JPH08330060A - Electromagnetic induction heating device - Google Patents

Electromagnetic induction heating device

Info

Publication number
JPH08330060A
JPH08330060A JP15715495A JP15715495A JPH08330060A JP H08330060 A JPH08330060 A JP H08330060A JP 15715495 A JP15715495 A JP 15715495A JP 15715495 A JP15715495 A JP 15715495A JP H08330060 A JPH08330060 A JP H08330060A
Authority
JP
Japan
Prior art keywords
pipe
heating element
fluid
thermal expansion
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15715495A
Other languages
Japanese (ja)
Inventor
Taizo Kawamura
泰三 川村
Yoshitaka Uchibori
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Seta Giken KK
Original Assignee
Omron Corp
Seta Giken KK
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Seta Giken KK, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP15715495A priority Critical patent/JPH08330060A/en
Publication of JPH08330060A publication Critical patent/JPH08330060A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the breakage of a pipe and uniformly heat a fluid. CONSTITUTION: This electromagnetic induction heating device is provided with a nonmagnetic pipe 6 where a fluid 14 flows in or out, a coil 7 wound on the pipe 6, a heating element 8 stored in the pipe 6 and heated by the coil 7 via electromagnetic induction, and a holding member 30 holding the heating element 8 to face the coil 7 from the inflow side A of the fluid 14. A circular gap Rs absorbing the thermal expansion difference in the radial direction between the heater element 8 and the pipe 6 is formed between the heater element 8 and the pipe 6. A gap Vs absorbing the thermal expansion in the axial direction of the heater element 8 is formed between the heater element 8 and the pipe 6 on the outflow side B of the pipe 6, and a stopper 35 coupled with the heater element 8 by the thermal expansion in the axial direction of the heater element 8 and capable of blocking the circular gap Rs from the outflow side B is arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体や気体等の流体に
浸された発熱体を電磁誘導加熱で加熱し、前記流体を直
接的な熱移動で加熱する電磁誘導加熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction heating apparatus for heating a heating element immersed in a fluid such as liquid or gas by electromagnetic induction heating and heating the fluid by direct heat transfer.

【0002】[0002]

【従来の技術】例えば、化学プラントにおける反応・分
離工程では、蒸留塔が必ず必要である。この蒸留塔は、
蒸留液を構成する液体がそれぞれ持つ沸騰点の温度差に
より、混合している液体を分離する装置である。この蒸
留塔には蒸留液を加熱する装置が付設されている。この
加熱装置としては、例えば、シーズヒータ方式の如き間
接加熱によるものが採用されている。このシーズヒータ
方式は、電源をシーズヒータに投入して熱媒油を加熱
し、熱交換器で熱媒油と蒸留液との熱交換を行わせる方
式である。
2. Description of the Related Art For example, a distillation column is indispensable in a reaction / separation process in a chemical plant. This distillation column is
It is a device that separates the mixed liquids by the difference in the boiling points of the liquids that make up the distillate. A device for heating the distillate is attached to this distillation column. As the heating device, for example, an indirect heating device such as a sheath heater system is adopted. In this sheath heater system, a power source is turned on to the sheath heater to heat the heat transfer oil, and heat is exchanged between the heat transfer oil and the distillate with a heat exchanger.

【0003】間接加熱によるシーズヒータ方式は、まず
熱媒油をシーズヒータで加熱するために、立ち上がり時
間が長くかかり、加熱装置に大掛かりになる傾向があっ
た。そこで、特開平3−98286号公報などに開示さ
れるように、流体が通過するカラム又はケースを絶縁体
で構成し、このカラム又はケース内に収納された流体が
浸かる発熱体を電磁誘導で加熱する直接加熱の電磁誘導
加熱装置をパイプラインに組み込むことが提案されてい
る。この直接加熱による電磁誘導加熱装置によると、流
体が浸かる発熱体の伝熱面積を大きくすることなどによ
り、発熱体から流体への伝熱効率を90%前後まで向上
させることができるため、立ち上がり時間が短縮でき
る。
In the sheathed heater system by indirect heating, since the heat transfer oil is first heated by the sheathed heater, the rise time is long and the heating device tends to be bulky. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 3-98286, a column or case through which a fluid passes is made of an insulator, and a heating element in which the fluid is stored is heated by electromagnetic induction. It has been proposed to incorporate a direct heating electromagnetic induction heating device into the pipeline. According to the electromagnetic induction heating device based on the direct heating, the heat transfer efficiency from the heating element to the fluid can be improved up to about 90% by increasing the heat transfer area of the heating element in which the fluid is immersed. Can be shortened.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
3−98286号公報などで提案される電磁誘導加熱装
置は小型で局部加熱が可能であるため、装置の発熱体と
カラム又はケースとの熱膨張差により、即ち、カラム又
はケース内に収納された発熱体の熱膨張が大きくなるこ
とから、加熱の際に発熱体が熱膨張してカラム又はケー
スを押す応力を作用させてカラム又はケースを破損する
という問題があった。また、この場合において、カラム
又はケースと発熱体との間に熱膨張差を吸収する隙間を
形成することも考えられるが、この隙間から一部の流体
が発熱体内に流入することなく通過することになるの
で、発熱体による流体の均一加熱を達成することが困難
であるという問題があった。
However, since the electromagnetic induction heating device proposed in Japanese Patent Laid-Open No. 3-98286 is small in size and capable of local heating, the thermal expansion of the heating element of the device and the column or the case. Due to the difference, that is, the thermal expansion of the heating element housed in the column or case becomes large, so that the heating element thermally expands during heating and exerts a stress that pushes the column or case to damage the column or case. There was a problem of doing. In this case, it is conceivable to form a gap that absorbs the difference in thermal expansion between the column or case and the heating element, but some fluid may pass through this gap without flowing into the heating element. Therefore, it is difficult to achieve uniform heating of the fluid by the heating element.

