JPH08329444A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH08329444A
JPH08329444A JP7316490A JP31649095A JPH08329444A JP H08329444 A JPH08329444 A JP H08329444A JP 7316490 A JP7316490 A JP 7316490A JP 31649095 A JP31649095 A JP 31649095A JP H08329444 A JPH08329444 A JP H08329444A
Authority
JP
Japan
Prior art keywords
magnetic
layer
intermediate layer
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7316490A
Other languages
Japanese (ja)
Other versions
JP3437024B2 (en
Inventor
Makoto Ookijima
真 大木島
Masahiro Oka
正裕 岡
Fumiaki Yokoyama
文明 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP31649095A priority Critical patent/JP3437024B2/en
Publication of JPH08329444A publication Critical patent/JPH08329444A/en
Application granted granted Critical
Publication of JP3437024B2 publication Critical patent/JP3437024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To attain high coercive force without reducing S-N ratio. CONSTITUTION: A nonmagnetic underlayer of Cr, an intermediate layer of a Co-base alloy having an hcp structure and a magnetic layer of a Co alloy are successively formed on a nonmagnetic substrate. The ratio (BsIL.tIL/ BsML.tML) of the product (BsIL.tIL) of the saturation magnetic flux density (BsIL) of the intermediate layer and the thickness (tIL) of the intermediate layer to the product (BsML.tML) of the saturation magnetic flux density (BsML) of the magnetic layer and the thickness (tML) of the magnetic layer is regulated to <=0.2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体に係り、詳
しくは磁気ディスク装置、フロッピーディスク装置、磁
気テープ装置等の磁気記録装置に用いられる面内磁気記
録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to an in-plane magnetic recording medium used in a magnetic recording device such as a magnetic disk device, a floppy disk device, a magnetic tape device or the like.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置、フロッピーデ
ィスク装置、磁気テープ装置等の磁気記録装置の適用範
囲は著しく拡大され、その重要性が増すと共に、これら
の装置に用いられる磁気記録媒体について、その記録密
度の著しい向上が図られつつある。
2. Description of the Related Art In recent years, the range of application of magnetic recording devices such as magnetic disk devices, floppy disk devices, magnetic tape devices, etc. has been remarkably expanded and its importance has increased, and the magnetic recording media used in these devices have The recording density is being significantly improved.

【0003】これらの磁気記録媒体については、今後、
更に高記録密度化を達成することが要求されており、そ
のために、磁気記録層の高保磁力化と高信号対雑音比を
達成することが必要とされている。
Regarding these magnetic recording media,
Further, it is required to achieve higher recording density, and therefore, it is required to achieve higher coercive force of the magnetic recording layer and higher signal-to-noise ratio.

【0004】このうち、高保磁力化の有効な手段とし
て、磁性材料にPtを添加することにより、2000O
eを超える高い保磁力が得られることが知られている。
たとえば、特開昭59−88806号公報にはCo系材
料、USPNo.5,024,903号にはCoCrTa系材料に
それぞれPtを添加した例が開示されている。
Among these, as an effective means of increasing the coercive force, Pt is added to the magnetic material to obtain 2000 O
It is known that a high coercive force exceeding e can be obtained.
For example, Japanese Patent Laid-Open No. 59-88806 discloses a Co-based material, and USP No. 5,024,903 discloses an example in which Pt is added to a CoCrTa-based material.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、Ptの
添加は保磁力の向上には効果があるが、一方で媒体ノイ
ズをも増大させる。CoPt系磁性層を形成した磁気記
録媒体では、CoCrTaのような比較的保磁力の低い
磁性層を形成した磁気記録媒体と比べても、媒体ノイズ
が高くなる。媒体ノイズを低減する方法として、磁性層
を多層化し、間に非磁性層を挿入する方法が知られてい
る(特開平6−176341号公報等)が、この方法は
磁性層を分断するので保磁力が低下する傾向があり、高
保磁力化と低ノイズ化の両方を実現する有力な手段は未
だ開発されていないのが現状である。
However, although the addition of Pt is effective in improving the coercive force, it also increases the medium noise. A magnetic recording medium formed with a CoPt-based magnetic layer has a higher medium noise than a magnetic recording medium formed with a magnetic layer having a relatively low coercive force such as CoCrTa. As a method of reducing medium noise, a method is known in which a magnetic layer is multi-layered and a non-magnetic layer is inserted between them (Japanese Patent Laid-Open No. 6-176341, etc.). The magnetic force tends to decrease, and the current means is that no powerful means for achieving both high coercive force and low noise has been developed yet.

【0006】[0006]

【課題を解決するための手段】本発明は、上記従来の実
情に鑑みてなされたものであって、磁気記録媒体におい
て、信号/雑音比(S/N比)を低下させることなく高
保磁力化を実現する磁気記録媒体を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above conventional circumstances, and has a high coercive force in a magnetic recording medium without reducing the signal / noise ratio (S / N ratio). It is an object of the present invention to provide a magnetic recording medium that realizes

【0007】本発明による磁気記録媒体は、非磁性基板
と、Co系合金磁性層(ML)と、この磁性層と基板の
間にCrを主成分とする非磁性下地層を有する磁気記録
媒体において、前記磁性層と非磁性下地層との間に、h
cp構造を有するCo系合金からなる中間層(IL)を
有し、かつ磁性層を構成するCo系合金の飽和磁束密度
(BsML)と磁性層膜厚(tML)との積(BsML
・tML)に対する、前記中間層を構成するCo系合金
の飽和磁束密度(BsIL)と中間層膜厚(tIL)の
積(BsIL・tIL)の比 R=(BsIL・tIL)/(BsML・tML)が
0.2以下であることを特徴とする磁気記録媒体であ
る。
The magnetic recording medium according to the present invention is a magnetic recording medium having a non-magnetic substrate, a Co-based alloy magnetic layer (ML), and a non-magnetic underlayer containing Cr as a main component between the magnetic layer and the substrate. , Between the magnetic layer and the non-magnetic underlayer, h
The product (BsML) of the saturation magnetic flux density (BsML) and the magnetic layer thickness (tML) of the Co-based alloy which has the intermediate layer (IL) made of the Co-based alloy having the cp structure and which constitutes the magnetic layer.
The ratio of the product (BsIL · tIL) of the saturation magnetic flux density (BsIL) of the Co-based alloy constituting the intermediate layer to the intermediate layer thickness (tIL) with respect to tML) R = (BsIL · tIL) / (BsML · tML) ) Is 0.2 or less, the magnetic recording medium.

