悟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP7165967A priority Critical patent/JPH08330134A/en
Publication of JPH08330134A publication Critical patent/JPH08330134A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Abstract

PURPOSE: To provide a magnetoresistance effect laminated film exhibiting large magnetoresistance change rate at a small applied magnetic field by laminating a two-layer film formed of another (nonmagnetic metal film and ferromagnetic metal film) having specific value or less of boundary magnetic anisotropy on the two-layer film formed of (nonmagnetic metal film and ferromagnetic metal film). CONSTITUTION: The magnetoresistance effect laminated film comprises a thin film made of a nonmagnetic metal film and a ferromagnetic metal film in the order of (nonmagnetic metal film and ferromagnetic metal film) and (nonmagnetic metal film and ferromagnetic metal film) i [i is repetition number of 1 of two or more of (nonmagnetic metal film and ferromagnetic metal film), wherein the boundary magnetic anisotropy of the two-layer film formed of two (nonmagnetic metal and ferromagnetic metal films) of the board side is larger, and the difference of the two boundary magnetic anisotropy is 0.1erg/cm<2> or more. A method for manufacturing it comprises the step of forming Cu leads 21 on a 5 layer films sequentially laminated with a Pt film 1, a Co film 2, a Cu film 3, a Co film 4 and a Cu film 5 on a glass board 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気センサ、磁気ヘッ
ド、磁気抵抗メモリ等に用いられる磁気抵抗効果素子に
関し、特に強磁性薄膜と非磁性薄膜の積層体を用いた磁
気抵抗効果積層膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element used in a magnetic sensor, a magnetic head, a magnetoresistive memory and the like, and more particularly to a magnetoresistive effect laminated film using a laminated body of a ferromagnetic thin film and a non-magnetic thin film.

【0002】[0002]

【従来の技術】物質の電気抵抗が外部磁界の印加で変化
する現象を磁気抵抗効果(MR効果)という。この磁気
抵抗効果は磁気センサや磁気ヘッド、磁気抵抗メモリ等
の磁気抵抗効果素子に応用されている。一般にこれらの
用途に対しては、室温において小さな印加磁界でも大き
な磁気抵抗変化率(△R/R)を示し、高い磁界感度を
もち、動作磁界範囲内での磁気抵抗効果曲線において、
ヒステリシスが小さいことが要求される。
2. Description of the Related Art The phenomenon in which the electrical resistance of a substance changes with the application of an external magnetic field is called the magnetoresistive effect (MR effect). This magnetoresistive effect is applied to magnetoresistive elements such as magnetic sensors, magnetic heads, and magnetoresistive memories. Generally, for these applications, a large magnetoresistance change rate (ΔR / R) is exhibited even at a small applied magnetic field at room temperature, high magnetic field sensitivity is exhibited, and a magnetoresistive effect curve within an operating magnetic field range
Small hysteresis is required.

【0003】強磁性体の磁気抵抗効果としては、磁化方
向と電流方向との成す角度により電気抵抗が変化する異
方性磁気抵抗効果(AMR)があり、Fe−Ni合金、
Ni−Co合金が従来から用いられている。これらは小
さな磁界で抵抗が変化するが、△R/Rは2〜4%と小
さく、素子にしたときの出力も小さい。
The magnetoresistive effect of a ferromagnetic material is the anisotropic magnetoresistive effect (AMR) in which the electric resistance changes depending on the angle formed by the magnetization direction and the current direction.
Ni-Co alloys have been used conventionally. The resistance of these changes with a small magnetic field, but ΔR / R is as small as 2 to 4%, and the output when used as an element is also small.

【0004】一方、近年、薄膜技術を用いて、非強磁性
金属層を強磁性金属層で挾み込んだ構造が電流方向とは
無関係に、しかもAMRよりも大きな△R/Rを示すこ
とが発見された。この現象は巨大磁気抵抗効果(GM
R)と呼ばれ、非磁性層を介した2つの強磁性層の磁化
が反平行の場合と、磁界を印加して平行になった場合と
で、電気抵抗が異なることにより現われると説明されて
いる。
On the other hand, in recent years, a structure in which a non-ferromagnetic metal layer is sandwiched by a ferromagnetic metal layer by using a thin film technique has a large ΔR / R independent of the current direction and independent of the current direction. It's been found. This phenomenon is due to the giant magnetoresistive effect (GM
R), and it is explained that it appears due to the difference in electrical resistance between the case where the magnetizations of the two ferromagnetic layers via the non-magnetic layer are antiparallel and the case where they are parallel when a magnetic field is applied. There is.

【0005】磁化の反平行状態を作り出すメカニズムと
して、強磁性層間の反強磁性交換結合を利用するもの
〔Phys.Rev.Lett.,Vol.66(19
91),p.2152〜2155〕、2種類の強磁性層
の異なる保磁力を利用するもの〔J.Phys.So
c.Jap.,Vol.59(1990),p.306
1〜3064〕、非磁性層を挾んだ2つの強磁性層の一
方に、交換バイアスをかけて磁化を固定するもの〔J.
Appl.Phys.,Vol.69(1991),
p.4774〜4779〕、2つの強磁性層間の静磁的
結合を利用するもの〔Science,Vol.261
(1993),p.1021〜1024〕等が報告され
ている。
As a mechanism for producing an antiparallel state of magnetization, a method utilizing antiferromagnetic exchange coupling between ferromagnetic layers [Phys. Rev. Lett. , Vol. 66 (19
91), p. 2152 to 2155] using different coercive forces of two types of ferromagnetic layers [J. Phys. So
c. Jap. , Vol. 59 (1990), p. 306
1-3064], one in which two ferromagnetic layers sandwiching a non-magnetic layer are applied with an exchange bias to fix the magnetization [J.
Appl. Phys. , Vol. 69 (1991),
p. 4774-4779] utilizing magnetostatic coupling between two ferromagnetic layers [Science, Vol. 261
(1993), p. 1021-1024] and the like have been reported.

【0006】強磁性層間の反強磁性交換結合を利用する
ものは、△R/Rは大きいが、磁化の結合が強いため、
磁気抵抗効果を利用するためには非常に大きな磁界が必
要である。
The one utilizing the antiferromagnetic exchange coupling between the ferromagnetic layers has a large ΔR / R, but has a strong magnetization coupling.
A very large magnetic field is required to utilize the magnetoresistive effect.

【0007】2種類の強磁性層の異なる保磁力を利用す
るものは、2種類の強磁性層間に膜厚の厚い非磁性層を
挾むことにより磁化の層間の結合を断ち切る構造になっ
ている。このため小さな磁界で抵抗変化が起こるが、多
層化しても△R/Rが反強磁性交換結合膜に比べて大き
くならない。
A structure utilizing different coercive forces of two types of ferromagnetic layers has a structure in which a nonmagnetic layer having a large film thickness is sandwiched between two types of ferromagnetic layers to break the coupling between the magnetization layers. . For this reason, a resistance change occurs with a small magnetic field, but ΔR / R does not become larger than that of the antiferromagnetic exchange coupling film even when the number of layers is increased.

