JPH06302877A - Magnetoresistance element and thin-film magnetic head using it - Google Patents

Magnetoresistance element and thin-film magnetic head using it

Info

Publication number
JPH06302877A
JPH06302877A JP5085918A JP8591893A JPH06302877A JP H06302877 A JPH06302877 A JP H06302877A JP 5085918 A JP5085918 A JP 5085918A JP 8591893 A JP8591893 A JP 8591893A JP H06302877 A JPH06302877 A JP H06302877A
Authority
JP
Japan
Prior art keywords
thin film
magnetoresistive effect
artificial lattice
magnetic
lattice thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5085918A
Other languages
Japanese (ja)
Inventor
Yasusuke Irie
庸介 入江
Hiroshi Sakakima
博 榊間
Mitsuo Satomi
三男 里見
Yasuhiro Kawawake
康博 川分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5085918A priority Critical patent/JPH06302877A/en
Publication of JPH06302877A publication Critical patent/JPH06302877A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal

Abstract

PURPOSE:To obtain a magnetoresistance element which is very sensitive to a magnetic field and has a big rate of change of magnetic resistance by forming current terminals to be connected to the magnetoresistance element in an upper and a lower layer part of an artificial lattice thin film and by mainly using a magnetoresistance effect in the thickness direction of the artificial lattice thin film. CONSTITUTION:On a glass substrate 10, a magnetoresistance element 11 which is an artificial lattice thin film, a Cr lower layer part current terminal 12 and an Au upper layer part current terminal 13, both of which are for applying driving current, are formed. Using a hypercomplex sputtering equipment, the magnetoresistance element of the following structure is manufactured. Cr (100)/[Cu (20)/NiCoFe (39)]n/Au (100) (the figure in paren theses indicates the thickness in Angstrom , n is the number of layers). For a target, Ni0.8Co0.1Fe0.1 (magnetic layer). Cu (non-magnetic layer) of 80mm in diameter is used. The film thickness is controlled by a shutter. The number of layers is 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、センサーに用いられる
磁気抵抗効果素子及び磁気記録再生装置に用いられる薄
膜磁気ヘッド、特に人工格子薄膜の主に厚さ方向の磁気
抵抗効果を用いた高感度を要求される磁気抵抗効果素子
及び磁気抵抗効果型薄膜磁気ヘッドに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element used in a sensor and a thin film magnetic head used in a magnetic recording / reproducing apparatus, and in particular, a high sensitivity using mainly a magnetoresistive effect in the thickness direction of an artificial lattice thin film. The present invention relates to a magnetoresistive effect element and a magnetoresistive effect type thin film magnetic head.

【0002】[0002]

【従来の技術】磁気抵抗効果素子は、磁気抵抗効果(磁
場の強さに応じて端子間抵抗が変化する現象)を利用し
た素子であり、用途としては磁気センサ、特に情報処理
装置のメモリとして使われる磁気装置の読みとりヘッド
として多く使われている。特に記録媒体が低速で走行す
る磁気記録装置においては、再生出力が速度に依存しな
い磁気抵抗効果型薄膜磁気ヘッドが使用されてる。近
年、記録媒体の高記録密度化、データの高転送速度化、
多チャンネル化が進み、より高感度、すなわち再生出力
が高い磁気ヘッド(例えば薄膜ヘッド)が要望されてい
る。
2. Description of the Related Art A magnetoresistive effect element is an element utilizing the magnetoresistive effect (a phenomenon in which the resistance between terminals changes according to the strength of a magnetic field), and is used as a magnetic sensor, particularly as a memory of an information processing device. It is often used as a reading head for magnetic devices. Particularly, in a magnetic recording apparatus in which a recording medium runs at a low speed, a magnetoresistive thin film magnetic head whose reproduction output does not depend on speed is used. In recent years, higher recording density of recording media, higher data transfer rate,
As the number of channels increases, a magnetic head (for example, a thin film head) having higher sensitivity, that is, higher reproduction output is desired.

【0003】以下に従来の磁気抵抗効果型薄膜磁気ヘッ
ドについて説明する。(図10)は従来の磁気抵抗効果
型薄膜磁気ヘッドを示すものである。磁性基板100上
に、ギャップ絶縁層101、Ni0.8−Fe0.2合金薄膜
等の磁気抵抗効果素子102、一対の電流端子103
a、103b、及び磁気テープ摺動面104から磁気テ
ープ信号磁束を磁気抵抗効果素子に導くためのフロント
ヨーク105及びバックヨーク106等が絶縁層(図示
せず)を介して順次積層されている。現在、磁気抵抗素
子として人工格子薄膜を用いたもの(例えば特開平4−
247607号公報)が数多く発明されている。また、
人工格子薄膜の厚さ方向に電極を配置したものとして
は、人工格子薄膜としてFe/Crが報告されている
が、このFe/Cr人工格子薄膜の磁気抵抗効果、すな
わち抵抗変化率(Δρ/ρ)は低温では大きな値を示す
が、常温では数%と小さく、しかも飽和磁界(以後Hs
と示す)が15KOeと大きく、その結果として、磁気
抵抗効果素子及び磁気抵抗効果型薄膜磁気ヘッドとして
は感度が上がらなかった。(特開平4−12330
6)。
A conventional magnetoresistive thin film magnetic head will be described below. FIG. 10 shows a conventional magnetoresistive thin film magnetic head. On the magnetic substrate 100, a gap insulating layer 101, a magnetoresistive effect element 102 such as a Ni 0.8 —Fe 0.2 alloy thin film, and a pair of current terminals 103.
a, 103b, and a front yoke 105 and a back yoke 106 for guiding the magnetic tape signal magnetic flux from the magnetic tape sliding surface 104 to the magnetoresistive effect element are sequentially laminated via an insulating layer (not shown). At present, an artificial lattice thin film is used as a magnetoresistive element (for example, Japanese Patent Laid-Open No.
No. 247607) has been invented. Also,
Fe / Cr has been reported as an artificial lattice thin film in which electrodes are arranged in the thickness direction of the artificial lattice thin film. The magnetoresistive effect of this Fe / Cr artificial lattice thin film, that is, the rate of change in resistance (Δρ / ρ) ) Shows a large value at low temperature, but is small at several% at room temperature, and the saturation magnetic field (hereinafter Hs
Is as large as 15 KOe, and as a result, the sensitivity was not improved for the magnetoresistive effect element and the magnetoresistive effect type thin film magnetic head. (JP-A-4-12330
6).

【0004】[0004]