【0008】[0008]

【発明の実施の態様】本発明において、非磁性基板とし
ては、通常の場合、無電解めっき法により形成したNi
−P層を設けたアルミニウム合金板又はガラス基板が用
いられるが、その他、セラミック基板、炭素基板、Si
基板、更には各種樹脂基板等、あらゆる非磁性基板を用
いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the non-magnetic substrate is usually made of Ni formed by electroless plating.
An aluminum alloy plate or a glass substrate provided with a -P layer is used, but in addition, a ceramic substrate, a carbon substrate, Si
Any non-magnetic substrate such as a substrate and various resin substrates can be used.

【0009】このような非磁性基板上に形成するCrを
主成分とする非磁性下地層としては、Cr以外の元素、
例えばSi、Ti、V、Mo、W等の1種又は2種以上
を30原子%程度以下の範囲において含んでいても良
い。また、この非磁性下地層の膜厚は通常100〜20
00Å、好ましくは200Å以上の範囲が採用される。
下地層が薄すぎると、保磁力が大きく低下する原因とな
る。
As the non-magnetic underlayer containing Cr as a main component formed on such a non-magnetic substrate, elements other than Cr,
For example, one kind or two kinds or more of Si, Ti, V, Mo, W and the like may be contained in the range of about 30 atomic% or less. The thickness of this non-magnetic underlayer is usually 100 to 20.
A range of 00Å, preferably 200Å or more is adopted.
If the underlayer is too thin, it will cause a large decrease in coercive force.

【0010】このような下地層の上に形成するCo基合
金中間層は、結晶構造が最密六方(hcp)構造を有
し、かつ、この中間層上に形成するCo系合金磁性層の
飽和磁束密度(BsML)とCo系合金磁性層膜厚(t
ML)の積BsML・tMLに対する、中間層の飽和磁
束密度(BsIL)と中間層膜厚(tIL)の積BsI
L・tILの比が0.2以下、即ち、下記(I)式を満
足する非磁性ないし弱磁性中間層であることを特徴とす
る。 R=(BsML*tML)/(BsIL*tIL)<=0.2 (I)
The Co-based alloy intermediate layer formed on such an underlayer has a close-packed hexagonal (hcp) crystal structure and the saturation of the Co-based alloy magnetic layer formed on this intermediate layer. Magnetic flux density (BsML) and Co-based alloy magnetic layer film thickness (t
ML) product BsML · tML, product BsI of the saturation magnetic flux density (BsIL) of the intermediate layer and the intermediate layer film thickness (tIL)
The L / tIL ratio is 0.2 or less, that is, it is a nonmagnetic or weakly magnetic intermediate layer satisfying the following formula (I). R = (BsML * tML) / (BsIL * tIL) <= 0.2 (I)

【0011】飽和磁束密度Bsと膜厚tの積Bs・tは
磁性層の単位面積当たりの飽和磁化量を表しており、本
発明の中間層におけるBs・tの値(BsIL・tI
L)は、Co系合金磁性層のBs・tの値(BsML・
tML)の20%以下、好ましくは10%以下、更に好
ましくは0である。両者の比Rが0.2を超えると、保
磁力の低下等、磁気特性の劣化を来たす。
The product Bs · t of the saturation magnetic flux density Bs and the film thickness t represents the amount of saturation magnetization per unit area of the magnetic layer, and the value of Bs · t (BsIL · tI) in the intermediate layer of the present invention.
L is the value of Bs · t of the Co-based alloy magnetic layer (BsML ·
tML) is 20% or less, preferably 10% or less, and more preferably 0. If the ratio R of the two exceeds 0.2, the magnetic properties are deteriorated, such as a decrease in coercive force.

【0012】本発明において中間層を設けることは、C
o系合金磁性層の初期成長層の特性を改良することが主
な目的であり、このため、中間層自身は磁気的に動作し
ないことが望ましい。中間層の飽和磁束密度を、上記
(I)式を満足するような小さな値、とりわけ、0Ga
uss(R=0)とすることにより、磁気記録媒体に及
ぼす中間層の磁気的影響を完全に排除することができ
る。
In the present invention, the provision of the intermediate layer means that C
The main purpose is to improve the characteristics of the initial growth layer of the o-based alloy magnetic layer. Therefore, it is desirable that the intermediate layer itself does not magnetically operate. The saturation magnetic flux density of the intermediate layer is set to such a small value as to satisfy the above formula (I), especially 0 Ga.
By setting uss (R = 0), the magnetic influence of the intermediate layer on the magnetic recording medium can be completely eliminated.

【0013】本発明における中間層材料は、Cr、T
a、Ti、W、V、Mo、Siの少なくとも1種とCo
との合金が好ましい。中間層材料中のこれらの元素Mの
含有率は適宜選択すれば良く特に制限はないが、通常、
20〜50原子%程度である。また、この場合、Coの
一部をNi等の磁性元素で置換することもできる。この
際、中間層は非磁性であることが好ましく、例えば、C
o−Cr系中間層においてはCrの含有量が34〜45
原子%であることが、飽和磁束密度が0でかつ結晶がh
cp構造となるため好ましい。
The material for the intermediate layer in the present invention is Cr, T
at least one of a, Ti, W, V, Mo and Si and Co
Alloys with are preferred. The content of these elements M in the intermediate layer material may be appropriately selected and is not particularly limited.
It is about 20 to 50 atom%. Further, in this case, a part of Co can be replaced with a magnetic element such as Ni. At this time, the intermediate layer is preferably non-magnetic, and for example, C
In the o-Cr based intermediate layer, the content of Cr is 34 to 45.
Atomic% means that the saturation magnetic flux density is 0 and the crystal is h
It is preferable because it has a cp structure.