【0008】強磁性層の一方に反強磁性体のバイアスを
かけたものは、スピンパルプ膜と呼ばれ、その磁化曲線
が磁界方向にシフトしているのが特徴である。強磁性層
の組合せにより、磁界感度が高く、ヒステリシスの小さ
い特性が得られるが、層間の結合が切れる強磁性層間隔
が大きいため、△R/Rが小さく、しかも電気抵抗の高
い反強磁性体膜を用いているため、多層化しても△R/
Rがあまり大きくならない。
An antiferromagnetic material biased to one of the ferromagnetic layers is called a spin pulp film and is characterized in that its magnetization curve is shifted in the magnetic field direction. By combining the ferromagnetic layers, high magnetic field sensitivity and low hysteresis can be obtained, but since the distance between the ferromagnetic layers that breaks the coupling between layers is large, the ΔR / R is small and the antiferromagnetic material has a high electric resistance. Since a film is used, even if multiple layers are used, ΔR /
R does not become too large.

【0009】2つの強磁性層間の静磁的結合を利用する
ものは、磁界感度は非常に高いが、△R/Rが小さい。
The magnetostatic coupling between the two ferromagnetic layers has a very high magnetic field sensitivity but a small ΔR / R.

【0010】[0010]

【発明が解決しようとする課題】本発明の主要な目的
は、小さな印加磁界で大きな△R/Rを示し、零磁界付
近で高い磁界感度をもち、動作磁界範囲内での磁気抵抗
効果曲線のヒステリシスが小さい磁気抵抗効果素子用積
層膜を提供することにある。
The main object of the present invention is to show a large ΔR / R with a small applied magnetic field, a high magnetic field sensitivity in the vicinity of the zero magnetic field, and a magnetoresistive effect curve within the operating magnetic field range. It is to provide a laminated film for a magnetoresistive effect element having a small hysteresis.

【0011】[0011]

【課題を解決するための手段】本発明は、基板上に、非
磁性金属膜および強磁性金属膜よりなる薄膜を、 (非磁性金属膜/強磁性金属膜)/(非磁性金属膜/
強磁性金属膜)i/(非磁性金属膜) (非磁性金属膜/強磁性金属膜)/(非磁性金属膜/
強磁性金属膜)i/非磁性金属膜、〔ただしiは1ある
いは2以上の繰返し〕の2回以上の繰り返し、の2種の
順序で積層してなる磁気抵抗効果積層膜であって、、
のそれぞれに対して2つの(非磁性金属膜/強磁性金
属膜)から構成される2層膜の界面磁気異方性のうち基
板側の方が大きく、2つの界面磁気異方性の差が0.1
erg/cm2以上であることを特徴とする磁気抵抗効
果積層膜である。
According to the present invention, a thin film composed of a non-magnetic metal film and a ferromagnetic metal film is formed on a substrate by (non-magnetic metal film / ferromagnetic metal film) / (non-magnetic metal film /
(Ferromagnetic metal film) i / (non-magnetic metal film) (non-magnetic metal film / ferromagnetic metal film) / (non-magnetic metal film /
(Ferromagnetic metal film) i / non-magnetic metal film, [where i is a repetition of 1 or 2 or more] repeated two or more times.
For each of the two, the interface magnetic anisotropy of the two-layer film composed of two (non-magnetic metal film / ferromagnetic metal film) is larger on the substrate side, and the difference between the two interface magnetic anisotropies is larger. 0.1
The magnetoresistive effect laminated film is characterized by having an erg / cm 2 or more.

【0012】さらに、前記の各薄膜層の成膜時に、膜面
内の一方向に磁界を印加することを特徴とする磁気抵抗
効果積層膜の製造方法である。
Furthermore, in the method of manufacturing a magnetoresistive effect laminated film, a magnetic field is applied in one direction within the film surface when each of the above-mentioned thin film layers is formed.

【0013】[0013]

【作用】非強磁性金属層を介して積層された数層の強磁
性金属層が2つの異なる大きさの磁気異方性をもってい
る積層膜を考えると、各強磁性金属層の磁化が、それぞ
れの磁気異方性の大きさに応じて異なる磁界で反転する
場合、この積層膜の磁化曲線は、2つの異なる大きさの
保磁力を持つ。磁化の反転磁界が2つにずれていること
から、磁界の大きさにより、強磁性金属層間の磁化の向
きに、平行あるいは反平行状態が出現し、電気抵抗の大
きさが変化する。薄膜の磁気異方性としては、その物質
固有の結晶磁気異方性、膜厚による形状磁気異方性のほ
かに、他の物質の上に積層することで変化する磁気異方
性があり、これらのことを利用して磁気異方性の大きさ
を変えることができる。
Considering a laminated film in which several ferromagnetic metal layers laminated via non-ferromagnetic metal layers have two different magnitudes of magnetic anisotropy, the magnetization of each ferromagnetic metal layer is In the case of reversing with different magnetic fields depending on the magnitude of the magnetic anisotropy of, the magnetization curve of this laminated film has two different coercive forces. Since the reversal fields of the magnetization are deviated into two, depending on the magnitude of the magnetic field, a parallel or anti-parallel state appears in the magnetization direction between the ferromagnetic metal layers, and the magnitude of the electric resistance changes. As the magnetic anisotropy of a thin film, in addition to the crystalline magnetic anisotropy peculiar to the substance, the shape magnetic anisotropy depending on the film thickness, there is a magnetic anisotropy that changes when laminated on another substance, The magnitude of magnetic anisotropy can be changed by utilizing these things.

【0014】一般に、(非磁性金属膜/強磁性金属膜)
から構成される2層膜の磁気異方性を磁化曲線から求め
るには、外部磁界を、膜に垂直に印加した場合と膜面内
に印加した場合の磁化M⊥、M‖を求め、両者の差(M
⊥−M‖)を全磁界範囲(0〜Hsat)で積分して、全
強磁性層の体積Vで割ることにより求めることができ
る。つまり、有効磁気異方性定数をKeffとすると、
Generally, (non-magnetic metal film / ferromagnetic metal film)
In order to obtain the magnetic anisotropy of the two-layer film composed of, from the magnetization curve, the magnetization M ⊥ and M ‖ when an external magnetic field is applied perpendicularly to the film and in the film plane are obtained. Difference of (M
It can be obtained by integrating (⊥-M‖) in the entire magnetic field range (0 to H sat ) and dividing by the volume V of the entire ferromagnetic layer. That is, if the effective magnetic anisotropy constant is K eff ,

【0015】[0015]

【数1】 [Equation 1]

【0016】と表される。一方、強磁性層の膜厚をtF
とすると、Keff×tFは、tFに対して、近似的に直線
関係にあり、Ks、Kvを定数とすると、 Keff×tF=Ks+Kv×tF と表され、切片Ksを界面磁気異方性、傾きKvを体積磁
気異方性という。
It is expressed as On the other hand, the thickness of the ferromagnetic layer is t F
Then, K eff × t F is approximately linearly related to t F , and if K s and K v are constants, then K eff × t F = K s + K v × t F , The intercept K s is called interface magnetic anisotropy, and the slope K v is called volume magnetic anisotropy.