【発明が解決しようとする課題】前記従来の磁気抵抗効
果型薄膜磁気ヘッドにおいて安定した高感度の出力を得
ること、及び前記磁気抵抗効果型薄膜磁気ヘッドの課題
である外乱磁場に対する安定性、バルクハウゼンノイズ
の問題等があった。外乱磁場に対する安定性やバルクハ
ウゼンノイズの低減を実現するためには磁気抵抗効果素
子を単軸構造にする等の対策が取られている。しかし、
前記磁気抵抗効果型薄膜磁気ヘッドの出力は前記磁気抵
抗効果素子が持つ素子本来の抵抗変化率(Δρ/ρ)と
Hsで主に決定されるため前記磁気抵抗効果素子の抵抗
変化率(Δρ/ρ)を向上させるとともに飽和磁界を小
さくする必要がある。前記磁気抵抗効果素子に一般使用
されているNi0.8Fe0.2合金薄膜では抵抗変化率(Δ
ρ/ρ)が最大で2.5%、Ni0.8Co0.2合金薄膜で最
大5.8%であるため、これ以上の高再生出力を得ること
ができないという課題があった。一方、人工格子薄膜を
用いた磁気抵抗効果素子(Fe/Cr人工格子薄膜の厚
さ方向に電極を配置した磁気抵抗効果素子)では抵抗変
化率(Δρ/ρ)は大きいが、Hsが大きく感度が上が
らないため磁気抵抗効果素子及び磁気抵抗効果型薄膜ヘ
ッドとしては応用できないという課題があった。
In the conventional magnetoresistive effect thin film magnetic head, stable and highly sensitive output is obtained, and the stability of the magnetoresistive effect thin film magnetic head against a disturbance magnetic field, bulk There was a problem of Hausen noise. In order to realize stability against a disturbance magnetic field and reduction of Barkhausen noise, measures such as a uniaxial structure of a magnetoresistive effect element are taken. But,
The output of the magnetoresistive effect thin-film magnetic head is mainly determined by the original resistance change rate (Δρ / ρ) of the magnetoresistive effect element and Hs, and thus the resistance change rate (Δρ / ρ) of the magnetoresistive effect element. It is necessary to improve ρ) and reduce the saturation magnetic field. In the Ni 0.8 Fe 0.2 alloy thin film generally used for the magnetoresistive effect element, the resistance change rate (Δ
Since ρ / ρ) is 2.5% at the maximum and Ni 0.8 Co 0.2 alloy thin film is 5.8% at the maximum, there is a problem that a higher reproduction output cannot be obtained. On the other hand, in the magnetoresistive effect element using the artificial lattice thin film (the magnetoresistive effect element in which the electrodes are arranged in the thickness direction of the Fe / Cr artificial lattice thin film), the resistance change rate (Δρ / ρ) is large, but Hs is large and the sensitivity is high. However, there is a problem that it cannot be applied as a magnetoresistive effect element and a magnetoresistive effect type thin film head.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために磁気抵抗効果素子としてNiFe,NiC
o,CoFe,NiFeCo/Cu,Ag,Au等の常
温で抵抗変化率(Δρ/ρ)の大きくHsの小さな人工
格子薄膜を用い、しかも前記磁気抵抗効果素子に接続す
る前記電流端子を前記人工格子薄膜の上層部と下層部に
設け、前記人工格子薄膜の主に厚さ方向の磁気抵抗効果
を利用した。これにより、磁気抵抗効果は面内で用いた
場合の約2〜3倍となり、その上Hsは殆ど変化せず小
さな値を示す。その上パターニングをして磁気抵抗効果
素子のパターンを増やしてやることにより電流端子部分
の影響が抑えられ、高感度な磁気抵抗効果素子が可能と
なる。
In order to solve the above-mentioned problems, the present invention uses NiFe, NiC as a magnetoresistive effect element.
o, CoFe, NiFeCo / Cu, Ag, Au, etc., an artificial lattice thin film having a large resistance change rate (Δρ / ρ) and a small Hs at room temperature is used, and the current terminal connected to the magnetoresistive effect element is connected to the artificial lattice. The thin film was provided in the upper and lower layers, and the magnetoresistive effect mainly in the thickness direction of the artificial lattice thin film was used. As a result, the magnetoresistive effect is about 2 to 3 times as large as the in-plane use, and Hs shows a small value with almost no change. Further, by patterning to increase the pattern of the magnetoresistive effect element, the influence of the current terminal portion can be suppressed, and a highly sensitive magnetoresistive effect element can be realized.

【0006】特に磁性層としては主成分がParticularly, the main component of the magnetic layer is

【0007】[0007]

【数1】 [Equation 1]

【0008】で、X,X’はそれぞれ原子組成比でX and X'are atomic composition ratios, respectively.

【0009】[0009]

【数2】 [Equation 2]

【0010】で、非磁性層はCu,Ag,Auのいずれ
かが好ましい。また、上記以外では磁性層としては主成
分が
The nonmagnetic layer is preferably made of Cu, Ag or Au. In addition to the above, the main component of the magnetic layer is

【0011】[0011]

【数3】 [Equation 3]

【0012】でY,Y’はそれぞれ原子組成比でWhere Y and Y'are atomic composition ratios, respectively.

【0013】[0013]

【数4】 [Equation 4]

【0014】で、非磁性層はCu,Ag,Auのいずれ
かが好ましい。ここに磁性層は磁歪が小さい磁性材料
で、(数2)、(数4)はこの条件を満足するのに必要
な組成範囲である。
The nonmagnetic layer is preferably made of Cu, Ag or Au. Here, the magnetic layer is a magnetic material having a small magnetostriction, and (Equation 2) and (Equation 4) are composition ranges required to satisfy this condition.

【0015】なお、上記磁気抵抗効果素子とそれを用い
た磁気抵抗効果型薄膜磁気ヘッドは磁気抵抗効果素子の
パターン及び製造法によらず、膜面に対して厚さ方向の
磁気抵抗効果を用いることができるパターンもしくはパ
ターン製造法であれば同様な効果を有することは言うま
でもない。
The magnetoresistive effect element and the magnetoresistive effect type thin film magnetic head using the magnetoresistive effect element use the magnetoresistive effect in the thickness direction with respect to the film surface regardless of the pattern and manufacturing method of the magnetoresistive effect element. It goes without saying that the same effect can be obtained as long as it is a pattern or a method for producing a pattern.

【0016】[0016]

【作用】人工格子薄膜の磁気抵抗効果は、非磁性層で隔
てられた磁性層間の反強磁性相互作用が働いており、零
磁場では隣接層の磁化は反平行に配列しているが、外部
磁場を加えると各層の磁化は平行に向けられる。電気抵
抗は磁化が反平行の場合大きく、平行の場合小さい。こ
れは、磁化の配列による電流の散乱が原因で起こる現象
であるが、人工格子薄膜を面内で用いる場合には、この
磁化の配列による電子散乱が抵抗変化の主な原因とな
る。一方、人工格子薄膜を厚さ方向で用いる場合には磁
化の配列による電子散乱の他に磁性層と非磁性層の界面
での散乱の影響も大きくなるために、面内よりも大きな
抵抗変化率(Δρ/ρ)が得られる。その上、外部磁場
は面内方向に印加するためHsは殆ど変化しない。
The magnetoresistive effect of the artificial lattice thin film is due to the antiferromagnetic interaction between the magnetic layers separated by the nonmagnetic layer, and the magnetizations of the adjacent layers are antiparallel to each other at zero magnetic field. When a magnetic field is applied, the magnetization of each layer is oriented in parallel. The electric resistance is large when the magnetizations are antiparallel, and small when they are parallel. This is a phenomenon caused by the scattering of current due to the arrangement of magnetization, but when an artificial lattice thin film is used in-plane, electron scattering due to the arrangement of magnetization is the main cause of resistance change. On the other hand, when the artificial lattice thin film is used in the thickness direction, the effect of scattering at the interface between the magnetic layer and the non-magnetic layer becomes large in addition to the electron scattering due to the magnetization arrangement, so that the rate of change in resistance is larger than that in the plane. (Δρ / ρ) is obtained. Moreover, since the external magnetic field is applied in the in-plane direction, Hs hardly changes.

【0017】この構成によって、Hsは殆ど変化する事
なく磁気抵抗効果素子の素子本来の抵抗変化率(Δρ/
ρ)が向上されるため、磁気抵抗効果素子の感度と磁気
抵抗効果型薄膜磁気ヘッドの再生出力の向上が実現され
る。
With this configuration, Hs hardly changes, and the original resistance change rate of the magnetoresistive effect element (Δρ /
Since ρ) is improved, the sensitivity of the magnetoresistive effect element and the reproduction output of the magnetoresistive thin film magnetic head are improved.