【0014】中間層の材料合金には、上記中間層として
の性能を損なわない限り、数原子%以下程度ならその他
のGe、Cu、Zn、窒素、酸素、水素等の元素を含ん
でいても良い。また、更に、Co系合金磁性層との結晶
格子定数を調整する等のために、他の元素を添加しても
よい。なお、このような中間層の膜厚は、10〜100
0Å、特に50〜500Åとするのが好ましい。
The material alloy for the intermediate layer may contain other elements such as Ge, Cu, Zn, nitrogen, oxygen and hydrogen, as long as the performance as the intermediate layer is not impaired, as long as it is about several atomic% or less. . Further, other elements may be added to adjust the crystal lattice constant with the Co-based alloy magnetic layer. The thickness of such an intermediate layer is 10 to 100.
It is preferably 0Å, particularly 50 to 500Å.

【0015】このような中間層上に形成するCo系合金
磁性層のCo系合金としては、通常、CoCr系、Co
NiCr系、CoPt系合金等が用いられ、これらは更
に、Ni、Cr、Pt、Ta、B等の元素を含んでいて
も良い。Co系合金磁性層の具体的なCo系合金として
は、CoCrTa合金、CoNiCrBTa合金、Co
PtCrTa合金が挙げられる。磁性層の膜厚には特に
制限はないが、通常、100〜800Åの厚さに成膜さ
れる。
As the Co-based alloy for the Co-based alloy magnetic layer formed on such an intermediate layer, CoCr-based alloy and Co-based alloy are usually used.
NiCr-based, CoPt-based alloys or the like are used, and these may further contain elements such as Ni, Cr, Pt, Ta, and B. Specific Co-based alloys for the Co-based alloy magnetic layer include CoCrTa alloys, CoNiCrBTa alloys, and Co.
PtCrTa alloy is mentioned. The thickness of the magnetic layer is not particularly limited, but it is usually formed to a thickness of 100 to 800 Å.

【0016】このような本発明の磁気記録媒体は、非磁
性基板上に下地層、中間層及び磁性層を順次成膜するこ
とにより製造されるが、その際、成膜途中で大気曝露す
ることなく一貫して真空雰囲気中で順次積層成膜するこ
とが望ましい。
Such a magnetic recording medium of the present invention is manufactured by sequentially forming an underlayer, an intermediate layer and a magnetic layer on a non-magnetic substrate. At that time, the film is exposed to the atmosphere during the film formation. Instead, it is desirable to continuously and sequentially form films in a vacuum atmosphere.

【0017】なお、成膜法としては、直流又は高周波マ
グネトロンスパッタ法のいずれでも良く、成膜時のスパ
ッタ条件としても特に制限はなく、バイアス電圧、基板
温度、スパッタガス圧、真空度等は、スパッタ材料によ
り適宜決定される。通常の場合、バイアス電圧(絶対
値)は50〜500V、基板温度は室温〜300℃、ス
パッタガス圧は1×10−3〜20×10−3Tor
r、真空度は1×10−6Torr以下で成膜される。
本発明の磁気記録媒体は、上述した中間層とCo系合金
磁性層との組み合わせを満たす限り、Co系合金磁性層
の上に更に同様の中間層及び磁性層を設けた積層構造を
有するものであっても良い。
The film forming method may be either a direct current or a high frequency magnetron sputtering method, and there are no particular restrictions on the sputtering conditions during film forming, and the bias voltage, substrate temperature, sputtering gas pressure, vacuum degree, etc. It is appropriately determined depending on the sputtering material. Normally, the bias voltage (absolute value) is 50 to 500 V, the substrate temperature is room temperature to 300 ° C., and the sputtering gas pressure is 1 × 10 −3 to 20 × 10 −3 Tor.
r, the degree of vacuum is 1 × 10 −6 Torr or less.
The magnetic recording medium of the present invention has a laminated structure in which the same intermediate layer and magnetic layer are further provided on the Co-based alloy magnetic layer as long as the above-mentioned combination of the intermediate layer and the Co-based alloy magnetic layer is satisfied. It may be.

【0018】即ち、本発明の磁気記録媒体は、記録層で
ある磁性層と下地層との間にCo系非磁性(ないし弱磁
性)中間層を設けることを特徴としており、例えば、非
磁性基板と下地層の間に金属被覆層を形成したもの、磁
性層を2種以上のCo合金層の積層構造としたもの、磁
性層上に非磁性中間層を設けて積層したもの、或いは磁
性層上に更に必要に応じて炭素質等の保護層及び/又は
通常用いられる潤滑剤よりなる潤滑層等を形成してなる
ものであっても良い。
That is, the magnetic recording medium of the present invention is characterized in that a Co-based non-magnetic (or weakly magnetic) intermediate layer is provided between the magnetic layer as the recording layer and the underlayer. For example, a non-magnetic substrate. A metal coating layer between the underlayer and the underlayer, a magnetic layer having a laminated structure of two or more Co alloy layers, a nonmagnetic intermediate layer provided on the magnetic layer, or a magnetic layer. In addition, if necessary, a protective layer of carbonaceous material and / or a lubricating layer made of a lubricant usually used may be formed.

【0019】[0019]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。表1〜表
8に示すように、各種条件で実施例および比較例を実施
した。なお、本発明において残留磁束密度(Br)、飽
和磁束密度(Bs)および保磁力(Hc)は、VSM
(Vibration Sample Magnetometer:東英工業株式会社製
VSM−3S型)により、測定したMHループ(hyster
esis loop)を基に値を算出した。なお、測定時の条件は
次の通りである。 最大印加磁界 5000(Oe) サンプルサイズ(縦×横) 8mm×8mm また、磁性層の膜組成の分析は、蛍光X線分析で行っ
た。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist. As shown in Tables 1 to 8, Examples and Comparative Examples were carried out under various conditions. In the present invention, the residual magnetic flux density (Br), the saturation magnetic flux density (Bs) and the coercive force (Hc) are VSM.
(Vibration Sample Magnetometer: VSM-3S type manufactured by Toei Industry Co., Ltd.) MH loop (hyster
The value was calculated based on the (esis loop). The conditions at the time of measurement are as follows. Maximum applied magnetic field 5000 (Oe) Sample size (length x width) 8 mm x 8 mm The film composition of the magnetic layer was analyzed by fluorescent X-ray analysis.