【0017】界面磁気異方性は(非磁性金属膜/強磁性
金属膜)の界面での異方性を示し、非磁性金属膜と強磁
性金属膜の物質への依存の程度が大きく、実際に上記の
ように実験して求めなくても、文献等で調べることもで
きる。
The interface magnetic anisotropy indicates the anisotropy at the interface of (non-magnetic metal film / ferromagnetic metal film), and the degree of dependence of the non-magnetic metal film and the ferromagnetic metal film on the substance is large. Moreover, it is also possible to look it up in a document or the like without the need for the experiment as described above.

【0018】本発明の磁気抵抗効果積層膜は、2つの強
磁性金属層をそれぞれ異なる非磁性金属層の上に積層し
た構造にしているため、2つの強磁性金属層の磁気異方
性は、前記の理由で異なっている。
Since the magnetoresistive layered film of the present invention has a structure in which two ferromagnetic metal layers are laminated on different nonmagnetic metal layers, the magnetic anisotropy of the two ferromagnetic metal layers is It is different for the above reasons.

【0019】また、本発明の場合、強磁性金属膜の膜厚
が比較的小さいため、(非磁性金属膜/強磁性金属膜)
から構成される2層膜の磁気異方性の大小は、界面磁気
異方性の比較により推定できる。そこで、本発明は、鋭
意検討の結果、(非磁性金属膜/強磁性金属膜)から構
成される2層膜の上に界面磁気異方性が0.1erg/
cm2以上小さい別の(非磁性金属膜/強磁性金属膜)
から構成される2層膜を積層することにより、2つの強
磁性金属層の磁気異方性に大きな違いが生じ、その結果
として、大きな△R/Rが得られることを見いだした。
さらに、本発明の磁気抵抗効果積層膜は、2つの強磁性
金属層間隔が小さくてもそれぞれの磁化が異なる磁界で
反転するため、小さな印加磁界で大きな抵抗変化が起こ
る。
Further, in the case of the present invention, since the thickness of the ferromagnetic metal film is relatively small, (non-magnetic metal film / ferromagnetic metal film)
The magnitude of the magnetic anisotropy of the two-layer film composed of can be estimated by comparing the interface magnetic anisotropy. Therefore, as a result of intensive studies, the present invention has an interface magnetic anisotropy of 0.1 erg / on a two-layer film composed of (nonmagnetic metal film / ferromagnetic metal film).
Another (non-magnetic metal film / ferromagnetic metal film) smaller than cm 2
It has been found that by laminating the two-layer film composed of the above, a large difference occurs in the magnetic anisotropy of the two ferromagnetic metal layers, and as a result, a large ΔR / R is obtained.
Further, in the magnetoresistive layered film of the present invention, even if the distance between the two ferromagnetic metal layers is small, the respective magnetizations are inverted by different magnetic fields, so that a large resistance change occurs with a small applied magnetic field.

【0020】また、各層を電気抵抗の小さい物質から選
択することができるので、多層化して△R/Rをさらに
大きくすることができる。
Further, since each layer can be selected from materials having low electric resistance, it is possible to further increase ΔR / R by forming multiple layers.

【0021】前記の2種類の強磁性層の異なる保磁力を
利用する磁気抵抗効果膜は、各強磁性層が1種類の非磁
性層上に積層されているため、2種類の強磁性層の磁気
異方性の違いは、強磁性層の結晶磁気異方性の違いのみ
から起きている。すなわち、2つの異なった磁気異方性
を持たせるためには強磁性層が2種類であることが必須
である。しかるに、本発明は強磁性層を他の物質の上に
積層することにより変化する磁気異方性を利用して異な
る磁気異方性を得ているものである。
In the magnetoresistive film utilizing the different coercive forces of the above two types of ferromagnetic layers, each ferromagnetic layer is laminated on one type of non-magnetic layer, so that two types of ferromagnetic layers are used. The difference in magnetic anisotropy is caused only by the difference in crystal magnetic anisotropy of the ferromagnetic layers. That is, in order to have two different magnetic anisotropies, it is essential that there are two types of ferromagnetic layers. However, according to the present invention, different magnetic anisotropy is obtained by utilizing the magnetic anisotropy which is changed by stacking the ferromagnetic layer on another substance.

【0022】[0022]

【具体的構成】以下、本発明の具体的構成を詳細に説明
する。図1は請求項1の発明の構造を模式的に示す断面
図である。図中、11は基板、1は非磁性金属膜、2は
強磁性金属膜、3は非磁性金属膜、4は強磁性金属膜、
aは3の上に4を積層した2層膜を指す繰り返しの単位
で、aの繰返し数をiとする。5は非磁性金属膜、21
は電流を流すためのCuリードである。また、図2は請
求項2の発明の構造を模式的に示す断面図で、11,
1,2,3,4,a,iの意味するところは前記図1に
おけると同じであり、bは1の上に2を積層し、その上
にaをi回積層し、さらに非磁性金属膜5’を積層した
積層膜を指す繰り返しの単位で、bの繰返し数をn(2
以上の整数)とする。
Specific Structure The specific structure of the present invention will be described in detail below. FIG. 1 is a sectional view schematically showing the structure of the invention of claim 1. In the figure, 11 is a substrate, 1 is a non-magnetic metal film, 2 is a ferromagnetic metal film, 3 is a non-magnetic metal film, 4 is a ferromagnetic metal film,
a is a repeating unit that indicates a two-layer film in which 4 is laminated on 3 and the number of repetitions of a is i. 5 is a non-magnetic metal film, 21
Is a Cu lead for passing an electric current. 2 is a sectional view schematically showing the structure of the invention of claim 2,
The meanings of 1, 2, 3, 4, a, and i are the same as those in FIG. 1 above, and b is such that 2 is laminated on 1 and a is laminated i times on it, and a nonmagnetic metal is further added. A repeating unit that refers to a laminated film in which films 5 ′ are laminated, and the number of repetitions of b is n (2
The above integer).

【0023】非磁性金属膜1としては、強磁性金属膜2
との固溶度が小さく、強磁性金属膜を積層したときによ
り大きな界面磁気異方性を持ちうる非磁性物質として、
Cr、Cr合金、V、V合金、Pd、Pd合金、Pt、
Pt合金等が例示される。この薄膜の膜厚は5〜200
Åの範囲とすることが好ましい。膜厚が200Åを越え
ると、電気抵抗はこの層によって決定され、その結果、
△R/Rが小さくなる。一方、5Åよりも薄いと膜の作
製が困難になる。
As the non-magnetic metal film 1, a ferromagnetic metal film 2 is used.
As a non-magnetic substance that has a small solid solubility with and can have a larger interfacial magnetic anisotropy when laminated with a ferromagnetic metal film,
Cr, Cr alloy, V, V alloy, Pd, Pd alloy, Pt,
Pt alloy etc. are illustrated. The thickness of this thin film is 5 to 200
It is preferably in the range of Å. When the film thickness exceeds 200Å, the electrical resistance is determined by this layer, and as a result,
ΔR / R decreases. On the other hand, if it is thinner than 5Å, it becomes difficult to form a film.