【0018】[0018]

【実施例】Fe/Cr人工格子薄膜を用いた磁気抵抗効
果素子の面内の場合、抵抗変化率(Δρ/ρ)は大きい
が、Hsも大きい。また、Fe/Cr人工格子薄膜の厚
さ方向に電極を配置した磁気抵抗効果素子については、
面内よりも抵抗変化率(Δρ/ρ)は大きいものの、H
sも面内と殆ど変化しないで大きいという報告がある
(特開平4−123306)。
EXAMPLE In the case of the in-plane of the magnetoresistive effect element using the Fe / Cr artificial lattice thin film, the resistance change rate (Δρ / ρ) is large, but Hs is also large. Regarding the magnetoresistive effect element in which electrodes are arranged in the thickness direction of the Fe / Cr artificial lattice thin film,
Although the rate of change in resistance (Δρ / ρ) is greater than in-plane, H
There is also a report that s is large with almost no change in the plane (JP-A-4-123306).

【0019】一方、FeNiCo/Cu系合金等では面
内で常温でも抵抗変化率(Δρ/ρ)が大きく、しかも
Hsが小さいという報告がある(例えば特開平4−24
7607号公報)。(数1)のNi-richのNiFeC
o系合金は、その組成比が(数2)を満足するとき磁歪
が小さく軟磁性を示す。その代表的なものがNi0.8
0.1Co0.1,Ni0.8Co0.2,Ni0.8Co0.2等であ
る。一方、(数3)のCo-richのCoNiFe系合金
は(数4)を満足するときやはり小さな磁歪を示す。そ
の代表的なものはFe0.9Co0.1等である。
On the other hand, it has been reported that FeNiCo / Cu alloys and the like have a large resistance change rate (Δρ / ρ) within the plane even at room temperature and a small Hs (for example, JP-A-4-24).
7607). (Equation 1) Ni-rich NiFeC
The o-based alloy exhibits a small magnetostriction and exhibits soft magnetism when the composition ratio thereof satisfies (Equation 2). The typical one is Ni 0.8 F
e 0.1 Co 0.1 , Ni 0.8 Co 0.2 , Ni 0.8 Co 0.2, etc. On the other hand, the Co-rich CoNiFe-based alloy of (Equation 3) also exhibits a small magnetostriction when satisfying (Equation 4). A typical example thereof is Fe 0.9 Co 0.1 or the like.

【0020】磁性層は低磁歪の膜であることが必要であ
る。これは実用上、小さな磁界で動作することが必要な
のと、磁気ヘッド等に用いた場合、磁歪が大きいとノイ
ズの原因となるためである。この条件を満足するものに
上記(数1)、(数2)で示されるNi-richのNiF
eCo系膜がある。また、これとは異なる上記(数
3)、(数4)で示される低磁歪Co-richのCoNi
Fe系膜を用いても良いし、これと上記の(数1)、
(数2)の磁性薄膜層とを組み合わせて用いても良い。
The magnetic layer must be a low magnetostrictive film. This is because it is practically necessary to operate with a small magnetic field, and when used in a magnetic head or the like, large magnetostriction causes noise. The Ni-rich NiF shown in (Equation 1) and (Equation 2) that satisfy this condition.
There is an eCo-based film. Further, different from this, the low magnetostriction Co-rich CoNi represented by the above (Equation 3) and (Equation 4) is used.
An Fe-based film may be used, and this and the above (Equation 1),
You may use it, combining with the magnetic thin film layer of (Formula 2).

【0021】これら磁性層の間に介在させる非磁性層は
上記(数1)から(数4)で示される組成の磁性薄膜層
との界面での反応が少なく、かつ非磁性層であることが
必要で、この条件を満たすものとしてCu,Ag,Au
等が適している。従って、本発明では上記の低磁歪で、
しかも常温で抵抗変化率(Δρ/ρ)の大きくHsの小
さな組成の人工格子薄膜を用い、その上前記磁気抵抗効
果素子に接続する前記電流端子を前記人工格子薄膜の上
層部と下層部に設け、前記人工格子薄膜の主に厚さ方向
の磁気抵抗効果を測定した。以下にその具体的な実施例
を示す。
The non-magnetic layer interposed between these magnetic layers is a non-magnetic layer with little reaction at the interface with the magnetic thin film layer having the composition represented by the above (Formula 1) to (Formula 4). Cu, Ag, Au are necessary and satisfy this condition.
Etc. are suitable. Therefore, in the present invention, with the above low magnetostriction,
Moreover, an artificial lattice thin film having a composition with a large resistance change rate (Δρ / ρ) and a small Hs at room temperature is used, and the current terminals connected to the magnetoresistive effect element are provided on the upper layer portion and the lower layer portion of the artificial lattice thin film. The magnetoresistive effect was measured mainly in the thickness direction of the artificial lattice thin film. Specific examples will be shown below.

【0022】(実施例1) (図1)は本発明の第1の実施例である。特に磁気抵抗
効果素子部の構成について図示している。本実施例で
は、ガラス基板10上に、人工格子薄膜の磁気抵抗効果
素子11及び、駆動電流を印加するためのCr下層部電
流端子12、Au上層部電流端子13から形成されてい
る。成膜には多元スパッタ装置を用い以下に示す構成の
磁気抵抗効果素子を形成した。 Cr(100)/[Cu(20)/NiCoFe(3
0)]n/Au(100) (( )内は厚さ(Å)、nは積層回数を表す) なおターゲットにはそれぞれ直径80mmのNi0.8
0.1Fe0.1(磁性層)、Cu(非磁性層)を用い、各
膜厚はシャッターにより制御した。また積層回数n=4
0とした。
(Embodiment 1) (FIG. 1) is a first embodiment of the present invention. In particular, the configuration of the magnetoresistive effect element portion is illustrated. In this embodiment, a magnetoresistive element 11 made of an artificial lattice thin film, a Cr lower layer current terminal 12 and an Au upper layer current terminal 13 for applying a drive current are formed on a glass substrate 10. A multi-source sputtering device was used for film formation to form a magnetoresistive effect element having the following structure. Cr (100) / [Cu (20) / NiCoFe (3
0)] n / Au (100) (() indicates thickness (Å), n represents the number of laminations) Note that the target is Ni 0.8 C each having a diameter of 80 mm.
o 0.1 Fe 0.1 (magnetic layer) and Cu (non-magnetic layer) were used, and each film thickness was controlled by a shutter. In addition, the number of stacks n = 4
It was set to 0.

【0023】(図2)に前記磁気抵抗効果素子11の形
成方法を示す。ガラス基板20上にCr薄膜の下層部電
流端子22をスパッタ装置で形成する(図2(A))。
前記下層部電流端子22の上に前記構成の磁気抵抗効果
素子21を形成し(図2(B)、その上に、Au上層部
電流端子23をスパッタ法で形成する(図2(C))。
FIG. 2 shows a method of forming the magnetoresistive effect element 11. The lower layer current terminal 22 of the Cr thin film is formed on the glass substrate 20 by a sputtering apparatus (FIG. 2 (A)).
The magnetoresistive element 21 having the above-described structure is formed on the lower layer current terminal 22 (FIG. 2B), and the Au upper layer current terminal 23 is formed thereon by the sputtering method (FIG. 2C). .