【0020】実施例1〜19、比較例1〜4 (実施例1〜5)内径25mm、外径95mmのアルミ
ニウム合金ディスク基板表面に、無電解メッキにより非
磁性Ni−P層を25μm厚さに成膜し、その表面を鏡
面研磨してRa(中心線平均粗さ)20〜30Åに仕上
げた。
Examples 1 to 19 and Comparative Examples 1 to 4 (Examples 1 to 5) A nonmagnetic Ni-P layer having a thickness of 25 μm is formed on the surface of an aluminum alloy disk substrate having an inner diameter of 25 mm and an outer diameter of 95 mm by electroless plating. A film was formed, and the surface thereof was mirror-polished to obtain Ra (center line average roughness) of 20 to 30 Å.

【0021】この非磁性基板を高周波(13.56MH
z)マグネトロンスパッタ装置に装着し、3×10-6
orrまで真空排気した後、基板温度を250℃まで昇
温し、アルゴン分圧5×10-3Torrにて、基板に直
流−100Vのバイアス電圧を印加しながら、Cr下地
層を約600Åの厚さに成膜した。
This non-magnetic substrate is subjected to high frequency (13.56MH
z) Mounted on a magnetron sputtering device, 3 × 10 -6 T
After vacuum evacuation to orr, the substrate temperature is raised to 250 ° C., a partial pressure of argon is 5 × 10 −3 Torr, and a bias voltage of DC-100 V is applied to the substrate, while the Cr underlayer is about 600 Å thick. It was formed into a film.

【0022】そして引き続き、中間層としてCo63原
子%−Cr37原子%の組成のCoCr膜を100Åの
厚みに形成した後、Co80原子%−Cr14原子%−
Ta6原子%の組成の磁性膜を150〜400Å成膜す
ることにより、残留磁束密度と膜厚の積であるBr・t
が60〜180gauss・μmの範囲の試料を作製し
た(実施例1〜5)。
Then, after forming a CoCr film having a composition of Co63 atomic% -Cr37 atomic% to a thickness of 100 Å as an intermediate layer, Co80 atomic% -Cr14 atomic%-
By forming a magnetic film having a composition of Ta 6 atomic% in the range of 150 to 400Å, Br · t, which is the product of the residual magnetic flux density and the film thickness, can be obtained.
Of 60 to 180 gauss · μm were prepared (Examples 1 to 5).

【0023】なお、中間層のCo63原子%−Cr37
原子%の組成のCoCr膜はBs=0Gaussの非磁
性体であり、かつhcp構造を有している。得られた試
料のBs・tとHcの関係を図1に示す。
The intermediate layer of Co63 atomic% -Cr37
The CoCr film having an atomic% composition is a non-magnetic material with Bs = 0Gauss and has an hcp structure. The relationship between Bs · t and Hc of the obtained sample is shown in FIG.

【0024】(実施例6〜9)中間層としてCo62原
子%−Cr37原子%−Ta1原子%を用いたこと以外
は実施例1〜5と同様にして試料を作成した。得られた
試料のBs・tとHcの関係を図2に示す。
(Examples 6 to 9) Samples were prepared in the same manner as in Examples 1 to 5, except that Co 62 atom% -Cr 37 atom% -Ta 1 atom% was used as the intermediate layer. The relationship between Bs · t and Hc of the obtained sample is shown in FIG.

【0025】(実施例10〜14)中間層としてCo6
0.5原子%−Cr36原子%−Ti3.5原子%を用
いたこと以外は実施例1〜5と同様にして試料を作成し
た。得られた試料のBs・tとHcの関係を図2に示
す。
(Examples 10 to 14) Co6 as an intermediate layer
Samples were prepared in the same manner as in Examples 1 to 5 except that 0.5 atom% -Cr 36 atom% -Ti 3.5 atom% was used. The relationship between Bs · t and Hc of the obtained sample is shown in FIG.

【0026】(実施例15〜19)中間層としてCo5
9.5原子%−Cr36原子%−V4.5原子%を用い
たこと以外は実施例1〜5と同様にして試料を作成し
た。得られた試料のBs・tとHcの関係を図2に示
す。
(Examples 15 to 19) Co5 as an intermediate layer
Samples were prepared in the same manner as in Examples 1 to 5 except that 9.5 atom% -Cr36 atom% -V4.5 atom% was used. The relationship between Bs · t and Hc of the obtained sample is shown in FIG.

【0027】(比較例1〜4)CoCr中間層を設けず
に成膜したこと以外は、実施例1〜5と同じ条件で試料
を作製した。得られた試料のBs・tとHcの関係を図
1に示す。
Comparative Examples 1 to 4 Samples were prepared under the same conditions as in Examples 1 to 5, except that the CoCr intermediate layer was not provided. The relationship between Bs · t and Hc of the obtained sample is shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】表1、Fig1および2から明らかなよう
に、Co系中間層を形成したことにより、Hcが400
〜800Oe上昇したことが認められる。
As is clear from Table 1 and FIGS. 1 and 2, Hc of 400 was obtained by forming the Co type intermediate layer.
It can be seen that the temperature has risen by ~ 800 Oe.

【0030】実施例20〜23、比較例5〜8 実施例1〜5或いは比較例1〜4と同様にして作製した
各磁気記録媒体について、各々、磁性層上に、更に、厚
さ150ÅのC(炭素)保護膜をスパッタリング法で成
膜し、その上にF(弗素)系の潤滑剤を約30Åの厚さ
に塗布し、得られた各磁気記録媒体について、電磁変換
特性を測定した。
Examples 20 to 23, Comparative Examples 5 to 8 With respect to each magnetic recording medium prepared in the same manner as Examples 1 to 5 or Comparative Examples 1 to 4, each magnetic recording medium was further formed on the magnetic layer with a thickness of 150 Å. A C (carbon) protective film was formed by a sputtering method, and an F (fluorine) -based lubricant was applied thereon to a thickness of about 30Å, and the electromagnetic conversion characteristics of each of the obtained magnetic recording media were measured. .