【0024】強磁性金属膜2および4の構成材料として
は、Co、Fe、Ni、Co−Fe、Co−Ni、Ni
−Fe、Ni−Fe−Co等が例示される。特に△R/
Rを大きくするためには、Co、Co−Feが、又、磁
界感度を大きくし、ヒステリシスを小さくするために
は、Ni−Fe、Co−Ni等が好適である。このよう
な強磁性金属膜2および4の厚さは、5〜200Åの範
囲であれば特に限定されるものではない。5Å未満でも
200Åよりも厚くても△R/Rが減少する。強磁性金
属膜2と4は異なっていてもよい。ただし、その場合は
強磁性金属膜4は2よりも軟質であることが必要であ
る。2が4より軟質であると△R/R、磁界感度が小さ
くなり、ヒステリシスが大きくなる。
The constituent materials of the ferromagnetic metal films 2 and 4 are Co, Fe, Ni, Co-Fe, Co-Ni and Ni.
-Fe, Ni-Fe-Co, etc. are illustrated. Especially △ R /
Co and Co-Fe are suitable for increasing R, and Ni-Fe and Co-Ni are suitable for increasing magnetic field sensitivity and decreasing hysteresis. The thickness of such ferromagnetic metal films 2 and 4 is not particularly limited as long as it is in the range of 5 to 200Å. ΔR / R decreases when the thickness is less than 5Å or thicker than 200Å. The ferromagnetic metal films 2 and 4 may be different. However, in that case, the ferromagnetic metal film 4 needs to be softer than 2. When 2 is softer than 4, ΔR / R, magnetic field sensitivity becomes small, and hysteresis becomes large.

【0025】非磁性金属膜3の構成材料としては、強磁
性金属膜2および4との固溶度が小さく、強磁性金属膜
4を積層したときの界面磁気異方性が、(非磁性金属膜
1/強磁性金属膜2)の界面磁気異方性より0.1er
g/cm2以上小さくなる非磁性物質として、Cu、A
g等が好ましい。非磁性金属膜3の膜厚は、5〜50Å
の範囲が適当で、5Å未満および50Åを越えると△R
/Rが小さくなる。
As the constituent material of the non-magnetic metal film 3, the solid solubility with the ferromagnetic metal films 2 and 4 is small, and the interface magnetic anisotropy when the ferromagnetic metal films 4 are laminated is (non-magnetic metal film). 0.1er from the interface magnetic anisotropy of film 1 / ferromagnetic metal film 2)
Cu, A as a non-magnetic substance having a smaller g / cm 2 or more
g and the like are preferable. The thickness of the non-magnetic metal film 3 is 5 to 50Å
If the range is less than 5Å and exceeds 50Å, △ R
/ R becomes smaller.

【0026】非磁性金属膜5の構成材料としては、強磁
性金属膜4との固溶度が小さいことが必要であるが、特
に限定されない。非磁性金属膜5の膜厚は、5〜200
Åの範囲が好ましい。膜厚が200Åを越えると、電気
抵抗はこの層によって決定され、その結果、△R/Rが
小さくなる。一方、5Åよりも薄いと膜の作製が困難に
なる。
The constituent material of the nonmagnetic metal film 5 is required to have a small solid solubility with the ferromagnetic metal film 4, but is not particularly limited. The thickness of the nonmagnetic metal film 5 is 5 to 200.
The range of Å is preferable. Above a film thickness of 200Å, the electrical resistance is determined by this layer, resulting in a small ΔR / R. On the other hand, if it is thinner than 5Å, it becomes difficult to form a film.

【0027】非磁性金属膜5’の構成材料としては、強
磁性金属膜4との固溶度が小さく、非磁性金属膜1とは
異なるものがよい。非磁性金属膜5’の膜厚は、5〜2
00Åの範囲が好ましい。膜厚が200Åを越えると、
電気抵抗はこの層によって決定され、その結果、△R/
Rが小さくなる。一方、5Åよりも薄いと膜の作製が困
難になる。
As a constituent material of the nonmagnetic metal film 5 ', a material having a small solid solubility with the ferromagnetic metal film 4 and different from the nonmagnetic metal film 1 is preferable. The thickness of the non-magnetic metal film 5'is 5 to 2
A range of 00Å is preferred. When the film thickness exceeds 200Å,
The electrical resistance is determined by this layer, so that ΔR /
R becomes small. On the other hand, if it is thinner than 5Å, it becomes difficult to form a film.

【0028】本発明の請求項1および請求項2の発明に
おける繰返し数iには、特に制限はない。繰返し数を増
加すると、△R/Rは増大するが、強磁性層間の結合の
影響が強くなる。また、繰返し数が大きくなりすぎる
と、積層膜全体の電気抵抗が小さくなり、実用上問題が
生じる。
There are no particular restrictions on the number of repetitions i in the first and second aspects of the present invention. As the number of repetitions increases, ΔR / R increases, but the influence of the coupling between the ferromagnetic layers becomes stronger. On the other hand, if the number of repetitions is too large, the electric resistance of the entire laminated film becomes small, which causes a problem in practical use.

【0029】本発明の請求項2の発明における繰返し数
は2以上の整数で上下には特に制限はなく、目的に応じ
て適宜選択すればよい。繰返し数を増加するに従い、△
R/Rは増加するが、繰返し数が大きくなりすぎると、
積層膜全体の電気抵抗が小さくなり、実用上問題が生じ
る。
In the invention of claim 2 of the present invention, the number of repetitions is an integer of 2 or more, and there is no particular upper or lower limit, and it may be appropriately selected according to the purpose. As the number of iterations increases, △
R / R increases, but if the number of repetitions becomes too large,
The electric resistance of the entire laminated film becomes small, which causes a problem in practical use.

【0030】本発明の実施例の磁気抵抗効果曲線を図3
に示す。また、その磁気抵抗効果積層膜の磁化曲線を図
4に示す。磁気抵抗効果曲線は、磁界を負から0、さら
に正へと変化させたとき、低い磁界で急激に△R/Rが
上昇する。ここでの最大の傾きを磁界感度(%/Oe)
と定義する。△R/Rは最大になった後、穏やかに減少
し、ある磁界から急激に下降する。磁化曲線は図4に示
したように2つの保磁力HC1、HC2を持つ。
The magnetoresistive effect curve of the embodiment of the present invention is shown in FIG.
Shown in The magnetization curve of the magnetoresistive layered film is shown in FIG. In the magnetoresistive effect curve, when the magnetic field is changed from negative to 0 and further to positive, ΔR / R sharply rises at a low magnetic field. The maximum slope here is the magnetic field sensitivity (% / Oe)
Is defined. After the ΔR / R reaches its maximum, it decreases gently and then drops sharply from a certain magnetic field. The magnetization curve has two coercive forces H C1 and H C2 as shown in FIG.