【0005】本発明は、この問題を解決するためになさ
れたもので、パイプの破損を防止すると共に、流体の均
一加熱を達成することのできる電磁誘導加熱装置を提供
することを目的とする。
The present invention has been made to solve this problem, and an object of the present invention is to provide an electromagnetic induction heating device capable of preventing breakage of a pipe and achieving uniform heating of a fluid.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するた
め、本発明の電磁誘導加熱装置では、流体が流入・流出
する非磁性材料のパイプと、前記パイプに巻かれたコイ
ルと、前記パイプ内に収納され前記コイルによる電磁誘
導で加熱される発熱体と、前記発熱体を前記流体の流入
側から前記コイルに対向するように保持する保持部材と
を備え、前記発熱体と前記パイプとの間には、当該発熱
体とパイプとの径方向の熱膨張差を吸収する環状隙間が
形成され、前記パイプの流出側には、前記発熱体の軸方
向の熱膨張を吸収する隙間を前記発熱体との間に形成
し、且つ前記発熱体の軸方向の熱膨張で当該発熱体と係
合して前記環状隙間を前記流出側から閉塞可能とするス
トッパが配置されているものである。
In order to solve the above problems, in an electromagnetic induction heating apparatus of the present invention, a pipe made of a non-magnetic material into and out of which a fluid flows, a coil wound around the pipe, and the inside of the pipe. And a holding member that holds the heating element so as to face the coil from the inflow side of the fluid, and is disposed between the heating element and the pipe. An annular gap that absorbs a difference in radial thermal expansion between the heating element and the pipe is formed in the heating element, and a gap that absorbs thermal expansion in the axial direction of the heating element is provided on the outflow side of the pipe. And a stopper which is formed between the heat generating element and the heat generating element and is engaged with the heat generating element by the thermal expansion of the heat generating element in the axial direction so that the annular gap can be closed from the outflow side.

【0007】[0007]

【作用】このように本発明の電磁誘導加熱装置によれ
ば、流入側から流出側に流体を流すと共に、コイルによ
る電磁誘導でパイプ、発熱体を介して流体を加熱する
と、パイプ及び発熱体とに熱膨張に差が生じるが、パイ
プと発熱体との間にはその熱膨張差以上の環状隙間が形
成されているので、この環状隙間を狭めつつ熱膨張差を
吸収して、発熱体がパイプに当接して押すことによる応
力の作用を防止され、また、発熱体は流体が流れる方向
にも熱膨張するが、この熱膨張はストッパとの間に形成
された隙間で吸収することができる。
As described above, according to the electromagnetic induction heating apparatus of the present invention, when the fluid is flowed from the inflow side to the outflow side and the fluid is heated through the pipe and the heating element by the electromagnetic induction by the coil, the pipe and the heating element are separated. Although there is a difference in thermal expansion between the pipe and the heating element, an annular gap larger than the difference in thermal expansion is formed between the pipe and the heating element. The action of stress caused by abutting against the pipe and pushing is prevented, and the heat generating element also thermally expands in the direction in which the fluid flows, but this thermal expansion can be absorbed by the gap formed between the heating element and the stopper. .

【0008】また、流入側に流入した流体は、発熱体内
に流入して加熱されて流出側に流れると共に、流体の一
部は、流入側から直接的に、又は発熱体から環状隙間に
流入して環状隙間を通過して流出側に流れようとする
が、コイルによる電磁誘導で加熱された発熱体が熱膨張
してストッパに係合することで環状隙間の流出側を閉塞
して流体が直接に流出側に流れることを阻止するので、
環状隙間内には流入側からの流体の流れにより圧力が発
生し、環状隙間内に流れ込んだ流体はこの圧力により発
熱体内に流れ込むようにできる。
Further, the fluid flowing into the inflow side flows into the heating element and is heated and flows to the outflow side. At the same time, a part of the fluid flows into the annular gap directly from the inflow side or from the heating element. Through the annular gap and try to flow to the outflow side, but the heating element heated by electromagnetic induction by the coil thermally expands and engages the stopper, blocking the outflow side of the annular gap and allowing the fluid to flow directly. To prevent it from flowing to the outflow side,
A pressure is generated in the annular gap by the flow of the fluid from the inflow side, and the fluid flowing into the annular gap can be caused to flow into the heat generating body by this pressure.