【0024】本発明の第1の実施例では、前記下層部電
流端子12と前記上層部電流端子13が前記磁気抵抗効
果素子11を挟み込むように形成されている(図1)た
め駆動電流は主に膜面に対して厚さ方向に流れる。(図
3)にその測定結果を示す。駆動電流が面内方向に流れ
る場合、すなわち膜面に対して平行方向の抵抗変化率
(Δρ/ρ)32は16%であり、駆動電流が面内に対
して垂直方向、すなわち膜面に対して厚さ方向の抵抗変
化率(Δρ/ρ)33は34%が得られ、膜面より膜面
に対して垂直方向の抵抗変化率(Δρ/ρ)が約2倍に
上がった。その上、Hsは全く変化なく、約200Oe
であった。よって抵抗変化量も約2倍となり磁気抵抗効
果素子の感度及び磁気抵抗効果型薄膜磁気ヘッドの再生
出力の向上を実現するものである。
In the first embodiment of the present invention, since the lower layer current terminal 12 and the upper layer current terminal 13 are formed so as to sandwich the magnetoresistive effect element 11 (FIG. 1), the driving current is mainly Flow in the thickness direction with respect to the film surface. The measurement results are shown in (FIG. 3). When the drive current flows in the in-plane direction, that is, the resistance change rate (Δρ / ρ) 32 in the direction parallel to the film surface is 16%, and the drive current is in the direction perpendicular to the surface, that is, to the film surface. As a result, the resistance change rate (Δρ / ρ) 33 in the thickness direction was 34%, and the resistance change rate (Δρ / ρ) in the direction perpendicular to the film surface was about doubled. Moreover, Hs is almost unchanged, about 200 Oe
Met. Therefore, the amount of resistance change is also approximately doubled, and the sensitivity of the magnetoresistive effect element and the reproduction output of the magnetoresistive thin film magnetic head are improved.

【0025】(実施例2) (図4)に本発明の第2の実施例を示す。(図1)と同
様、特に磁気抵抗効果素子部の構成について図示してい
る。本実例では、ガラス基板40、磁気抵抗効果素子4
1及び、駆動電流を印加するためのCr下層部電流端子
42、Au上層部電流端子43、絶縁層(レジスト)4
4から形成されている。磁気抵抗効果素子の構成は、
(実施例1)と同様で、直径80mmのNi0.8Co0.1
Fe0.1(磁性層)、Cu(非磁性層)のターゲットを
用いた。パターンの形成方法を以下(図5)に示す。ガ
ラス基板50上にCr下層部電流端子52をスッパタ法
で形成(図5(A))した後、前記磁気抵抗効果素子5
1を前記下層部電流端子の上に形成(図5(B))す
る。その後、レジストを塗りフォトリソグラフィ技術を
用いてマスク55をする(図5(C))。
(Embodiment 2) FIG. 4 shows a second embodiment of the present invention. Similar to (FIG. 1), the configuration of the magnetoresistive effect element portion is illustrated. In this example, the glass substrate 40 and the magnetoresistive effect element 4
1 and Cr lower layer current terminal 42 for applying drive current, Au upper layer current terminal 43, insulating layer (resist) 4
It is formed from four. The structure of the magnetoresistive effect element is
Similar to (Example 1), Ni 0.8 Co 0.1 having a diameter of 80 mm
Fe 0.1 (magnetic layer) and Cu (non-magnetic layer) targets were used. The pattern forming method is shown below (FIG. 5). After the Cr lower layer current terminal 52 is formed on the glass substrate 50 by the sputtering method (FIG. 5A), the magnetoresistive effect element 5 is formed.
1 is formed on the lower layer current terminal (FIG. 5 (B)). After that, a resist is applied and a mask 55 is formed using a photolithography technique (FIG. 5C).

【0026】ドライエッチング法で前記下層部電流端子
52の厚さまでエッチングし(図5(D))、再びレジ
ストを塗り、マスク54を形成後、イオンミリング法で
前記磁気抵抗果素子51の厚さまで平坦化する(図5
(E))。その上から、上層部電流端子53をスパッタ
法で形成する(図5(F))。 本発明の第2の実施例
では、前記磁気抵抗効果素子51、前記下層部電流端子
52、前記上層部電流端子53をパターン化(図4)し
て前記下層部電流端子42、前記上層部電流端子43の
影響を少なくしている。(図6)に前記構成の磁気抵抗
効果素子を用いた磁気抵抗効果素子をパターニングしな
い場合の抵抗変化率(Δρ/ρ)61とパターニングし
た場合の測定結果を示す。
After etching to the thickness of the lower layer current terminal 52 by the dry etching method (FIG. 5D), a resist is applied again and a mask 54 is formed, and then the thickness of the magnetoresistive element 51 is reached by the ion milling method. Flatten (Fig. 5
(E)). Then, the upper layer current terminal 53 is formed by the sputtering method (FIG. 5 (F)). In the second embodiment of the present invention, the magnetoresistive effect element 51, the lower layer current terminal 52, and the upper layer current terminal 53 are patterned (FIG. 4) to form the lower layer current terminal 42 and the upper layer current. The influence of the terminal 43 is reduced. (FIG. 6) shows the resistance change rate (Δρ / ρ) 61 in the case where the magnetoresistive effect element using the magnetoresistive effect element having the above-mentioned configuration is not patterned, and the measurement result when the patterning is performed.

【0027】前記磁気抵抗効果素子をパターニングしな
い場合、その抵抗変化率(Δρ/ρ)61は34%であ
り、前記磁気抵抗効果素子をパターニングした場合の抵
抗変化率(Δρ/ρ)62は40%が得られ、パターニ
ングしない場合よりも パターニングした場合の方が電
流端子の影響が低減され、約4%大きな抵抗変化率(Δ
ρ/ρ)が得られ、Hsも変化なく約200Oeであっ
た。
When the magnetoresistive effect element is not patterned, the resistance change rate (Δρ / ρ) 61 is 34%, and when the magnetoresistive effect element is patterned, the resistance change rate (Δρ / ρ) 62 is 40. %, The effect of the current terminal is smaller in the case of patterning than in the case of no patterning, and the resistance change rate (Δ
ρ / ρ) was obtained, and Hs was about 200 Oe without change.

【0028】(実施例3) (図7)に本発明の第3の実施例を示す。(図1)、
(図4)と同様、特に磁気抵抗効果素子部の構成につい
て図示している。本実施例ではガラス基板70、磁気抵
抗効果素子71a、71b、71c、71d及び駆動電
流を印加するためのCr下層部電流端子72a、72
b、Au上層部電流端子73a、73b、73c、絶縁
層(レジスト)74a、74b、74c、74d、74
eから形成されている。前記磁気抵抗効果素子の構成
は、(実施例1)、または(実施例2)と同様で、直径
80mmのNi0.8Co0.1Fe0.1(磁性層)、Cu
(非磁性層)のターゲットを用いた。
(Embodiment 3) FIG. 7 shows a third embodiment of the present invention. (Figure 1),
Similar to (FIG. 4), the configuration of the magnetoresistive effect element portion is illustrated. In this embodiment, the glass substrate 70, the magnetoresistive effect elements 71a, 71b, 71c and 71d and the Cr lower layer current terminals 72a and 72 for applying the drive current.
b, Au upper layer current terminals 73a, 73b, 73c, insulating layers (resist) 74a, 74b, 74c, 74d, 74
It is formed from e. The structure of the magnetoresistive element is the same as that of (Example 1) or (Example 2), and Ni 0.8 Co 0.1 Fe 0.1 (magnetic layer) and Cu having a diameter of 80 mm are used.
A (non-magnetic layer) target was used.