【0031】磁界を△R/Rが最大になる直前まで印加
して戻したときの磁気抵抗効果曲線を図5に示す。この
ときの磁気抵抗効果曲線の最大の開き幅wをヒステリシ
ス幅と定義する。本発明の磁気抵抗効果積層膜を磁気ヘ
ッドや磁気センサーとして用いた場合、ヒステリシス幅
が小さい方が出力電圧の変動を小さく抑えることができ
る。
FIG. 5 shows a magnetoresistive effect curve when the magnetic field is applied and returned until just before ΔR / R reaches its maximum. The maximum opening width w of the magnetoresistive effect curve at this time is defined as the hysteresis width. When the magnetoresistive layered film of the present invention is used as a magnetic head or a magnetic sensor, the smaller the hysteresis width is, the smaller the fluctuation of the output voltage can be suppressed.

【0032】本発明における基板材料としては、ガラ
ス、Si、サファイヤ、MgO、GaAs、GaIn
P、GaAlAs等を用いることができる。また、積層
膜に平坦な界面を持たせるために基板に下地層をつけて
もよい。さらに積層膜の最表面に酸化を防止するための
保護膜を形成してもよい。
The substrate material in the present invention is glass, Si, sapphire, MgO, GaAs, GaIn.
P, GaAlAs, or the like can be used. Further, a base layer may be added to the substrate so that the laminated film has a flat interface. Further, a protective film for preventing oxidation may be formed on the outermost surface of the laminated film.

【0033】本発明の磁気抵抗効果積層膜の成膜におい
て、膜面内の一方向に500Oe以下の磁界を印加する
ことにより、△R/R、磁界感度が向上し、動作磁界範
囲内での磁気抵抗効果曲線におけるヒステリシスが小さ
くなる。500Oeを超える磁界を印加すると△R/R
が小さくなる。
In forming the magnetoresistive layered film of the present invention, by applying a magnetic field of 500 Oe or less in one direction within the film surface, ΔR / R and magnetic field sensitivity are improved, and within the operating magnetic field range. The hysteresis in the magnetoresistive effect curve becomes small. When a magnetic field exceeding 500 Oe is applied, ΔR / R
Becomes smaller.

【0034】[0034]

【実施例】以下、本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.

【0035】実施例1 ガラス基板を真空チェンバー内においてチェンバー内を
1×10~7Torrまで排気し、その後、Arガスを5
×10~3Torrまで導入した。Pt、Co、Cuをタ
ーゲットとしてマグネトロンスパッタリングにより、非
磁性金属膜1としてPt膜30Å、強磁性金属膜2とし
てCo膜90Å、非磁性金属膜3としてCu膜11Å、
強磁性金属膜4としてCo膜90Å、非磁性金属膜5と
してCu膜11Åを順次積層した5層膜を作製した。さ
らにこの5層膜上にCuリードを形成した。この5層膜
から3mm×10mmの形状の試料を作製し、外部磁界
を膜面内で電流と垂直方向になるように±500Oeま
で印加したときの電気抵抗を、室温で4端子法により測
定した。磁気抵抗効果曲線における△R/Rは、最小電
気抵抗をRminとして、 △R/R(%)=100×(R−Rmin)/Rmin により求めた。又、振動型磁力計により磁気特性を測定
した。界面磁気異方性は、(非磁性金属膜/強磁性金属
膜)から構成される2層膜における強磁性金属膜厚を変
えた実験により求めた。磁気抵抗効果曲線を図3に、磁
化曲線を図4に示す。
Example 1 A glass substrate was evacuated to 1 × 10 to 7 Torr in a vacuum chamber, and then Ar gas was added to the gas for 5 times.
Introduced up to × 10 to 3 Torr. By magnetron sputtering using Pt, Co and Cu as targets, the Pt film 30Å as the non-magnetic metal film 1, the Co film 90Å as the ferromagnetic metal film 2, and the Cu film 11Å as the non-magnetic metal film 3.
As the ferromagnetic metal film 4, a Co film 90Å and a non-magnetic metal film 5 a Cu film 11Å were sequentially laminated to form a five-layer film. Further, Cu leads were formed on this five-layer film. A sample with a shape of 3 mm × 10 mm was prepared from this five-layer film, and the electric resistance when an external magnetic field was applied up to ± 500 Oe so as to be perpendicular to the current in the film plane was measured by the 4-terminal method at room temperature. . ΔR / R in the magnetoresistive effect curve was obtained by ΔR / R (%) = 100 × (R−R min ) / R min with the minimum electric resistance as R min . Moreover, the magnetic characteristics were measured by a vibration type magnetometer. The interface magnetic anisotropy was obtained by an experiment in which the thickness of the ferromagnetic metal in the two-layer film composed of (nonmagnetic metal film / ferromagnetic metal film) was changed. The magnetoresistance effect curve is shown in FIG. 3 and the magnetization curve is shown in FIG.

【0036】界面磁気異方性は、Pt/Coが1.3e
rg/cm2、Cu/Coが0.18erg/cm2であ
り、△R/Rは21.5%、非磁性金属膜3(Cu)の
膜厚が11Åと薄いにもかかわらず、磁界感度は0.5
5%/Oeという特性が得られた。
The interface magnetic anisotropy is 1.3e for Pt / Co.
rg / cm 2 , Cu / Co is 0.18 erg / cm 2 , ΔR / R is 21.5%, and the magnetic field sensitivity is small despite the nonmagnetic metal film 3 (Cu) having a thin film thickness of 11Å. Is 0.5
A characteristic of 5% / Oe was obtained.

【0037】比較例1 実施例1と同様にして、非磁性金属膜1をCu膜30
Å、強磁性金属膜2および4をCo膜90Å、非磁性金
属膜3および5をPt膜11Åとした5層膜を作製し、
この5層膜上にCuリードを形成し、実施例1と同様に
して磁気抵抗効果を測定した。界面磁気異方性は実施例
1と同じだが、△R/Rは3.5%、磁界感度は0.0
6%/Oeであった。
Comparative Example 1 In the same manner as in Example 1, the nonmagnetic metal film 1 was replaced with the Cu film 30.
Å, the ferromagnetic metal films 2 and 4 are Co films 90 Å, and the nonmagnetic metal films 3 and 5 are Pt films 11 Å
A Cu lead was formed on this 5-layer film, and the magnetoresistive effect was measured in the same manner as in Example 1. The interface magnetic anisotropy is the same as in Example 1, but ΔR / R is 3.5% and the magnetic field sensitivity is 0.0.
It was 6% / Oe.