【0031】なお、電磁変換特性の測定はハードディス
ク用MR(磁気抵抗効果)ヘッドを用いて行った。使用
したヘッドの仕様および測定の条件を以下に示す。 ヘッド浮上高さ 750Å 記録ギャップ長 0.78μm 再生シールド幅 0.22μm 再生トラック幅 4.2μm ディスク回転数 3,600rpm 測定半径 23mm 記録周波数 20.1MHz
The electromagnetic conversion characteristics were measured by using an MR (magnetoresistive effect) head for a hard disk. The specifications of the head used and the measurement conditions are shown below. Head flying height 750Å Recording gap length 0.78 μm Playback shield width 0.22 μm Playback track width 4.2 μm Disc rotation speed 3,600 rpm Measuring radius 23 mm Recording frequency 20.1 MHz

【0032】電磁変換特性の測定結果を表2に示す。ま
た、図3に再生出力と磁気記録媒体のS/N比との関係
を、図4に再生出力と孤立再生波形の半値幅(PW5
0)との関係をそれぞれ示した。
Table 2 shows the measurement results of the electromagnetic conversion characteristics. FIG. 3 shows the relationship between the reproduction output and the S / N ratio of the magnetic recording medium, and FIG. 4 shows the relationship between the reproduction output and the half-value width (PW5) of the isolated reproduction waveform.
0) and the relationship with each.

【0033】[0033]

【表2】 [Table 2]

【0034】表2、Figs3および4より、CoCr
中間層を設けた磁気記録媒体の方がS/N特性および分
解能のいずれにおいても優れていることが認められる。
From Table 2, FIG. 3 and FIG. 4, from CoCr
It is recognized that the magnetic recording medium provided with the intermediate layer is superior in both S / N characteristics and resolution.

【0035】実施例24〜28、比較例9〜10 (実施例24〜28)CoCr中間層のCr含有量を約
29原子%から44原子%まで変化させた以外は実施例
1〜5と同様にして試料を作製した。
Examples 24 to 28, Comparative Examples 9 to 10 (Examples 24 to 28) Similar to Examples 1 to 5 except that the Cr content of the CoCr intermediate layer was changed from about 29 atom% to 44 atom%. Then, a sample was prepared.

【0036】(比較例9)CoCr中間層のCr含有量
を24原子%とした以外は実施例1〜5と同様にして、
試料を作製した。
(Comparative Example 9) The procedure of Examples 1 to 5 was repeated except that the Cr content of the CoCr intermediate layer was changed to 24 atomic%.
A sample was prepared.

【0037】(比較例10)CoCr中間層のCr含有
量を54原子%とした以外は実施例1〜5と同様にし
て、試料を作製した。なお、比較例10を除く各例で用
いたCo系中間層は何れもhcp構造を有する。また、
Co(80)Cr(14)Ta(6)のBs(ML)は5500(Gauss)であっ
た。
(Comparative Example 10) A sample was prepared in the same manner as in Examples 1 to 5, except that the Cr content in the CoCr intermediate layer was 54 atomic%. The Co-based intermediate layers used in each example except Comparative Example 10 have an hcp structure. Also,
The Bs (ML) of Co (80) Cr (14) Ta (6) was 5,500 (Gauss).

【0038】実施例24〜28及び比較例9,10で得
られた試料につき、CoCr中間層のCr含有率と保磁
力Hcとの関係を図5に、CoCr中間層のCr含有率
と、飽和磁束密度と膜厚の積Bs・tとの関係を図6に
それぞれ示す。
For the samples obtained in Examples 24 to 28 and Comparative Examples 9 and 10, the relationship between the Cr content of the CoCr intermediate layer and the coercive force Hc is shown in FIG. 5, and the Cr content of the CoCr intermediate layer and saturation. FIG. 6 shows the relationship between the magnetic flux density and the product Bs · t of the film thickness.

【0039】[0039]

【表3】 [Table 3]

【0040】表3、Fig5および6から明らかなよう
に、hcp構造を有し、かつBs・t(ML)/Bs・t(IL)が0.20
0未満、特に0.015未満の範囲においては、顕著な保磁力
Hcの上昇効果が得られている。また、この条件はCo
Cr合金においてはCr含有率が27〜52原子%の範
囲が相当し、特にCr含有率が34〜47原子%の範囲
で効果が高いこともわかる。
As is clear from Table 3 and FIGS. 5 and 6, it has an hcp structure and has a Bs.t (ML) /Bs.t (IL) of 0.20.
In the range of less than 0, especially less than 0.015, a remarkable effect of increasing the coercive force Hc is obtained. Also, this condition is Co
It can also be seen that in the Cr alloy, the Cr content is in the range of 27 to 52 atomic%, and particularly the effect is high in the Cr content of 34 to 47 atomic%.

【0041】ここで、比較例10においてのみCoCr
中間層はhcp構造を有しておらず、本発明において中
間層がhcp構造を有することが重要であることが明ら
かである。また、表3より明らかなように、特に高保磁
力の実施例27、28においてはCoCr中間層が非磁
性(Bs=0)であることから、中間層は非磁性である
ことが望ましい。
Here, only in Comparative Example 10, CoCr
The intermediate layer does not have an hcp structure, and it is clear that it is important in the present invention that the intermediate layer has an hcp structure. Further, as is clear from Table 3, the CoCr intermediate layer is non-magnetic (Bs = 0) particularly in Examples 27 and 28 having high coercive force, so that the intermediate layer is preferably non-magnetic.

【0042】実施例29〜34、比較例11〜15 (実施例29〜34)実施例1〜5の作製条件におい
て、磁性層をCo70原子%−Cr21原子%−Pt9
原子%の組成のCoCrPt磁性層に変更し、それ以外
の条件については同様にして試料を作製した。
Examples 29 to 34, Comparative Examples 11 to 15 (Examples 29 to 34) Under the manufacturing conditions of Examples 1 to 5, the magnetic layer was made of Co70 atomic% -Cr21 atomic% -Pt9.
A sample was prepared in the same manner except that the CoCrPt magnetic layer having a composition of atomic% was changed, and the other conditions were changed.