【0029】パターンの形成法を以下(図8)に示す。
基板80上にCr下層部電流端子82をスッパタ法で形
成(図8(A))した後、前記構成の磁気抵抗効果素子
81を前記下層部電流端子82の上にスパッタ法で形成
(図8(B))する。その後、レジストを塗りフォトリ
ソグラフィ技術を用いてマスク85a、85b、85
c、85dを形成する(図8(C))。ドライエッチン
グ法で前記下層部電流端子82の厚さまでエッチング
し、前記磁気抵抗効果素子81a、81b、81c、8
1dを形成する(図8(D))。
The pattern forming method is shown below (FIG. 8).
After the Cr lower layer current terminal 82 is formed on the substrate 80 by the sputtering method (FIG. 8A), the magnetoresistive effect element 81 having the above-described structure is formed on the lower layer current terminal 82 by the sputtering method (FIG. 8). (B)) After that, a resist is applied and masks 85a, 85b, 85 are formed by using a photolithography technique.
c and 85d are formed (FIG. 8C). The magnetoresistive effect elements 81a, 81b, 81c and 8 are etched by dry etching to the thickness of the lower layer current terminal 82.
1d is formed (FIG. 8D).

【0030】再びレジストを塗り、フォトリソグラフィ
技術を用いてマスク86a、86bを形成し(図8
(E))、ドライエッチング法を用いて不要な下層電流
端子部分87a、87b、87cを取り除き、下層部電
流端子82a、82bを形成する(図8(F))。再び
レジストを塗り、イオンミリング法で前記磁気抵抗果素
子81a、81b、81c、81dの厚さまで平坦化
し、絶縁層(レジスト)84a、84b、84c、84
d、84eを形成する(図8(G))。前記Au上層部
電流端子83をスパッタで形成する(図8(H))。
The resist is applied again, and the masks 86a and 86b are formed by using the photolithography technique (see FIG. 8).
(E)), unnecessary lower layer current terminal portions 87a, 87b, 87c are removed by dry etching to form lower layer current terminals 82a, 82b (FIG. 8 (F)). The resist is applied again, and flattened by the ion milling method to the thickness of the magnetoresistive element 81a, 81b, 81c, 81d, and insulating layers (resist) 84a, 84b, 84c, 84.
d and 84e are formed (FIG. 8G). The Au upper layer current terminal 83 is formed by sputtering (FIG. 8H).

【0031】再びレジストを塗り、フォトリソグラフィ
技術でマスク88a、88b、88cを形成する(図8
(I))。その後、ドライエッチング法で不要な電流端
子部分89a、89bを取り除く(図8(J))。最後
に、マスク88a、88b、88cを取り除く(図8
(K))。第3の実施例では、前記磁気抵抗効果素子を
分割し、それに接続する電流端子部分を駆動電流ができ
るだけ多くの前記磁気抵抗効果素子の厚さ方向を流れる
ように形成し(図7)、膜面に対して厚さ方向の磁気抵
抗効果をできるだけ多く利用できる様に形成した。
The resist is applied again, and masks 88a, 88b, 88c are formed by photolithography (FIG. 8).
(I)). After that, unnecessary current terminal portions 89a and 89b are removed by a dry etching method (FIG. 8 (J)). Finally, the masks 88a, 88b, 88c are removed (see FIG. 8).
(K)). In the third embodiment, the magnetoresistive effect element is divided, and a current terminal portion connected to the magnetoresistive effect element is formed so that a driving current flows in the thickness direction of the magnetoresistive effect element as much as possible (FIG. 7), and a film is formed. The surface is formed so that the magnetoresistive effect in the thickness direction can be utilized as much as possible.

【0032】(図9)に前記磁気抵抗効果素子で前記磁
気抵抗効果素子のパターンが単一場合の抵抗変化率(Δ
ρ/ρ)91と前記磁気抵抗効果素子のパターンが分割
している場合の抵抗変化率(Δρ/ρ)92を示す。前
記磁気抵抗効果素子のパターンが単一場合の抵抗変化率
(Δρ/ρ)91は40%であり、前記磁気抵抗効果素
子のパターンが分割している場合の抵抗変化率(Δρ/
ρ)92は45%が得られ、前記磁気抵抗効果素子のパ
ターンが単一のものより分割されている方が抵抗変化率
(Δρ/ρ)は約5%大きくなる。しかも、Hsは約2
00Oeと変化しなかった。
FIG. 9 shows the resistance change rate (Δ) when the magnetoresistive effect element has a single pattern.
ρ / ρ) 91 and the resistance change rate (Δρ / ρ) 92 when the pattern of the magnetoresistive effect element is divided. The resistance change rate (Δρ / ρ) 91 when the pattern of the magnetoresistive effect element is single is 40%, and the resistance change rate (Δρ / ρ) when the pattern of the magnetoresistive effect element is divided.
ρ) 92 is 45%, and the resistance change rate (Δρ / ρ) is about 5% larger when the pattern of the magnetoresistive effect element is divided than when the pattern is single. Moreover, Hs is about 2
It did not change to 00 Oe.

【0033】(実施例4) (実施例3)と同様に、フォトリソグラフィ技術で以下
の構成の磁気抵抗効果素子を作成した。 Cr(100)/[Cu(20)/NiCoFe(2
0)]n/Au(100) (( )内は厚さ(Å)、nは積層回数を表す) なおターゲットにはそれぞれ直径80mmのNi0.8
0.05Fe0.15(磁性層)、Cu(非磁性層)を用い、
各膜厚はシャッターにより制御した。また積層回数n=
50とした。その特性を測定したところ、抵抗変化率
(Δρ/ρ)は面内で30%、厚さ方向では55%、H
sは200Oeであった。
Example 4 Similar to Example 3, a magnetoresistive effect element having the following constitution was prepared by photolithography. Cr (100) / [Cu (20) / NiCoFe (2
0)] n / Au (100) (() indicates thickness (Å), n represents the number of laminations) Note that the target is Ni 0.8 C each having a diameter of 80 mm.
o 0.05 Fe 0.15 (magnetic layer), Cu (non-magnetic layer),
Each film thickness was controlled by a shutter. The number of stacks n =
It was set to 50. When the characteristics were measured, the resistance change rate (Δρ / ρ) was 30% in the plane, 55% in the thickness direction, and H
s was 200 Oe.

【0034】(実施例5) (実施例3)、(実施例4)と同様に、フォトリソグラ
フィ技術で以下の構成の磁気抵抗効果素子を作成した。 Cr(100)/[Cu(20)/NiFe(20)]
n/Au(100) (( )内は厚さ(Å)、nは積層回数を表す) なおターゲットにはそれぞれ直径80mmのNi0.8
0.2(磁性層)、Cu(非磁性層)を用い、各膜厚は
シャッターにより制御した。また積層回数n=50とし
た。その特性を測定したところ、抵抗変化率(Δρ/
ρ)は面内で15%、厚さ方向では32%、Hsは16
0Oeであった。
(Example 5) Similar to (Example 3) and (Example 4), a magnetoresistive effect element having the following constitution was prepared by photolithography. Cr (100) / [Cu (20) / NiFe (20)]
n / Au (100) (() indicates thickness (Å), n indicates the number of laminations) The target is Ni 0.8 F each with a diameter of 80 mm.
e 0.2 (magnetic layer) and Cu (non-magnetic layer) were used, and each film thickness was controlled by a shutter. Further, the number of laminations was set to n = 50. When the characteristics were measured, the rate of change in resistance (Δρ /
ρ) is 15% in the plane, 32% in the thickness direction, and Hs is 16
It was 0 Oe.