【0038】実施例2 実施例1と同様にして非磁性金属膜1としてPt膜30
Å、強磁性金属膜2および4として5wt%Fe−95
wt%Co合金膜90Å、非磁性金属膜3および5をC
u膜12Åとした5層膜を作製し、この5層膜上にCu
リードを形成し、実施例1と同様にして磁気抵抗効果を
測定した。△R/Rは23.2%、磁界感度は0.50
%/Oeという特性が得られた。界面磁気異方性は、P
t/Fe−Coが1.4erg/cm2、Cu/Fe−
Coが0.21erg/cm2である。
Example 2 Similar to Example 1, the Pt film 30 was used as the non-magnetic metal film 1.
Å, 5 wt% Fe-95 as the ferromagnetic metal films 2 and 4
wt% Co alloy film 90Å, non-magnetic metal films 3 and 5 are C
A five-layer film having a u film of 12 Å was prepared, and Cu was formed on the five-layer film.
Leads were formed and the magnetoresistive effect was measured in the same manner as in Example 1. △ R / R is 23.2%, magnetic field sensitivity is 0.50
A characteristic of% / Oe was obtained. The interfacial magnetic anisotropy is P
t / Fe-Co is 1.4 erg / cm 2 , Cu / Fe-
Co is 0.21 erg / cm 2 .

【0039】比較例2 実施例1と同様にして、非磁性金属膜1をCu膜30
Å、強磁性金属膜2および4をCo膜90Å、非磁性金
属膜3および5をAg膜11Åとした5層膜を作製し、
この5層膜上にCuリードを形成し、実施例1と同様に
して磁気抵抗効果を測定した。△R/Rは5.2%、磁
界感度は0.02%/Oeであった。界面磁気異方性
は、Cu/Coが0.18erg/cm2、Ag/Co
が0.13erg/cm2である。
Comparative Example 2 In the same manner as in Example 1, the nonmagnetic metal film 1 was replaced with the Cu film 30.
Å, the ferromagnetic metal films 2 and 4 are Co films 90 Å, and the non-magnetic metal films 3 and 5 are Ag films 11 Å to form a five-layer film,
A Cu lead was formed on this 5-layer film, and the magnetoresistive effect was measured in the same manner as in Example 1. ΔR / R was 5.2%, and magnetic field sensitivity was 0.02% / Oe. The interfacial magnetic anisotropy is such that Cu / Co is 0.18 erg / cm 2 , Ag / Co
Is 0.13 erg / cm 2 .

【0040】実施例3 実施例1と同様にして、非磁性金属膜1としてV膜50
Å、強磁性金属膜2および4をCo膜70Å、非磁性金
属膜3および5をCu膜11Åとした5層膜を作製し、
この5層膜上にCuリードを形成し、実施例1と同様に
して磁気抵抗効果を測定した。△R/Rは19.1%、
磁界感度は0.57%/Oeという特性が得られた。界
面磁気異方性は、V/Coが1.1erg/cm2、C
u/Coが0.18erg/cm2である。
Example 3 In the same manner as in Example 1, the V film 50 was used as the non-magnetic metal film 1.
Å, the ferromagnetic metal films 2 and 4 are Co films 70 Å, and the non-magnetic metal films 3 and 5 are Cu films 11 Å
A Cu lead was formed on this 5-layer film, and the magnetoresistive effect was measured in the same manner as in Example 1. ΔR / R is 19.1%,
A magnetic field sensitivity of 0.57% / Oe was obtained. The interface magnetic anisotropy is V / Co of 1.1 erg / cm 2 , C
u / Co is 0.18 erg / cm 2 .

【0041】実施例4 実施例1と同様にして非磁性金属膜1としてCr膜30
Å、強磁性金属膜2および4をCo膜95Å、非磁性金
属膜3および5をCu膜11Åとした5層膜を作製し、
この5層膜上にCuリードを形成し、実施例1と同様に
して磁気抵抗効果を測定した。△R/Rは11.7%、
磁界感度は0.59%/Oeという特性が得られた。界
面磁気異方性は、Cr/Coが0.71erg/c
2、Cu/Coが0.18erg/cm2である。
Example 4 In the same manner as in Example 1, the Cr film 30 was used as the non-magnetic metal film 1.
Å, the ferromagnetic metal films 2 and 4 are Co films 95 Å, and the non-magnetic metal films 3 and 5 are Cu films 11 Å
A Cu lead was formed on this 5-layer film, and the magnetoresistive effect was measured in the same manner as in Example 1. ΔR / R is 11.7%,
A magnetic field sensitivity of 0.59% / Oe was obtained. The interfacial magnetic anisotropy is 0.71 erg / c for Cr / Co
m 2 and Cu / Co are 0.18 erg / cm 2 .

【0042】実施例5 実施例1と同様にして非磁性金属膜1を13wt%Mn
−87wt%Cr合金膜50Å、強磁性金属膜2および
4をCo膜60Å、非磁性金属膜3および5をCu膜1
3Åとして、非磁性金属膜1、強磁性金属膜2、非磁性
金属膜3と強磁性金属膜4を交互に15回ずつ積層した
多層膜、非磁性金属膜5を順次積層した構造をもつ積層
膜(i=15、n=1)を作製し、この上にCuリード
を形成し、実施例1と同様にして磁気抵抗効果を測定し
た。△R/Rは26.7%、磁界感度は0.11%/O
eという特性が得られた。界面磁気異方性は、13wt
%Mn−87wt%Cr/Coが0.70erg/cm
2、Cu/Coが0.18erg/cm2である。
Example 5 In the same manner as in Example 1, 13 wt% Mn was added to the nonmagnetic metal film 1.
-87 wt% Cr alloy film 50Å, ferromagnetic metal films 2 and 4 Co film 60Å, non-magnetic metal films 3 and 5 Cu film 1
As 3Å, a non-magnetic metal film 1, a ferromagnetic metal film 2, a multilayer film in which a non-magnetic metal film 3 and a ferromagnetic metal film 4 are alternately laminated 15 times, and a non-magnetic metal film 5 are laminated in this order. A film (i = 15, n = 1) was prepared, a Cu lead was formed thereon, and the magnetoresistive effect was measured in the same manner as in Example 1. △ R / R is 26.7%, magnetic field sensitivity is 0.11% / O
The characteristic e was obtained. Interfacial magnetic anisotropy is 13 wt
% Mn-87 wt% Cr / Co is 0.70 erg / cm
2 , Cu / Co is 0.18 erg / cm 2 .

【0043】実施例6 ガラス基板上にPd膜40Å、Co膜77Å、Cu膜1
1Å、Co膜77Å、Cu膜11Å、Co膜77Å、P
d膜40Åを順次積層し(i=2、n=1)、この上に
Cuリードを形成し、実施例1と同様にして磁気抵抗効
果を測定した。△R/Rは21.7%、磁界感度は0.
44%/Oeという特性が得られた。界面磁気異方性
は、Pd/Coが1.2erg/cm2、Cu/Coが
0.18erg/cm2である。
Example 6 Pd film 40Å, Co film 77Å, Cu film 1 on a glass substrate
1Å, Co film 77Å, Cu film 11Å, Co film 77Å, P
The d-film 40Å was sequentially laminated (i = 2, n = 1), Cu leads were formed thereon, and the magnetoresistive effect was measured in the same manner as in Example 1. ΔR / R is 21.7%, magnetic field sensitivity is 0.
A characteristic of 44% / Oe was obtained. Interfacial magnetic anisotropy, Pd / Co is 1.2erg / cm 2, Cu / Co is 0.18erg / cm 2.