【0009】[0009]

【実施例】以下、本発明の一実施例である電磁誘導加熱
装置について、図面を参照して説明する。図1は本実施
例における電磁誘導加熱装置の縦断面図、図2は本実施
例における電磁誘導加熱装置に用いられる発熱体の構造
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An electromagnetic induction heating apparatus which is an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical cross-sectional view of the electromagnetic induction heating device in this embodiment, and FIG. 2 is a structural diagram of a heating element used in the electromagnetic induction heating device in this embodiment.

【0010】図1において、電磁誘導加熱装置1は、主
な部分として、フランジ2,3と、短管4,5と、パイ
プ6と、コイル7と、発熱体8と、管9,10と、保持
部材30と、リング状ストッパ35とから構成され、図
1中の下側から上側に向かって流体14が流れる、例え
ば化学プラント等のパイプライン104中に組み込んで
配置される。そして、各装置1のコイル7又は複数の装
置1のコイル7に共通に、電力部11が接続され、電力
部11には制御部12が接続され、制御部12には温度
センサ13が接続されて加熱システムを構成している。
In FIG. 1, the electromagnetic induction heating device 1 has flanges 2 and 3, short pipes 4 and 5, a pipe 6, a coil 7, a heating element 8 and pipes 9 and 10 as main parts. The holding member 30 and the ring-shaped stopper 35 are provided, and the fluid 14 flows from the lower side to the upper side in FIG. 1 and is installed in a pipeline 104 of a chemical plant or the like. The power unit 11 is connected in common to the coil 7 of each device 1 or the coils 7 of the plurality of devices 1, the power unit 11 is connected to the control unit 12, and the control unit 12 is connected to the temperature sensor 13. Constitutes a heating system.

【0011】フランジ2,3及び短管4,5の素材は、
化学プラントで扱われる種々の流体14に対して耐蝕性
を有することが必要であり、またコイル7が形成する磁
束の影響を受けにくいように、非磁性のSUS316の
如きオーステナイト系ステンレスが用いられる。このオ
ーステナイト系ステンレスは一般には非磁性であるとさ
れるものの、完全な非磁性でなく磁束の影響を多少受け
る。フランジ2と短管4は溶接等で短管付きフランジに
形成され、フランジ3と短管5も溶接等で短管付きフラ
ンジに形成されており、各フランジ3,4をパイプライ
ン104にボルト・ネジ等で接合することにより各短管
付きフランジが装置1内への流体14の流入側A、又は
流出側Bとなる。また、特に流体14の流出側Bに位置
する短管4には、同じSUS316製のソケット4aが
溶接等で固定され、温度センサ13を取り付けるための
フィティング13aがねじ込めるようになっている。そ
して、押さえ金具13bをフィティング13aに対して
ねじ込むと、温度センサ13の先端が短管4の中心付近
に位置する状態で固定することができる。このソケット
4aの位置は、フィティング13a等の温度センサ13
の部品がフランジ2に干渉しない程度に、フランジ2に
近づけて設けることが好ましい。なお、フランジ2,3
及び短管4,5とは溶接等で取り付けるものに限らず、
短管付きフランジとして一体形成されたものであっても
よい。また、短管4に取り付けられるセンサは温度セン
サに限らず圧力センサ等の他のセンサであってもよい。
The materials of the flanges 2 and 3 and the short tubes 4 and 5 are
It is necessary to have corrosion resistance to various fluids 14 handled in a chemical plant, and austenitic stainless steel such as non-magnetic SUS316 is used so that it is not easily affected by the magnetic flux formed by the coil 7. Although this austenitic stainless steel is generally considered to be non-magnetic, it is not completely non-magnetic and is slightly affected by magnetic flux. The flange 2 and the short pipe 4 are formed into a flange with a short pipe by welding or the like, and the flange 3 and the short pipe 5 are also formed into a flange with a short pipe by welding or the like. Each of the flanges 3 and 4 is bolted to the pipeline 104. The flanges with short pipes become the inflow side A or the outflow side B of the fluid 14 into the device 1 by joining with screws or the like. Further, in particular, the same SUS316 socket 4a is fixed to the short pipe 4 located on the outflow side B of the fluid 14 by welding or the like, and the fitting 13a for attaching the temperature sensor 13 can be screwed in. Then, by screwing the holding metal fitting 13b into the fitting 13a, the tip of the temperature sensor 13 can be fixed in a state of being positioned near the center of the short tube 4. The position of this socket 4a depends on the temperature sensor 13 such as the fitting 13a.
It is preferable that the parts are provided close to the flange 2 to the extent that they do not interfere with the flange 2. The flanges 2 and 3
The short pipes 4 and 5 are not limited to those attached by welding,
It may be integrally formed as a flange with a short pipe. The sensor attached to the short pipe 4 is not limited to the temperature sensor and may be another sensor such as a pressure sensor.