【0035】(実施例6) (実施例3)、(実施例4)、(実施例5)と同様に、
フォトリソグラフィ技術で以下の構成の磁気抵抗効果素
子を作成した。 Cr(100)/[Cu(20)/CoFe(20)]
n/Au(100) (( )内は厚さ(Å)、nは積層回数を表す) なおターゲットにはそれぞれ直径80mmのCo0.9
0.1(磁性層)、Cu(非磁性層)を用い、各膜厚は
シャッターにより制御した。また積層回数n=50とし
た。その特性を測定したところ、抵抗変化率(Δρ/
ρ)は面内で22%、厚さ方向では45%、Hsは21
0Oeであった。
(Example 6) Similar to (Example 3), (Example 4) and (Example 5),
A magnetoresistive effect element having the following configuration was created by photolithography technology. Cr (100) / [Cu (20) / CoFe (20)]
n / Au (100) (() indicates thickness (Å), n indicates the number of laminations.) Targets are Co 0.9 F with a diameter of 80 mm, respectively.
e 0.1 (magnetic layer) and Cu (non-magnetic layer) were used, and each film thickness was controlled by a shutter. Further, the number of laminations was set to n = 50. When the characteristics were measured, the rate of change in resistance (Δρ /
ρ) is 22% in the plane, 45% in the thickness direction, and Hs is 21
It was 0 Oe.

【0036】(実施例7) (実施例3)、(実施例4)、(実施例5)、(実施例
6)と同様に、フォトリソグラフィ技術で以下の構成の
磁気抵抗効果素子を作成した。 Cr(100)/[Cu(20)/NiCo(30)]
n/Au(100) (( )内は厚さ(Å)、nは積層回数を表す) なおターゲットにはそれぞれ直径80mmのNi0.8
0.2(磁性層)、Cu(非磁性層)を用い、各膜厚は
シャッターにより制御した。また積層回数n=40とし
た。その特性を測定したところ、抵抗変化率(Δρ/
ρ)は面内で25%、厚さ方向では48%、Hsは21
5Oeであった。
(Example 7) Similar to (Example 3), (Example 4), (Example 5) and (Example 6), a magnetoresistive effect element having the following constitution was prepared by photolithography. . Cr (100) / [Cu (20) / NiCo (30)]
n / Au (100) (() indicates thickness (Å), n indicates the number of laminations) The target is Ni 0.8 C each with a diameter of 80 mm.
o 0.2 (magnetic layer) and Cu (non-magnetic layer) were used, and each film thickness was controlled by a shutter. In addition, the number of laminations was set to n = 40. When the characteristics were measured, the rate of change in resistance (Δρ /
ρ) is 25% in the plane, 48% in the thickness direction, and Hs is 21
It was 5 Oe.

【0037】[0037]

【発明の効果】以上のように本発明は、Hsが小さな人
工格子薄膜からなる磁気抵抗効果素子の膜面に対して厚
さ方向の磁気抵抗効果を用いることにより、抵抗変化率
(Δρ/ρ)が膜面に対して平行方向の磁気抵抗効果の
抵抗変化率(Δρ/ρ)よりも大きな抵抗変化率(Δρ
/ρ)が得られる。その上、Hsが変化しないのでもと
もとHsが小さな組成を用いることにより相対的に抵抗
変化量をあげることができる。
As described above, according to the present invention, the rate of change in resistance (Δρ / ρ) is obtained by using the magnetoresistive effect in the thickness direction with respect to the film surface of the magnetoresistive effect element composed of the artificial lattice thin film having a small Hs. ) Is larger than the resistance change rate (Δρ / ρ) of the magnetoresistive effect in the direction parallel to the film surface (Δρ / ρ).
/ Ρ) is obtained. Moreover, even if Hs does not change, the resistance change amount can be relatively increased by using a composition in which Hs is originally small.

【0038】そして、磁気抵抗効果素子とそれにを接続
する電流端子をパターニングすることでパターニングし
ないで用いるよりも電流端子部分の影響を抑えられ、ま
た膜面に対して厚さ方向を用いるため従来より小型化す
る事ができ、小型化しても従来よりも大きな抵抗変化率
(Δρ/ρ)が得られる。そして、パターニングしてで
きるだけ多くの厚さ方向の磁気抵抗効果を利用すること
でさらに高い感度が得られる。以上の理由から高感度が
得られる磁気抵抗効果素子及び高再生出力が得られる磁
気抵抗効果型薄膜磁気ヘッドを実現するものである。
By patterning the magnetoresistive effect element and the current terminal connecting it, the influence of the current terminal portion can be suppressed as compared with the case where it is not patterned, and since the thickness direction is used with respect to the film surface, it is more conventional than before. The size can be reduced, and even if the size is reduced, a larger rate of change in resistance (Δρ / ρ) can be obtained. Then, by patterning and utilizing the magnetoresistive effect in the thickness direction as much as possible, higher sensitivity can be obtained. For the above reasons, the present invention realizes a magnetoresistive effect element capable of obtaining high sensitivity and a magnetoresistive effect thin film magnetic head capable of obtaining high reproduction output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す磁気抵抗効果素子の斜
視図
FIG. 1 is a perspective view of a magnetoresistive effect element showing Example 1 of the present invention.

【図2】本発明の実施例1を示す磁気抵抗効果素子の形
成行程の断面図
FIG. 2 is a sectional view of a process of forming a magnetoresistive effect element showing Example 1 of the present invention.

【図3】本発明の実施例1を示す従来の磁気抵抗効果素
子31、人工格子薄膜を用いた面内の磁気抵抗効果素子
32、面内に対して厚さ方向の磁気抵抗効果素子33の
外部磁界に対する抵抗変化率(Δρ/ρ)を示す図
FIG. 3 shows a conventional magnetoresistive effect element 31 showing Embodiment 1 of the present invention, an in-plane magnetoresistive effect element 32 using an artificial lattice thin film, and a magnetoresistive effect element 33 in the thickness direction with respect to the in-plane. Diagram showing resistance change rate (Δρ / ρ) against external magnetic field

【図4】本発明の実施例2を示す磁気抵抗効果素子の斜
視図
FIG. 4 is a perspective view of a magnetoresistive effect element showing Embodiment 2 of the present invention.

【図5】本発明の実施例2を示す磁気抵抗効果素子部の
形成行程の断面図
FIG. 5 is a sectional view of a process of forming a magnetoresistive effect element portion showing Embodiment 2 of the present invention.

【図6】本発明の実施例2を示す人工格子薄膜の面内に
対して厚さ方向の磁気抵抗効果を用いた磁気抵抗効果素
子でパターニングなし61とパターニングあり62の外
部磁界に対する抵抗変化率(Δρ/ρ)を示す図
FIG. 6 is a magnetoresistive element using a magnetoresistive effect in the thickness direction with respect to the in-plane of the artificial lattice thin film showing Example 2 of the present invention. Diagram showing (Δρ / ρ)

【図7】本発明の実施例3を示す磁気抵抗効果素子部の
斜面図
FIG. 7 is a perspective view of a magnetoresistive effect element portion showing a third embodiment of the present invention.

【図8】本発明の実施例3を示す磁気抵抗効果素子の形
成行程の断面図
FIG. 8 is a sectional view of a process of forming a magnetoresistive effect element showing Example 3 of the present invention.

【図9】本発明の実施例3を示す人工格子薄膜の面内に
対して厚さ方向の磁気抵抗効果を用いた磁気抵抗効果素
子で、そのパターンが単一の場合91と複数の場合92
の外部磁界に対する抵抗変化率(Δρ/ρ)を示す図
9 is a magnetoresistive element using the magnetoresistive effect in the thickness direction with respect to the in-plane artificial lattice thin film according to the third embodiment of the present invention, and has a single pattern 91 and a plurality of patterns 92. FIG.
Of change rate of resistance (Δρ / ρ) to external magnetic field

【図10】従来の磁気抵抗効果型薄膜ヘッドの外観図FIG. 10 is an external view of a conventional magnetoresistive thin film head.