【0044】実施例7 ガラス基板上に実施例1の5層膜Pt30Å/Co90
Å/Cu11Å/Co90Å/Cu11Åを3回繰返し
て積層した構造をもつ積層膜(i=1、n=3)を作製
し、この上にCuリードを形成し、実施例1と同様にし
て磁気抵抗効果を測定した。△R/Rは30.3%、磁
界感度は0.40%/Oeという特性が得られた。
Example 7 The five-layer film Pt30Å / Co90 of Example 1 was formed on a glass substrate.
A laminated film (i = 1, n = 3) having a structure in which Å / Cu11Å / Co90Å / Cu11Å is repeatedly laminated three times is formed, Cu leads are formed on the laminated film, and magnetic resistance is obtained in the same manner as in Example 1. The effect was measured. The characteristics of ΔR / R of 30.3% and magnetic field sensitivity of 0.40% / Oe were obtained.

【0045】実施例8 実施例1と同様にして非磁性金属膜1をPt30Å、強
磁性金属膜2をCo膜90Å、非磁性金属膜3および5
をCu膜12Å、強磁性金属膜4を21wt%Fe−7
9wt%Ni合金膜90Åとした5層膜を作製し、この
5層膜上にCuリードを形成し、実施例1と同様にして
外部磁界を±50Oeまで印加したときの磁気抵抗効果
を測定した。△R/Rは18.3%、磁界感度は0.8
9%/Oeという特性が得られた。また、ヒステリシス
幅は10Oeであった。界面磁気異方性は、Pt/Co
が1.3erg/cm2、Cu/Fe−Niは−0.2
3erg/cm2である。
Example 8 In the same manner as in Example 1, the nonmagnetic metal film 1 was Pt30Å, the ferromagnetic metal film 2 was Co film 90Å, and the nonmagnetic metal films 3 and 5 were used.
Cu film 12Å and ferromagnetic metal film 4 21 wt% Fe-7
A 5-layer film having a 9 wt% Ni alloy film 90Å was prepared, Cu leads were formed on the 5-layer film, and the magnetoresistive effect when an external magnetic field was applied up to ± 50 Oe was measured in the same manner as in Example 1. . ΔR / R is 18.3%, magnetic field sensitivity is 0.8
A characteristic of 9% / Oe was obtained. The hysteresis width was 10 Oe. Interfacial magnetic anisotropy is Pt / Co
Is 1.3 erg / cm 2 , Cu / Fe-Ni is -0.2
It is 3 erg / cm 2 .

【0046】実施例9 ガラス基板上に非磁性金属膜1としてPt膜30Å、強
磁性金属膜2および4としてCo膜77Å、非磁性金属
膜3および5としてCu膜11Åを、240Oeの磁界
を膜面内に印加しながら積層して5層膜を作製した。さ
らに、この5層膜上にCuリードを形成し、実施例1と
同様にして磁気抵抗効果を測定した。△R/Rは24.
5%、磁界感度は0.63%/Oeという特性が得られ
た。
Example 9 A Pt film 30Å as the non-magnetic metal film 1, a Co film 77Å as the ferromagnetic metal films 2 and 4, a Cu film 11Å as the non-magnetic metal films 3 and 5, and a magnetic field of 240 Oe on the glass substrate. A 5-layer film was produced by laminating while applying in-plane. Further, Cu leads were formed on the five-layer film, and the magnetoresistive effect was measured in the same manner as in Example 1. ΔR / R is 24.
The characteristics were 5% and the magnetic field sensitivity was 0.63% / Oe.

【0047】実施例10 ガラス基板上に非磁性金属膜1としてPt膜30Å、強
磁性金属膜2としてCo膜70Å、非磁性金属膜3とし
てCu膜11Å、強磁性金属膜4として21wt%Ni
−79wt%Fe合金属膜70Å、非磁性金属膜5とし
てCu膜11Åを、240Oeの磁界を膜面内に印加し
ながら積層して5層膜を作製した。さらにこの5層膜上
にCuリードを形成し、実施例1と同様にして外部磁界
を±50Oeまで印加したときの磁気抵抗効果を測定し
た。△R/Rは19.7%、磁界感度は1.1%/Oe
という特性が得られた。また、ヒステリシス幅は5Oe
であった。
Example 10 A Pt film 30Å as a non-magnetic metal film 1, a Co film 70Å as a ferromagnetic metal film 2, a Cu film 11Å as a non-magnetic metal film 3 and a 21 wt% Ni as a ferromagnetic metal film 4 on a glass substrate.
A -79 wt% Fe mixed metal film 70Å and a Cu film 11Å as the non-magnetic metal film 5 were laminated while applying a magnetic field of 240 Oe in the film plane to form a five-layer film. Further, a Cu lead was formed on this five-layer film, and the magnetoresistive effect was measured when an external magnetic field was applied up to ± 50 Oe in the same manner as in Example 1. △ R / R is 19.7%, magnetic field sensitivity is 1.1% / Oe
The characteristic was obtained. Also, the hysteresis width is 5 Oe
Met.

【0048】[0048]

【発明の効果】本発明は小さな磁界で大きな磁気抵抗変
化率を示し、零磁界付近で高い磁界感度をもち、動作磁
界範囲内での磁気抵抗効果曲線のヒステリシス幅が小さ
い磁気抵抗効果素子用積層膜を提供する。これにより従
来の磁気センサーや磁気ヘッドを高感度化できるだけで
なく、磁気抵抗効果メモリーの処理速度の高速化も期待
できる。
INDUSTRIAL APPLICABILITY The present invention has a large magnetoresistance change rate in a small magnetic field, has a high magnetic field sensitivity in the vicinity of a zero magnetic field, and has a small hysteresis width of the magnetoresistance effect curve in the operating magnetic field range. Provide a membrane. As a result, not only the sensitivity of the conventional magnetic sensor and magnetic head can be increased, but also the processing speed of the magnetoresistive effect memory can be expected to be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1の発明の磁気抵抗効果積層膜
の構造を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a structure of a magnetoresistive effect laminated film according to a first aspect of the present invention.

【図2】本発明の請求項2の発明の磁気抵抗効果積層膜
の構造を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a structure of a magnetoresistive effect laminated film according to a second aspect of the present invention.

【図3】実施例1における磁気抵抗効果積層膜の磁気抵
抗効果曲線である。
3 is a magnetoresistive effect curve of a magnetoresistive effect laminated film in Example 1. FIG.

【図4】実施例1における磁気抵抗効果積層膜の磁化曲
線である。
FIG. 4 is a magnetization curve of a magnetoresistive layered film in Example 1.