【0043】(比較例11〜15)また、CoCr中間
層を設けずに成膜したこと以外は、上記と全く同じ条件
で試料を作製した。各試料の構成、保磁力および製造条
件を表4に、保磁力HcとBs・tの関係を図7に示し
た。
(Comparative Examples 11 to 15) Samples were prepared under exactly the same conditions as described above except that the CoCr intermediate layer was not provided. Table 4 shows the constitution, coercive force, and manufacturing conditions of each sample, and FIG. 7 shows the relationship between the coercive force Hc and Bs · t.

【0044】[0044]

【表4】 [Table 4]

【0045】表1及び図7より、磁性層にTaを含まな
くともCo系中間層による効果が得られることが明らか
である。
From Table 1 and FIG. 7, it is clear that the effect of the Co type intermediate layer can be obtained even if the magnetic layer does not contain Ta.

【0046】実施例35〜37、比較例16〜18 (実施例35〜37)実施例1〜5の作製条件におい
て、高周波スパッタ法を直流スパッタ法に、バイアス電
圧を−100Vから−500Vに、CoCr中間層厚み
を100Åから50Åに、更にCoCrTa磁性層をC
o56.5原子%−Ni30原子%−Cr7.5原子%
−B3原子%−Ta3原子%の組成のCoNiCrBT
a磁性膜に変更し、それ以外の条件については同様にし
て試料を作製した。
Examples 35 to 37, Comparative Examples 16 to 18 (Examples 35 to 37) Under the manufacturing conditions of Examples 1 to 5, the high frequency sputtering method was a DC sputtering method, the bias voltage was -100 V to -500 V, and The CoCr intermediate layer thickness was changed from 100Å to 50Å, and the CoCrTa magnetic layer was changed to C
o56.5 atomic% -Ni30 atomic% -Cr7.5 atomic%
-B3 atomic% -Ta3 atomic% composition CoNiCrBT
Samples were prepared in the same manner except that the magnetic film was changed to a.

【0047】(比較例16〜18)また、CoCr中間
層を設けずに成膜したこと以外は、上記と全く同じ条件
で試料を作製した。各試料の構成、保磁力および製造条
件を表5に、保磁力HcとBs・tの関係を図8に示し
た。
(Comparative Examples 16 to 18) Samples were prepared under exactly the same conditions as described above except that the CoCr intermediate layer was not provided. Table 5 shows the constitution, coercive force and manufacturing conditions of each sample, and FIG. 8 shows the relationship between the coercive force Hc and Bs · t.

【0048】[0048]

【表5】 [Table 5]

【0049】表5及び図8より、スパッタ方法、バイア
ス電圧、磁性層の種類が変わっても、Co系中間層によ
る効果が得られることが明らかである。
From Table 5 and FIG. 8, it is clear that the effect of the Co-based intermediate layer can be obtained even if the sputtering method, bias voltage, and type of magnetic layer are changed.

【0050】実施例38〜41、比較例19〜22 (実施例38〜41)実施例1〜5の作製条件におい
て、高周波スパッタ法を直流スパッタ法に、バイアス電
圧を−100Vから−300Vに、Cr下地層厚みを6
00Åから850Åに、CoCr中間層厚みを100Å
から170Åに、更にCoCrTa磁性層をCo80原
子%−Cr12原子%−Pt6原子%−Ta2原子%の
組成のCoCrPtTa磁性膜に変更し、それ以外の条
件については同様にして試料を作製した。
Examples 38 to 41, Comparative Examples 19 to 22 (Examples 38 to 41) Under the manufacturing conditions of Examples 1 to 5, the high frequency sputtering method was a DC sputtering method, the bias voltage was -100V to -300V, and Cr underlayer thickness 6
From 00Å to 850Å, CoCr intermediate layer thickness is 100Å
To 170 Å, the CoCrTa magnetic layer was further changed to a CoCrPtTa magnetic film having a composition of Co 80 atomic% -Cr 12 atomic% -Pt 6 atomic% -Ta 2 atomic%, and other conditions were similarly used to prepare samples.

【0051】(比較例19〜22)また、CoCr中間
層を設けずに成膜したこと以外は、上記と全く同じ条件
で試料を作製した。これら試料の構成、特性及び製造条
件を表6に、得られた各磁気記録媒体の保
(Comparative Examples 19 to 22) Further, samples were prepared under the same conditions as above except that the CoCr intermediate layer was not provided. Table 6 shows the constitution, characteristics and manufacturing conditions of these samples.

【0052】[0052]

【表6】 [Table 6]

【0053】磁力HcとBs・tとの関係を図9に示し
た。表6及び図9から、Ptを含むCo系合金磁性層に
おいても、本発明の効果が得られることが明らかであ
る。
The relationship between the magnetic force Hc and Bs · t is shown in FIG. From Table 6 and FIG. 9, it is clear that the effects of the present invention can be obtained also in the Co-based alloy magnetic layer containing Pt.

【0054】実施例42〜45、比較例23 (実施例42〜45)実施例1〜5の作製条件におい
て、磁性層を厚さ250ÅのCo78原子%−Cr17
原子%−Ta5原子%に変更し、それ以外の条件につい
ては同様にして、CoCr中間層の厚さを50Å〜50
0Åまで変化させた試料を作製した。
Examples 42 to 45, Comparative Example 23 (Examples 42 to 45) Under the manufacturing conditions of Examples 1 to 5, the magnetic layer was made of Co 78 atomic% -Cr17 having a thickness of 250 Å.
Atomic% -Ta5 atomic% was changed, and the other conditions were the same, and the thickness of the CoCr intermediate layer was 50Å to 50%.
A sample was prepared by changing it to 0Å.

【0055】(比較例23)また、CoCr中間層を設
けずに成膜したこと以外は、上記と全く同じ条件で試料
を作製した。これら試料の構成、特性及び製造条件を表
7に、得られた各磁気記録媒体の保磁力HcとBs・t
との関係を図10に示した。
(Comparative Example 23) A sample was prepared under exactly the same conditions as described above except that the CoCr intermediate layer was not provided. Table 7 shows the constitutions, characteristics and manufacturing conditions of these samples, and the coercive force Hc and Bs · t of each obtained magnetic recording medium.
The relationship with is shown in FIG.