【符号の説明】[Explanation of symbols]

10、20、40、50、70、80 基板 11、21、41、51、71a、71b、71c、7
1d 人工格子薄膜の磁気抵抗効果素子 12、22、42、52、72a、72b、82、82
a、82b 下層部電流端子 13、23、43、53、73a、73b、73c、8
3、83a、83b、83c 上層部電流端子 31 従来のFeNi合金薄膜の磁界に対する抵抗変化
率(Δρ/ρ) 32 人工格子薄膜の膜面に対して主に平行方向に電流
を流した場合の外部磁界に対する抵抗変化率(Δρ/
ρ) 33 本発明の人工格子薄膜の膜面に対して主に厚さ方
向に電流を流した場合の外部磁界に対する抵抗変化率
(Δρ/ρ) 44、54、74a、74b、74c、74d、74e
84a、84b、84c、84d、84e 絶縁層(レ
ジスト) 55 マスク 61 人工格子薄膜を用いた磁気抵抗効果素子をパター
ン化しない場合の外部磁界に対する抵抗変化率(Δρ/
ρ) 62 人工格子薄膜磁気抵抗効果素子をパターン化した
場合の外部磁界に対する抵抗変化率(Δρ/ρ) 81、81a、81b、81c、81d 人工格子薄膜
の磁気抵抗効果素子 85a、85b、85c、85d マスク(磁気抵抗効
果素子加工用) 86a、86b マスク(下層部電流端子加工用) 87a、87b、87c 不要な下層部電流端子部分
(エッチング部分) 88a、88b、88c マスク(上層部電流端子加工
用) 89a、89b 不要な上層部電流端子部分(エッチン
グ部分) 91 人工格子薄膜を用いた磁気抵抗効果素子のパター
ンが単一の場合 92 人工格子薄膜を用いた磁気抵抗効果素子のパター
ンが複数の場合 100 磁性基板 101 ギャップ絶縁層 102 磁気抵抗効果素子 103a、103b 電流端子 104 磁気テープ摺動面 105 フロントヨーク 106 バックヨーク
10, 20, 40, 50, 70, 80 Substrates 11, 21, 41, 51, 71a, 71b, 71c, 7
1d Artificial lattice thin film magnetoresistive effect element 12, 22, 42, 52, 72a, 72b, 82, 82
a, 82b Lower layer current terminal 13, 23, 43, 53, 73a, 73b, 73c, 8
3, 83a, 83b, 83c Upper layer current terminal 31 Rate of change in resistance of conventional FeNi alloy thin film with respect to magnetic field (Δρ / ρ) 32 External when current is passed mainly parallel to film surface of artificial lattice thin film Rate of change in resistance to magnetic field (Δρ /
ρ) 33 The rate of change in resistance (Δρ / ρ) to an external magnetic field when a current is mainly applied to the film surface of the artificial lattice thin film of the present invention in the thickness direction (Δρ / ρ) 44, 54, 74a, 74b, 74c, 74d, 74e
84a, 84b, 84c, 84d, 84e Insulating layer (resist) 55 Mask 61 Resistance change rate with respect to an external magnetic field (Δρ /
ρ) 62 Resistance change rate (Δρ / ρ) 81, 81a, 81b, 81c, 81d with respect to an external magnetic field when the artificial lattice thin film magnetoresistive effect element is patterned 85 a, 85b, 85c, 85d Mask (for magnetoresistive effect element processing) 86a, 86b Mask (for lower layer current terminal processing) 87a, 87b, 87c Unnecessary lower layer current terminal portion (etched portion) 88a, 88b, 88c Mask (upper layer current terminal processing) 89a, 89b Unnecessary upper layer current terminal portion (etching portion) 91 When the pattern of the magnetoresistive effect element using the artificial lattice thin film is single 92 The pattern of the magnetoresistive effect element using the artificial lattice thin film is plural Case 100 Magnetic substrate 101 Gap insulating layer 102 Magnetoresistive element 103a, 103b Current terminal 10 Magnetic tape sliding surface 105 front yoke 106 back yoke