【図5】磁気抵抗効果曲線において、ヒステリシス幅を
説明する図である。
FIG. 5 is a diagram illustrating a hysteresis width in a magnetoresistive effect curve.

【符号の説明】[Explanation of symbols]

1 非磁性金属膜 2 強磁性金属膜 3 非磁性金属膜 4 強磁性金属膜 5 非磁性金属膜 5’ 非磁性金属膜 11 基板 21 電流を流すためのCuリードである。 1 non-magnetic metal film 2 ferromagnetic metal film 3 non-magnetic metal film 4 ferromagnetic metal film 5 non-magnetic metal film 5'non-magnetic metal film 11 substrate 21 Cu lead for passing current.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年7月13日[Submission date] July 13, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】強磁性層の一方に反強磁性体のバイアスを
かけたものは、スピンバルブ膜と呼ばれ、その磁化曲線
が磁界方向にシフトしているのが特徴である。強磁性層
の組合せにより、磁界感度が高く、ヒステリシスの小さ
い特性が得られるが、層間の結合が切れる強磁性層間隔
が大きいため、△R/Rが小さく、しかも電気抵抗の高
い反強磁性体膜を用いているため、多層化しても△R/
Rがあまり大きくならない。
An antiferromagnetic material biased to one of the ferromagnetic layers is called a spin valve film and is characterized in that its magnetization curve is shifted in the magnetic field direction. By combining the ferromagnetic layers, high magnetic field sensitivity and low hysteresis can be obtained, but since the distance between the ferromagnetic layers that breaks the coupling between layers is large, the ΔR / R is small and the antiferromagnetic material has a high electric resistance. Since a film is used, even if multiple layers are used, ΔR /
R does not become too large.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に非磁性金属膜および強磁性金属
膜よりなる薄膜を(非磁性金属膜/強磁性金属膜)/
(非磁性金属膜/強磁性金属膜)i〔ただしiは1ある
いは(非磁性金属膜/強磁性金属膜)の2以上の繰返し
数を示す〕の順序で積層してなることを特徴とする磁気
抵抗効果積層膜であって、前記2つの(非磁性金属膜/
強磁性金属膜)から構成される2層膜の界面磁気異方性
のうち基板側の方が大きく、2つの界面磁気異方性の差
が0.1erg/cm2以上であることを特徴とする磁
気抵抗効果積層膜。
1. A thin film comprising a non-magnetic metal film and a ferromagnetic metal film on a substrate (non-magnetic metal film / ferromagnetic metal film) /
(Non-magnetic metal film / ferromagnetic metal film) i (where i is 1 or (2) shows a repetition number of 2 or more of (non-magnetic metal film / ferromagnetic metal film)) A magnetoresistive layered film, comprising the two (non-magnetic metal film /
Of the interface magnetic anisotropy of a two-layer film composed of a ferromagnetic metal film), the one on the substrate side is larger, and the difference between the two interface magnetic anisotropies is 0.1 erg / cm 2 or more. Magneto-resistive effect laminated film.
【請求項2】 基板上に、非磁性金属膜および強磁性金
属膜よりなる薄膜を(非磁性金属膜/強磁性金属膜)/
(非磁性金属膜/強磁性金属膜)i/非磁性金属膜〔た
だしiは1あるいは(非磁性金属膜/強磁性金属膜)の
2以上の繰返し数を示す〕の順序で2回以上繰り返し積
層してなることを特徴とする磁気抵抗効果積層膜であっ
て、前記2つの(非磁性金属膜/強磁性金属膜)から構
成される2層間の界面磁気異方性のうち基板側の方が大
きく、2つの界面磁気異方性の差が0.1erg/cm
2以上であることを特徴とする磁気抵抗効果積層膜。
2. A thin film composed of a nonmagnetic metal film and a ferromagnetic metal film is formed on a substrate (nonmagnetic metal film / ferromagnetic metal film) /
Repeated twice or more in the order of (non-magnetic metal film / ferromagnetic metal film) i / non-magnetic metal film (where i represents 1 or (non-magnetic metal film / ferromagnetic metal film) repeated number of 2 or more) A magnetoresistive laminated film characterized by being laminated, wherein one of the two (non-magnetic metal film / ferromagnetic metal film) interface magnetic anisotropy on the substrate side Is large, the difference between the two interface magnetic anisotropies is 0.1 erg / cm
A magnetoresistive layered film having a number of 2 or more.
【請求項3】 請求項1又は請求項2の磁気抵抗効果積
層膜の成膜において、膜面内の一方向に磁界を印加する
ことを特徴とする磁気抵抗効果積層膜の製造方法。
3. A method of manufacturing a magnetoresistive effect laminated film according to claim 1 or 2, wherein a magnetic field is applied in one direction within a film surface in the film formation of the magnetoresistive effect laminated film.
JP7165967A 1995-03-30 1995-06-30 Magnetoresistance effect laminated film and its manufacture Withdrawn JPH08330134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7165967A JPH08330134A (en) 1995-03-30 1995-06-30 Magnetoresistance effect laminated film and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-73544 1995-03-30
JP7354495 1995-03-30
JP7165967A JPH08330134A (en) 1995-03-30 1995-06-30 Magnetoresistance effect laminated film and its manufacture

Publications (1)

Publication Number Publication Date
JPH08330134A true JPH08330134A (en) 1996-12-13

Family

ID=26414689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7165967A Withdrawn JPH08330134A (en) 1995-03-30 1995-06-30 Magnetoresistance effect laminated film and its manufacture

Country Status (1)

Country Link
JP (1) JPH08330134A (en)

Similar Documents

Publication Publication Date Title
US6153320A (en) Magnetic devices with laminated ferromagnetic structures formed with improved antiferromagnetically coupling films
EP0681338B1 (en) Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
JP2690623B2 (en) Magnetoresistance effect element
US5955211A (en) Magnetoresistive film
US5578385A (en) Magnetoresistance effect element
JP3184352B2 (en) Memory element
US5277991A (en) Magnetoresistive materials
EP0678213A1 (en) Magnetoresistive structure with alloy layer
EP0526044B1 (en) Magnetoresistance effect element
JPH10188235A (en) Magneto-resistive film and its production
EP0560350B1 (en) Magneto-resistance effect element
JPH11238923A (en) Magnetic element, magnetic head using the same, and magnetic storage device
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JPH11238925A (en) Magnetic element, magnetic part using the same and electronic component
EP0620572B1 (en) Element having magnetoresistive effect
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JPH08330134A (en) Magnetoresistance effect laminated film and its manufacture
JPH0745884A (en) Magnetoresistive effect thin-film magnetic head
JP2848083B2 (en) Magnetoresistance effect element
KR0136073B1 (en) Magnetoresistance effect element
JPH10326920A (en) Magnetic resistance effect sensor and its manufacture
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JPH08316033A (en) Magnetic laminate
JPH06302877A (en) Magnetoresistance element and thin-film magnetic head using it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903