【0056】[0056]

【表7】 [Table 7]

【0057】表7及び図10から、中間層の厚みが増加
すると保磁力が低下する傾向にあることが読み取られ、
中間層の厚みとしては500Å以下が適当であると思わ
れる。
It can be seen from Table 7 and FIG. 10 that the coercive force tends to decrease as the thickness of the intermediate layer increases.
It seems that an appropriate thickness of the intermediate layer is 500 Å or less.

【0058】実施例46〜49、比較例24〜26 (実施例46〜49)実施例42〜45の作製条件にお
いて、CoCr中間層の厚さを100Åとし、それ以外
の条件は同様にして、クロム下地層の厚さを100〜6
00Åまで変化させた試料を作製した。
Examples 46 to 49, Comparative Examples 24 to 26 (Examples 46 to 49) Under the manufacturing conditions of Examples 42 to 45, the thickness of the CoCr intermediate layer was 100 Å, and the other conditions were the same. Chromium underlayer thickness is 100-6
Samples having a variation of 00Å were prepared.

【0059】(比較例24〜26)また、CoCr中間
層を設けずに成膜したこと以外は、上記と全く同じ条件
で試料を作製した。これら試料の構成、特性及び製造条
件を表8に、得られた各磁気記録媒体の保磁力HcとB
s・tとの関係を図11に示した。
(Comparative Examples 24 to 26) Further, samples were prepared under exactly the same conditions as described above, except that the CoCr intermediate layer was not provided. Table 8 shows the constitution, characteristics and manufacturing conditions of these samples, and the coercive force Hc and B of each obtained magnetic recording medium.
The relationship with s · t is shown in FIG. 11.

【0060】[0060]

【表8】 [Table 8]

【0061】表8及び図11から、中間層の厚みが増加
すると保磁力が低下する傾向にあることが読み取られ、
中間層の厚みとしては1000Å以下が適当であると思
われる。
It can be seen from Table 8 and FIG. 11 that the coercive force tends to decrease as the thickness of the intermediate layer increases.
It seems that 1000 liters or less is suitable for the thickness of the intermediate layer.

【0062】以上記述した通り、本発明の磁気記録媒体
によれば、従来の磁気記録媒体に比べ著しく高い保磁力
と優れた電磁変換特性を示し、高密度記録に極めて適し
た磁気記録媒体が提供される。
As described above, according to the magnetic recording medium of the present invention, a magnetic recording medium exhibiting a remarkably high coercive force and excellent electromagnetic conversion characteristics as compared with the conventional magnetic recording medium is provided, which is extremely suitable for high density recording. To be done.

【0063】[0063]

【発明の効果】本発明に従って、hcp構造を有するC
o系非磁性ないし弱磁性中間層を設けることにより、中
間層による磁気的影響を完全に排除ないし著しく小さい
ものとした上で、記録層となるCo系合金磁性層の初期
成長層の特性を効果的に改良することができ、これによ
り、磁気記録媒体の保磁力及び電磁変換特性は大幅に改
善される。
According to the present invention, C having an hcp structure
By providing an o-based non-magnetic or weakly magnetic intermediate layer, the magnetic effect of the intermediate layer is completely eliminated or significantly reduced, and the characteristics of the initial growth layer of the Co-based alloy magnetic layer to be the recording layer are improved. The coercive force and electromagnetic conversion characteristics of the magnetic recording medium are significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜5及び比較例1〜4で得られた、飽
和磁束密度と膜厚の積Bs・tと、保磁力Hcとの関係
を示すグラフである。
FIG. 1 is a graph showing a relationship between a product Bs · t of a saturation magnetic flux density and a film thickness and a coercive force Hc obtained in Examples 1 to 5 and Comparative Examples 1 to 4.

【図2】実施例6〜19及び比較例5〜7で得られた、
飽和磁束密度と膜厚の積Bs・tと保磁力Hcとの関係
を示すグラフである。
FIG. 2 is obtained in Examples 6 to 19 and Comparative Examples 5 to 7,
6 is a graph showing the relationship between the product Bs · t of the saturation magnetic flux density and the film thickness and the coercive force Hc.

【図3】実施例11〜14及び比較例8〜11で得られ
た、再生出力とS/N比との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between reproduction output and S / N ratio obtained in Examples 11 to 14 and Comparative Examples 8 to 11.

【図4】実施例11〜14及び比較例8〜11で得られ
た、再生出力と孤立再生波形の半値幅PW50との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the reproduction output and the half-value width PW50 of the isolated reproduction waveform obtained in Examples 11 to 14 and Comparative Examples 8 to 11.

【図5】実施例24〜28及び比較例9,10で得られ
た、CoCr中間層のCr含有率と保磁力Hcとの関係
を示すグラフである。
5 is a graph showing the relationship between the Cr content and the coercive force Hc of the CoCr intermediate layers obtained in Examples 24 to 28 and Comparative Examples 9 and 10. FIG.

【図6】実施例24〜28及び比較例9,10で得られ
た、CoCr中間層のCr含有率と、飽和磁束密度と膜
厚の積Bs・tとの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the Cr content of CoCr intermediate layers and the product Bs · t of the saturation magnetic flux density and the film thickness obtained in Examples 24 to 28 and Comparative Examples 9 and 10.

【図7】実施例29〜34及び比較例11〜15で得ら
れた、飽和磁束密度と膜厚の積Bs・tと保磁力Hcと
の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the product Bs · t of the saturation magnetic flux density and the film thickness and the coercive force Hc obtained in Examples 29 to 34 and Comparative Examples 11 to 15.

【図8】実施例35〜37及び比較例16〜18で得ら
れた、飽和磁束密度と膜厚の積Bs・tと保磁力Hcと
の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the product Bs · t of the saturation magnetic flux density and the film thickness and the coercive force Hc obtained in Examples 35 to 37 and Comparative Examples 16 to 18.

【図9】実施例38〜41及び比較例19〜22で得ら
れた、飽和磁束密度と膜厚の積Bs・tと保磁力Hcと
の関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the product Bs · t of the saturation magnetic flux density and the film thickness and the coercive force Hc obtained in Examples 38 to 41 and Comparative Examples 19 to 22.