【0012】パイプ6は、セメント、ガラス、陶磁器等
の無機質非金属材料で作られた窒業製器等の伝統的なセ
ラミック、セラミックにフッ素を含有した(例えば、含
有割合をセラミック:95%、フッ素:5%としたも
の。)ものの他に、アルミナや窒化珪素等を焼結したフ
ァインセラミック等のセラミックで形成されたものであ
り、非磁性体であって耐熱性と耐腐食性に優れたものが
選定される。このパイプ6内に発熱体8が収納されてお
り、パイプ6の外周であって発熱体8に対向する位置
に、コイル7が巻かれている。尚、パイプ6は製作上の
制限から、2本継ぎ以上のパイプであってもよい。
The pipe 6 is made of cement, glass, ceramics and other inorganic non-metallic materials such as ceramics, traditional ceramics such as nikko ware, ceramics containing fluorine (for example, the content ratio of ceramics: 95%, Fluorine: 5%) In addition to that, it is made of ceramics such as fine ceramics obtained by sintering alumina or silicon nitride. It is a non-magnetic material and has excellent heat resistance and corrosion resistance. Things are selected. The heating element 8 is housed in the pipe 6, and the coil 7 is wound around the pipe 6 at a position facing the heating element 8. Note that the pipe 6 may be a pipe having two or more splices due to manufacturing restrictions.

【0013】そして、パイプ6の両端と短管4,5とは
直接接合するのではなく、管9,10を介して接合して
いる。管9,10の素材には、Fe−Ni−Co合金の
ように、高力耐熱合金が選定される。また、一般にセラ
ミックの熱膨張係数は小さく、オーステナイト系ステン
レスの熱膨張係数は大きい。したがって、パイプ6にセ
ラミックを使用し、短管4,5にオーステナイト系ステ
ンレスを使用した際には、パイプ6と短管4,5とを直
接接合すると大きな熱応力が発生する。そのため、パイ
プ6と短管4,5の間に介在させる管9,10の熱膨張
係数は、セラミックとオーステナイト系ステンレスの熱
膨張係数の中間になるものを選定する。また、短管4,
5と管9,10との間の接合及び管9,10とパイプ6
との間は、銀ろうやニッケルろうを用いた融着により行
う。
The both ends of the pipe 6 and the short pipes 4 and 5 are not directly joined but are joined via the pipes 9 and 10. A high-strength heat-resistant alloy such as Fe-Ni-Co alloy is selected as the material of the tubes 9 and 10. Further, generally, the coefficient of thermal expansion of ceramics is small, and the coefficient of thermal expansion of austenitic stainless steel is large. Therefore, when ceramic is used for the pipe 6 and austenitic stainless steel is used for the short pipes 4 and 5, a large thermal stress occurs when the pipe 6 and the short pipes 4 and 5 are directly joined. Therefore, the thermal expansion coefficient of the pipes 9 and 10 interposed between the pipe 6 and the short pipes 4 and 5 is selected to be intermediate between the thermal expansion coefficients of ceramic and austenitic stainless steel. Also, the short pipe 4,
Between the pipe 5 and the pipe 9,10 and the pipe 9,10 and the pipe 6
The gap between the two is performed by fusion using silver solder or nickel solder.

【0014】管10はストレートであるが、管9はコル
ゲート状に波うっており、軸方向に伸縮可能になってい
る。装置1で発熱体8を介して流体14を加熱すると、
熱膨張によって装置1のみならずパイプライン104も
軸方向に伸びる。そのため、パイプライン104にフラ
ンジ接合で装置1を組み込んだ場合、装置1の最も弱い
部分に予想外の熱応力を生じさせる恐れがあるため、装
置1内に熱膨張の逃げのためのコルゲート状の管9を設
けた。このコルゲート状の管9によって、パイプライン
104や装置1の軸方向や軸心方向の製作上の誤差の吸
収も可能である。また、このコルゲート状の管9は屈曲
可能でもあるため、フランジ2,3間の平行度のずれの
吸収も可能である。
Although the pipe 10 is straight, the pipe 9 is corrugated and is expandable and contractable in the axial direction. When the fluid 14 is heated via the heating element 8 in the device 1,
Due to the thermal expansion, not only the device 1 but also the pipeline 104 extends in the axial direction. Therefore, when the device 1 is incorporated into the pipeline 104 by flange joining, unexpected thermal stress may be generated in the weakest part of the device 1, so that a corrugated shape for escape of thermal expansion is provided in the device 1. A tube 9 was provided. The corrugated pipe 9 can also absorb manufacturing errors in the axial direction and the axial center direction of the pipeline 104 and the apparatus 1. Further, since this corrugated tube 9 is also bendable, it is possible to absorb the deviation of the parallelism between the flanges 2 and 3.