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川分 康博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Kawabun 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】感磁部、電流端子を有する磁気抵抗効果素
子において、前記感磁部である磁気抵抗素子の特に磁性
層がNi,Fe,Coから造られる2元素以上の合金膜
であり、非磁性層がCu,Ag,Au,等で構成された
人工格子薄膜からなり、前記人工格子薄膜の主に厚さ方
向の磁気抵抗効果を用いることを特徴とする磁気抵抗効
果素子。
1. A magnetoresistive effect element having a magnetic sensing part and a current terminal, wherein a magnetic layer of the magnetoresistive element which is the magnetic sensing part is an alloy film of two or more elements made of Ni, Fe and Co, A magnetoresistive effect element characterized in that a nonmagnetic layer is made of an artificial lattice thin film made of Cu, Ag, Au, or the like, and mainly uses the magnetoresistive effect in the thickness direction of the artificial lattice thin film.
【請求項2】特に磁性層がNi,Fe,Coから造られ
る2元素以上の膜であり、非磁性層がCu,Ag,A
u,等で構成された人工格子薄膜からなり、前記人工格
子薄膜とその人工格子薄膜を接続する電流端子のパター
ンにおいて、前記人工格子薄膜の主に厚さ方向の磁気抵
抗効果を用いるために、少なくとも一つの前記人工格子
薄膜に対して少なくとも一対の前記電流端子が前記人工
格子薄膜の下層部分と上層部分に形成されていることを
特徴とする請求項1記載の磁気抵抗効果素子。
2. Particularly, the magnetic layer is a film made of Ni, Fe, Co and containing two or more elements, and the non-magnetic layer is Cu, Ag, A.
In order to use the magnetoresistive effect mainly in the thickness direction of the artificial lattice thin film in the pattern of the artificial lattice thin film composed of u, etc. and the current terminal connecting the artificial lattice thin film and the artificial lattice thin film, The magnetoresistive effect element according to claim 1, wherein at least one pair of the current terminals for at least one artificial lattice thin film are formed in a lower layer portion and an upper layer portion of the artificial lattice thin film.
【請求項3】特に磁性層がNi,Fe,Coから造られ
る2元素以上の膜であり、非磁性層がCu,Ag,A
u,等で構成された人工格子薄膜からなり、前記人工格
子薄膜とその人工格子薄膜を接続する電流端子をフォト
リソグラフィ技術によってパターニングし、前記人工格
子薄膜の主に厚さ方向の磁気抵抗効果を用いることを特
徴とする請求項1記載の磁気抵抗効果素子。
3. In particular, the magnetic layer is a film of two or more elements made of Ni, Fe, Co, and the nonmagnetic layer is Cu, Ag, A.
The artificial lattice thin film composed of u, etc. is patterned by a photolithography technique to connect the artificial lattice thin film and the current terminal for connecting the artificial lattice thin film to the magnetoresistive effect mainly in the thickness direction of the artificial lattice thin film. The magnetoresistive effect element according to claim 1, which is used.
【請求項4】特に磁性層が(NiX−Co1-XX'Fe
1-X'を主成分とし、X=0.4〜1.0、X’=0.8〜1.0であ
ることを特徴とする請求項1、2または3記載の磁気抵
抗効果素子。
4. A particular magnetic layer (Ni X -Co 1-X) X 'Fe
The magnetoresistive effect element according to claim 1, 2 or 3, wherein 1-X ' is a main component, and X = 0.4 to 1.0 and X' = 0.8 to 1.0.
【請求項5】特に磁性層が(CoYNi1-YY'Fe1-Y'
を主成分とし、Y=0.4〜1.0,Y’=0.8〜1.0であるこ
とを特徴とする請求項1、2または3記載の磁気抵抗効
果素子。
5. A particular magnetic layer (Co Y Ni 1-Y) Y 'Fe 1-Y'
4. The magnetoresistive element according to claim 1, wherein Y is 0.4 to 1.0 and Y '= 0.8 to 1.0.
【請求項6】感磁部、バイアス導体、電流端子を有する
磁気抵抗効果型薄膜磁気ヘッドにおいて、前記感磁部で
ある磁気抵抗素子の特に磁性層がNi,Fe,Coから
造られる2元素以上の合金膜であり、非磁性層がCu,
Ag,Au,等で構成された人工格子薄膜からなり、前
記人工格子薄膜の主に厚さ方向の磁気抵抗効果を用いる
ことを特徴とする磁気抵抗効果型薄膜磁気ヘッド。
6. A magnetoresistive thin-film magnetic head having a magnetic sensing portion, a bias conductor, and a current terminal, wherein the magnetic layer of the magnetoresistive element, which is the magnetic sensing portion, has at least two elements made of Ni, Fe, and Co. Alloy film of which the non-magnetic layer is Cu,
A magnetoresistive thin-film magnetic head comprising an artificial lattice thin film made of Ag, Au, etc., wherein the magnetoresistive effect mainly in the thickness direction of the artificial lattice thin film is used.
【請求項7】特に磁性層がNi,Fe,Coから造られ
る2元素以上の合金膜であり、非磁性層がCu,Ag,
Au,等で構成された人工格子薄膜からなり、前記人工
格子薄膜とその人工格子薄膜を接続する電流端子のパタ
ーンにおいて、前記人工格子薄膜の主に厚さ方向の磁気
抵抗効果を用いるために、少なくとも一つの前記人工格
子薄膜に対して少なくとも一対の前記電流端子が前記人
工格子薄膜の下層部分と上層部分に形成されていること
を特徴とする請求項6記載の磁気抵抗効果型薄膜磁気ヘ
ッド。
7. Particularly, the magnetic layer is an alloy film of two or more elements made of Ni, Fe and Co, and the non-magnetic layer is Cu, Ag,
In order to use the magnetoresistive effect mainly in the thickness direction of the artificial lattice thin film in the pattern of the artificial lattice thin film composed of Au, etc. and the current terminal connecting the artificial lattice thin film and the artificial lattice thin film, 7. The magnetoresistive effect thin film magnetic head according to claim 6, wherein at least one pair of the current terminals for at least one artificial lattice thin film are formed in a lower layer portion and an upper layer portion of the artificial lattice thin film.
【請求項8】特に磁性層がNi,Fe,Coから造られ
る2元素以上の合金膜であり、非磁性層がCu,Ag,
Au,等で構成された人工格子薄膜からなり、前記人工
格子薄膜とその人工格子薄膜を接続する電流端子をフォ
トリソグラフィ技術によってパターニングし、前記人工
格子薄膜の主に厚さ方向の磁気抵抗効果を用いることを
特徴とする請求項6記載の磁気抵抗効果型薄膜磁気ヘッ
ド。
8. Particularly, the magnetic layer is an alloy film of two or more elements made of Ni, Fe, Co, and the non-magnetic layer is Cu, Ag,
The artificial lattice thin film composed of Au, etc. is patterned, and the artificial lattice thin film and the current terminal for connecting the artificial lattice thin film are patterned by photolithography technique to obtain a magnetoresistive effect mainly in the thickness direction of the artificial lattice thin film. The magnetoresistive effect thin film magnetic head according to claim 6, which is used.
【請求項9】特に磁性層が(NiXCo1-XX'Fe1-X'
を主成分とし、X=0.4〜1.0、X’=0.8〜1.0であるこ
とを特徴とする請求項6、7または8記載の磁気抵抗効
果型薄膜磁気ヘッド。
9. Particularly magnetic layer (Ni X Co 1-X) X 'Fe 1-X'
9. The magnetoresistive effect thin film magnetic head according to claim 6, wherein X is 0.4 to 1.0 and X '= 0.8 to 1.0.
【請求項10】特に磁性層が(CoYNi1-YY'Fe
1-Y'を主成分とし、Y=0.4〜1.0,Y’=0.8〜1.0であ
ることを特徴とする請求項6、7または8記載の磁気抵
抗効果型薄膜磁気ヘッド。
10. A particular magnetic layer (Co Y Ni 1-Y) Y 'Fe
9. The magnetoresistive effect thin film magnetic head according to claim 6, 7 or 8, wherein 1-Y ' is a main component and Y = 0.4 to 1.0 and Y' = 0.8 to 1.0.
JP5085918A 1993-04-13 1993-04-13 Magnetoresistance element and thin-film magnetic head using it Pending JPH06302877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085918A JPH06302877A (en) 1993-04-13 1993-04-13 Magnetoresistance element and thin-film magnetic head using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085918A JPH06302877A (en) 1993-04-13 1993-04-13 Magnetoresistance element and thin-film magnetic head using it

Publications (1)

Publication Number Publication Date
JPH06302877A true JPH06302877A (en) 1994-10-28

Family

ID=13872179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085918A Pending JPH06302877A (en) 1993-04-13 1993-04-13 Magnetoresistance element and thin-film magnetic head using it

Country Status (1)

Country Link
JP (1) JPH06302877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015668A1 (en) * 1996-10-07 1998-04-16 Hitachi, Ltd. Production method of laminate body, and the laminate body
WO2000003387A1 (en) * 1998-07-08 2000-01-20 Fujitsu Limited Magnetic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015668A1 (en) * 1996-10-07 1998-04-16 Hitachi, Ltd. Production method of laminate body, and the laminate body
WO2000003387A1 (en) * 1998-07-08 2000-01-20 Fujitsu Limited Magnetic sensor
US6441611B2 (en) 1998-07-08 2002-08-27 Fujitsu Limited Magnetic sensor having a GMR layer

Similar Documents

Publication Publication Date Title
JP3293437B2 (en) Magnetoresistive element, magnetoresistive head and memory element
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
JP2654316B2 (en) Magnetoresistive sensor
US6947263B2 (en) CPP mode magnetic sensing element including a multilayer free layer biased by an antiferromagnetic layer
JP2690623B2 (en) Magnetoresistance effect element
JP2005286340A (en) Magnetoresistance effect element and its forming method
JPH0883937A (en) Magnetoresistance effect element
JPH06243673A (en) Memory element
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP4544037B2 (en) Magnetic sensing element and manufacturing method thereof
JP2006196892A (en) Formation method for magnetized free layer of magnetic tunnel junction element as well as tunnel junction type reproducing head, and its manufacturing method
JP2812042B2 (en) Magnetoresistive sensor
JP2000348309A (en) Spin valve type thin-film magnetic element, thin-film magnetic head and production of spin valve type thin- film magnetic element
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0745884A (en) Magnetoresistive effect thin-film magnetic head
EP0620572B1 (en) Element having magnetoresistive effect
JPH06302877A (en) Magnetoresistance element and thin-film magnetic head using it
JP2001229515A (en) Magneto-resistive magnetic head and magnetic reproducing device using the same
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP2000163717A (en) Magnetoresistance effect element
JPH07288347A (en) Magnetoresistive element and head
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JP2000340857A (en) Magnetoresistive effect film and magnetoresistive effect element
JP2848083B2 (en) Magnetoresistance effect element
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head