【0015】コイル7は出来るだけ銅損の少ないものが
用いられ、リッツ線を撚り合わせたもの、又は丸管、半
円管、楕円管などの銅管が用いられる。このコイル7に
接続される電力部11は、例えば200V,50/60
Hzの交流電源11aに接続されるものであり、AC/
DCの整流部、非平滑フィルタ、高力率高周波インバー
タ部とからなり、交流電源11aを正負対称な50/6
0Hzの波形内で高周波で振らした交番電源11bに変
換する。制御部12は温度調整部と位相シフト制御部と
からなり、位相シフト制御部は位相差を変えて電力部1
1からの出力電圧を調整するためのものであり、温度調
整部は温度センサ13からの出力に応じて位相シフト制
御部の位相差を変えるようにしたものである。この電力
部11と制御部12によって、0〜100%の出力電圧
と、少なくとも15〜150KHzの範囲の高周波をコ
イル7に対して出力することができる。
As the coil 7, a coil having as little copper loss as possible is used. A coiled litz wire or a copper tube such as a round tube, a semi-circular tube or an elliptic tube is used. The power unit 11 connected to the coil 7 is, for example, 200V, 50/60
AC / power source 11a of
It is composed of a DC rectification unit, a non-smoothing filter, and a high power factor high frequency inverter unit.
It is converted into the alternating power source 11b which is oscillated at high frequency within the waveform of 0 Hz. The control unit 12 includes a temperature adjustment unit and a phase shift control unit, and the phase shift control unit changes the phase difference to change the phase difference.
1 for adjusting the output voltage from the temperature control unit 1, and the temperature adjustment unit changes the phase difference of the phase shift control unit according to the output from the temperature sensor 13. The power unit 11 and the controller 12 can output an output voltage of 0 to 100% and a high frequency of at least 15 to 150 KHz to the coil 7.

【0016】発熱体8は、電力が入りやすくなる程度の
透磁率を有し、流体14に対する熱交換がしやすく、流
体14に対する耐蝕性を兼ね備えたものが好ましい。こ
のような材料としては、SUS447J1の如きマルテ
ンサイト系スレンレスが使用される。更に、発熱体8の
詳細構造を図2により説明する。図2(a)は発熱体8
の構造を示す上面図、図2(b)は発熱体8の構造を示
す斜視図である。
It is preferable that the heating element 8 has a magnetic permeability that allows electric power to easily enter, heat exchange with the fluid 14 easily, and corrosion resistance with respect to the fluid 14. As such a material, martensite type stainless steel such as SUS447J1 is used. Further, the detailed structure of the heating element 8 will be described with reference to FIG. FIG. 2A shows a heating element 8.
2B is a perspective view showing the structure of the heating element 8. FIG.

【0017】発熱体8は、平板状の第1シート材21と
波形状の第2シート材22を交互に積層し、側面の両端
には第1シート材21が位置するようにし、全体として
円柱状に形成したものである。第2シート材22の波の
山(又は谷)23は中心軸24に対して角度αだけ傾く
ように配置され、第1シート材21を挟んで隣り合う第
2シート材22の波の山(又は谷)23が交差するよう
に配置されている。そして、隣り合う第2シート材22
における波の山(又は谷)23の交差点25において、
第1シート材21と第2シート材22はスポット溶接で
溶着され、電気的に導通可能になっている。また、第2
シート材22の表面には、流体14の乱流を生じさせる
ための孔26が設けられている。この孔26に代わるか
又は加えて、第1シート材21及び/又は第2シート材
22に梨地加工を施して表面をザラザラにすることも有
効である。要するに、発熱体8の中心軸24を通る直径
方向Dに対して、略平行に第1シート材21と第2シー
ト材22が配置され、電気的には直径Dと略平行な方向
(周辺部を横切る方向)に最も流れやすくなっている。
すると、電磁誘導において現れる表皮効果(発熱体8の
外周部分だけが加熱される状態)が破られ、発熱体8の
中央部も加熱される。このように発熱体8の中央部が加
熱される形式の発熱体としては、シート材21,22の
積層構造に限らず、小径管の多数を集合させて形成した
発熱体であってもよい。この場合、小径管の各々の表面
が加熱され、全体として略均一な加熱が可能な発熱体が
得られる。
In the heating element 8, flat plate-shaped first sheet materials 21 and corrugated second sheet materials 22 are alternately laminated so that the first sheet materials 21 are located at both ends of the side surface, and the whole is circular. It is formed in a columnar shape. The wave crests (or troughs) 23 of the second sheet material 22 are arranged so as to be inclined by an angle α with respect to the central axis 24, and the wave crests of the adjacent second sheet material 22 with the first sheet material 21 interposed therebetween ( (Or valley) 23 is arranged so as to intersect. Then, the adjacent second sheet material 22
At the intersection 25 of the wave mountain (or valley) 23 in
The first sheet material 21 and the second sheet material 22 are welded by spot welding so that they can be electrically conducted. Also, the second
The surface of the sheet material 22 is provided with holes 26 for causing turbulent flow of the fluid 14. Instead of or in addition to the holes 26, it is also effective to apply a satin finish to the first sheet material 21 and / or the second sheet material 22 to make the surface rough. In short, the first sheet material 21 and the second sheet material 22 are arranged substantially parallel to the diametrical direction D passing through the central axis 24 of the heating element 8, and are electrically parallel to the diametrical direction D (peripheral portion). Is the easiest to flow.
Then, the skin effect (a state in which only the outer peripheral portion of the heating element 8 is heated) that appears in electromagnetic induction is broken, and the central portion of the heating element 8 is also heated. The heating element of the type in which the central portion of the heating element 8 is heated is not limited to the laminated structure of the sheet materials 21 and 22, and may be a heating element formed by assembling a large number of small diameter tubes. In this case, the surface of each of the small-diameter pipes is heated, and a heating element capable of heating substantially uniformly as a whole is obtained.

【0018】また、成形当初の発熱体8は、その外周面
とパイプ6の内周面との間に環状隙間Rsを形成するよ
うな直径Dとされて、パイプ6内にその軸心と発熱体8
の軸心を一致させるように遊嵌して、パイプ6内に挿入
されて保持部材30で保持されている。そして、発熱体
8の直径Dは、装置1で流体14を加熱した際、パイプ
6がその径方向に熱膨張する量と発熱体8がその径方向
に熱膨張する量との熱膨張差以上の環状隙間Rsを、発
熱体8とパイプ6間に有するように決定されている。ま
た、保持部材30は、流入側Aの短管5に溶接等で溶着
され径内方向に延びる金属製バー31と、この金属製バ
ー31の先端に発熱体8の軸心と一致するように固定さ
れ非磁性体の保持棒32とで構成されている。そして、
この保持棒32は、非磁性、耐熱性及び耐蝕性に優れた
セラミック等で製作されて流入側Aから流出側Bに向か
って延びており、その先端で発熱体8をコイル7に対す
る位置に位置決めして保持している。35はリング状ス
トッパであって、非磁性、耐熱性及び耐蝕性の優れたセ
ラミック等で製作されており、流体14の流出側Bから
パイプ6内に嵌合され、発熱体8との間に当該発熱体8
の軸方向の熱膨張の量と同一、又は多少少ない隙間Vs
を有して固定されている。また、リング状ストッパ35
は、流出側Bから環状隙間Rsを径方向に横切って発熱
体8上に位置しており、発熱体8の熱膨張でこの発熱体
8と係合して、環状隙間Rsを流出側Bから閉塞する。
Further, the heating element 8 at the beginning of molding has a diameter D so as to form an annular gap Rs between the outer peripheral surface thereof and the inner peripheral surface of the pipe 6, so that the axial center and the heat generation inside the pipe 6 are generated. Body 8
It is loosely fitted so that the shaft centers of the two are aligned, inserted into the pipe 6, and held by the holding member 30. The diameter D of the heating element 8 is not less than the difference in thermal expansion between the amount of thermal expansion of the pipe 6 in the radial direction and the amount of thermal expansion of the heating element 8 in the radial direction when the fluid 14 is heated by the device 1. The annular gap Rs is determined to be provided between the heating element 8 and the pipe 6. In addition, the holding member 30 is arranged so that the metal bar 31 which is welded to the short pipe 5 on the inflow side A by welding or the like and extends in the radial direction, and the tip of the metal bar 31 coincides with the axial center of the heating element 8. It is composed of a fixed non-magnetic holding rod 32. And
The holding rod 32 is made of ceramic or the like that is excellent in non-magnetism, heat resistance, and corrosion resistance and extends from the inflow side A to the outflow side B. The tip of the holding rod 32 positions the heating element 8 at a position relative to the coil 7. And hold. Reference numeral 35 denotes a ring-shaped stopper, which is made of non-magnetic, heat-resistant and corrosion-resistant ceramic or the like, and is fitted into the pipe 6 from the outflow side B of the fluid 14 and between the heat generating body 8. The heating element 8
Vs that is the same as or slightly less than the amount of thermal expansion in the axial direction of
Has been fixed. In addition, the ring-shaped stopper 35
Is located on the heating element 8 across the annular gap Rs from the outflow side B in the radial direction, and is engaged with the heating element 8 due to the thermal expansion of the heating element 8 and the annular gap Rs from the outflow side B. Block.

【0019】そして、装置1の流入側Aから流出側Bに
流体14を流すと共に、コイル7による電磁誘導でパイ
プ6、発熱体8を介して流体14を加熱すると、パイプ
6及び発熱体8とにその径方向の熱膨張に差が生じる
が、パイプ6と発熱体8間にはその熱膨張差以上の環状
隙間Rsが形成されているので、この環状隙間Rsを狭
めつつ熱膨張差を吸収して、発熱体8がパイプ6に当接
して押すことによる応力の作用を防止され、また、発熱
体8はその軸方向にも熱膨張するが、この熱膨張はリン
グ状ストッパ35との間に形成された隙間Vsを熱膨張
することにより吸収される。
When the fluid 14 flows from the inflow side A to the outflow side B of the apparatus 1 and the fluid 14 is heated via the pipe 6 and the heating element 8 by electromagnetic induction by the coil 7, the pipe 6 and the heating element 8 are separated from each other. Although there is a difference in the thermal expansion in the radial direction, an annular gap Rs larger than the thermal expansion difference is formed between the pipe 6 and the heating element 8. Therefore, the thermal expansion difference is absorbed while narrowing the annular gap Rs. As a result, the action of stress due to the heating element 8 coming into contact with and pushing the pipe 6 is prevented, and the heating element 8 also thermally expands in the axial direction. It is absorbed by thermally expanding the gap Vs formed in the.

【0020】このとき、パイプライン104から装置1
の流入側Aに流入した流体14は、発熱体8内に流入し
て加熱されて流入側Bに流れると共に、流体14の一部
は、流入側Aから直接的に、又は発熱体8から環状隙間
Rsに流入して環状隙間Rsを通過して流入側Bに流れ
ようとするが、発熱体8が軸方向の熱膨張によりリング
状ストッパ35に係合することで環状隙間Rsの流出側
Bを閉塞して流体14が直接に流出側Bに流れることを
阻止するので、環状隙間Rs内には流入側Aからの流体
14の流れにより流出側Bに押すような圧力が発生し、
環状隙間Rs内に流れ込んだ流体14をこの圧力により
発熱体8内に流れ込ませることができる。
At this time, from the pipeline 104 to the device 1
The fluid 14 that has flowed into the inflow side A flows into the heating element 8 and is heated and flows to the inflow side B, and a part of the fluid 14 flows directly from the inflow side A or from the heating element 8. Although it tries to flow into the gap Rs, pass through the annular gap Rs, and flow toward the inflow side B, the heat generating body 8 engages with the ring-shaped stopper 35 by thermal expansion in the axial direction, so that the outflow side B of the annular gap Rs. Is blocked to prevent the fluid 14 from directly flowing to the outflow side B, so that the flow of the fluid 14 from the inflow side A causes a pressure to be pushed to the outflow side B in the annular gap Rs.
The fluid 14 flowing into the annular gap Rs can be caused to flow into the heating element 8 by this pressure.

【0021】これにより、コイル7による電磁誘導で発
熱体8を加熱しても、発熱体8の熱膨張に起因するパイ
プ6の破損が防止できると共に、発熱体8の熱膨張を吸
収するための環状隙間Rsを形成したとしても、発熱体
8が熱膨張してリング状ストッパ35に係合することに
より環状隙間Rsを流出側Bから閉塞して、この環状隙
間Rsに流れ出す流体14を発熱体8内に流れ込ませる
ことができるので、流体14を発熱体8で均一に加熱す
ることが可能となる。
As a result, even if the heating element 8 is heated by electromagnetic induction by the coil 7, damage to the pipe 6 due to thermal expansion of the heating element 8 can be prevented and the thermal expansion of the heating element 8 can be absorbed. Even if the annular gap Rs is formed, the heating element 8 thermally expands and engages with the ring-shaped stopper 35 to close the annular gap Rs from the outflow side B, and the fluid 14 flowing out into the annular gap Rs is heated. Since the fluid 14 can be made to flow into the heating element 8, the fluid 14 can be uniformly heated by the heating element 8.

【0022】尚、本実施例における電磁誘導加熱装置に
おいては、流体14の流入側Aから発熱体8を金属バー
31と保持棒32とで保持する構造を示したが、これに
限定されるものでなく、図3に示すように、パイプ6か
ら突出する突起部40をその円周方向に複数個、一体的
又は別体として設けることにより、発熱体8を保持する
ようにしてもよい。
In the electromagnetic induction heating apparatus of this embodiment, the heating element 8 is held by the metal bar 31 and the holding rod 32 from the inflow side A of the fluid 14, but the structure is not limited to this. Alternatively, as shown in FIG. 3, the heating element 8 may be held by providing a plurality of protrusions 40 projecting from the pipe 6 in the circumferential direction thereof, either integrally or separately.

【0023】[0023]

【発明の効果】このように本発明のパイプライン用電磁
誘導加熱装置によれば、流入側から流出側に流体を流す
と共に、コイルによる電磁誘導でパイプ、発熱体を介し
て流体を加熱すると、パイプ及び発熱体とにその径方向
の熱膨張に差が生じるが、パイプと発熱体間にはその熱
膨張差以上の環状隙間が形成されているので、この環状
隙間を狭めつつ熱膨張差を吸収して、発熱体がパイプに
当接して押すことによる応力の作用を防止され、また、
発熱体はその軸方向にも熱膨張するが、この熱膨張はス
トッパとの間に形成された隙間を熱膨張することにより
吸収されて、発熱体の熱膨張による影響をパイプが受け
ることがなくなるので、パイプを破損することがない。
As described above, according to the electromagnetic induction heating apparatus for a pipeline of the present invention, when the fluid is caused to flow from the inflow side to the outflow side and the fluid is heated through the pipe and the heating element by the electromagnetic induction by the coil, Although there is a difference in the thermal expansion in the radial direction between the pipe and the heating element, an annular gap larger than the difference in thermal expansion is formed between the pipe and the heating element. By absorbing, the effect of stress caused by the heating element coming into contact with and pushing the pipe is prevented, and
The heating element also thermally expands in the axial direction, but this thermal expansion is absorbed by thermally expanding the gap formed with the stopper, and the pipe is not affected by the thermal expansion of the heating element. Therefore, the pipe is not damaged.

【0024】また、流入側に流入した流体は、発熱体内
に流入して加熱されて流出側に流れると共に、流体の一
部は、流入側から直接的に、又は発熱体から環状隙間に
流入して環状隙間を通過して流出側に流れようとする
が、コイルによる電磁誘導で加熱された発熱体が熱膨張
してストッパに係合することで環状隙間の流出側を閉塞
して流体が直接に流出側に流れることを阻止して、環状
隙間に流入した流体を発熱体内に流れ込ませることがで
きるので、流入側からの全流体を発熱体内を通過させ
て、発熱体による流体の均一加熱を達成することが可能
となる。
The fluid flowing into the inflow side flows into the heating element and is heated and flows to the outflow side, and a part of the fluid flows into the annular gap directly from the inflow side or from the heating element. Through the annular gap and try to flow to the outflow side, but the heating element heated by electromagnetic induction by the coil thermally expands and engages the stopper, blocking the outflow side of the annular gap and allowing the fluid to flow directly. Since it is possible to prevent the fluid that has flowed into the annular gap from flowing into the heat generating body by flowing into the heat generating body, it is possible to allow all the fluid from the inflow side to pass through the heat generating body and to uniformly heat the fluid by the heat generating body. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電磁誘導加熱装置の
縦断面図である。
FIG. 1 is a vertical sectional view of an electromagnetic induction heating apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例における電磁誘導加熱装置に
用いられる発熱体の構造図であって、(a)は発熱体の
構造を示す上面図、(b)は発熱体の構造を示す斜視図
である。
2A and 2B are structural views of a heating element used in an electromagnetic induction heating apparatus according to an embodiment of the present invention, in which FIG. 2A is a top view showing the structure of the heating element, and FIG. It is a perspective view.

【図3】本発明の一実施例における電磁誘導加熱装置の
変形例を示す要部拡大図である。
FIG. 3 is an enlarged view of a main part showing a modified example of the electromagnetic induction heating apparatus in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電磁誘導加熱装置 6 パイプ 7 コイル 8 発熱体 30 保持部材 35 リング状ストッパ(ストッパ) Rs 環状隙間 Vs 隙間 1 Electromagnetic Induction Heating Device 6 Pipe 7 Coil 8 Heating Element 30 Holding Member 35 Ring Stopper (Stopper) Rs Annular Gap Vs Gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体が流入・流出する非磁性材料のパイ
プと、前記パイプに巻かれたコイルと、前記パイプ内に
収納され前記コイルによる電磁誘導で加熱される発熱体
と、前記発熱体を前記流体の流入側から前記コイルに対
向するように保持する保持部材とを備え、 前記発熱体と前記パイプとの間には、当該発熱体とパイ
プとの径方向の熱膨張差を吸収する環状隙間が形成さ
れ、 前記パイプの流出側には、前記発熱体の軸方向の熱膨張
を吸収する隙間を前記発熱体との間に形成し、且つ前記
発熱体の軸方向の熱膨張で当該発熱体と係合して前記環
状隙間を前記流出側から閉塞可能とするストッパが配置
されていることを特徴とする電磁誘導加熱装置。
1. A pipe made of a non-magnetic material through which a fluid flows in and out, a coil wound around the pipe, a heating element housed in the pipe and heated by electromagnetic induction by the coil, and the heating element. A holding member that holds the coil so as to face the coil from the inflow side of the fluid, and an annular shape that absorbs a difference in radial expansion between the heating element and the pipe between the heating element and the pipe. A gap is formed, a gap for absorbing thermal expansion in the axial direction of the heating element is formed on the outflow side of the pipe between the heating element and the heat generation due to the thermal expansion in the axial direction of the heating element. An electromagnetic induction heating device comprising a stopper arranged to engage with a body so as to close the annular gap from the outflow side.
JP15715495A 1995-05-30 1995-05-30 Electromagnetic induction heating device Pending JPH08330060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15715495A JPH08330060A (en) 1995-05-30 1995-05-30 Electromagnetic induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15715495A JPH08330060A (en) 1995-05-30 1995-05-30 Electromagnetic induction heating device

Publications (1)

Publication Number Publication Date
JPH08330060A true JPH08330060A (en) 1996-12-13

Family

ID=15643369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15715495A Pending JPH08330060A (en) 1995-05-30 1995-05-30 Electromagnetic induction heating device

Country Status (1)

Country Link
JP (1) JPH08330060A (en)

Similar Documents

Publication Publication Date Title
JP3842512B2 (en) Fluid heating device
JPH08264272A (en) Electromagnetic induction heater
JP3553627B2 (en) Electromagnetic induction heat converter
KR100827468B1 (en) Electric boiler using high frequency induction heaing
EP0093349B1 (en) Method of heating piping arrangement and heating coil
WO1998031045A2 (en) High efficiency ultra-pure fluid heater
JP2008134041A (en) Fluid heating apparatus
JPS60255930A (en) Heating method and apparatus for improving residual stress in welded part of branched pipe
JPS6124117B2 (en)
KR101084162B1 (en) Heater Module Assembly
JP2007152651A (en) Fluid induction heating device
WO2018096718A1 (en) Electromagnetic induction-heating device
JP3628705B2 (en) Electromagnetic induction heating device
JPH08326997A (en) Electromagnetic induction heating device for pipeline
JPH08330060A (en) Electromagnetic induction heating device
JP3642415B2 (en) Fluid heating device
JP3893919B2 (en) Induction heating unit for fluid heating
WO1998029685A1 (en) Superheated steam generator
JP5149302B2 (en) Superheated steam generator
JP2005195522A (en) Heat treatment device in piping system
JP6760636B2 (en) Fluid heating device
JP2000055462A (en) Fluid heating apparatus and substrate processing apparatus using the same
JPH0992449A (en) Induction heater
JPH1194202A (en) Steam producing equipment
JP2000121153A (en) Fluid heater and base processor using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050817