【図10】実施例42〜45及び比較例23で得られ
た、CoCr中間層厚みと保磁力Hcとの関係を示すグ
ラフである。
10 is a graph showing the relationship between CoCr intermediate layer thickness and coercive force Hc obtained in Examples 42 to 45 and Comparative Example 23. FIG.

【図11】実施例46〜49及び比較例24〜26で得
られた、Cr下地層厚みと保磁力Hcとの関係を示すグ
ラフである。
FIG. 11 is a graph showing the relationship between the Cr underlayer thickness and the coercive force Hc obtained in Examples 46 to 49 and Comparative Examples 24 to 26.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板と、Co系合金磁性層(M
L)と、この磁性層と基板の間にCrを主成分とする非
磁性下地層を有する磁気記録媒体において、 前記磁性層と非磁性下地層との間に、hcp構造を有す
るCo系合金からなる中間層(IL)を有し、かつ磁性
層を構成するCo系合金の飽和磁束密度(BsML)と
磁性層膜厚(tML)との積(BsML・tML)に対
する、前記中間層を構成するCo系合金の飽和磁束密度
(BsIL)と中間層膜厚(tIL)の積(BsIL・
tIL)の比 R=(BsIL・tIL)/(BsML・tML)が
0.2以下であることを特徴とする磁気記録媒体。
1. A non-magnetic substrate and a Co-based alloy magnetic layer (M
L) and a non-magnetic underlayer containing Cr as a main component between the magnetic layer and the substrate, wherein a Co-based alloy having an hcp structure is provided between the magnetic layer and the non-magnetic underlayer. The intermediate layer (IL) is formed, and the intermediate layer is formed with respect to the product (BsML · tML) of the saturation magnetic flux density (BsML) of the Co-based alloy forming the magnetic layer and the magnetic layer film thickness (tML). The product of the saturation magnetic flux density (BsIL) of the Co-based alloy and the film thickness of the intermediate layer (tIL) (BsIL ·
A magnetic recording medium characterized in that the ratio R = (BsIL · tIL) / (BsML · tML) of tIL) is 0.2 or less.
【請求項2】 中間層がCo−M系合金薄膜層(ただ
し、MはCr、Ti、W、V、Mo及びSiよりなる群
から選ばれる1種又は2種以上の元素)であることを特
徴とする請求項1記載の磁気記録媒体。
2. The intermediate layer is a Co-M alloy thin film layer (where M is one or more elements selected from the group consisting of Cr, Ti, W, V, Mo and Si). The magnetic recording medium according to claim 1, which is characterized in that:
【請求項3】 MがCrで、かつCr含有量が27〜5
2原子%であることを特徴とする請求項2記載の磁気記
録媒体
3. M is Cr and Cr content is 27-5.
The magnetic recording medium according to claim 2, wherein the content is 2 atomic%.
【請求項4】 前記中間層の厚さが10〜1000Åで
ある請求項1記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the intermediate layer has a thickness of 10 to 1000 Å.
【請求項5】 前記下地層の厚さが100〜1000Å
である請求項1記載の磁気記録媒体。
5. The underlayer has a thickness of 100 to 1000Å
The magnetic recording medium according to claim 1, wherein
【請求項6】 非磁性下地層、中間層及び磁性層は、大
気曝露されることなく真空雰囲気中で順次積層成膜され
てなる請求項1記載の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the non-magnetic underlayer, the intermediate layer, and the magnetic layer are sequentially deposited in a vacuum atmosphere without being exposed to the air.
【請求項7】 Co系合金磁性層が、CoCr系、Co
NiCr系或いはCoPt系合金磁性層である請求項1
記載の磁気記録媒体。
7. The Co-based alloy magnetic layer is CoCr-based or Co-based.
A NiCr-based or CoPt-based alloy magnetic layer.
The magnetic recording medium described.
【請求項8】 前記非磁性基板と下地層の間に金属被覆
層を有する請求項1記載の磁気記録媒体。
8. The magnetic recording medium according to claim 1, further comprising a metal coating layer between the non-magnetic substrate and the underlayer.
【請求項9】 前記磁性層が多層構造を有する請求項1
記載の磁気記録媒体。
9. The magnetic layer has a multi-layer structure.
The magnetic recording medium described.
【請求項10】 前記磁性層上に炭素質保護層及び/又
は弗素系潤滑層を有する請求項1記載の磁気記録媒体。
10. The magnetic recording medium according to claim 1, further comprising a carbonaceous protective layer and / or a fluorine-based lubricating layer on the magnetic layer.
JP31649095A 1994-12-05 1995-12-05 Magnetic recording media Expired - Fee Related JP3437024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31649095A JP3437024B2 (en) 1994-12-05 1995-12-05 Magnetic recording media

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30073194 1994-12-05
JP7-71517 1995-03-29
JP6-300731 1995-03-29
JP7151795 1995-03-29
JP31649095A JP3437024B2 (en) 1994-12-05 1995-12-05 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH08329444A true JPH08329444A (en) 1996-12-13
JP3437024B2 JP3437024B2 (en) 2003-08-18

Family

ID=27300668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31649095A Expired - Fee Related JP3437024B2 (en) 1994-12-05 1995-12-05 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3437024B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016945A1 (en) * 1999-09-01 2001-03-08 Mitsubishi Chemical Corporation Magnetic recording medium and magnetic recording device
US6500567B1 (en) 1997-12-04 2002-12-31 Komag, Inc. Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same
US6506508B1 (en) 1999-12-28 2003-01-14 Fujitsu Limited Magnetic recording medium, method of production and magnetic storage apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500567B1 (en) 1997-12-04 2002-12-31 Komag, Inc. Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same
WO2001016945A1 (en) * 1999-09-01 2001-03-08 Mitsubishi Chemical Corporation Magnetic recording medium and magnetic recording device
US6607848B1 (en) 1999-09-01 2003-08-19 Showa Denko K.K. Magnetic recording medium and magnetic recording device
US6506508B1 (en) 1999-12-28 2003-01-14 Fujitsu Limited Magnetic recording medium, method of production and magnetic storage apparatus

Also Published As

Publication number Publication date
JP3437024B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
US5736262A (en) Magnetic recording medium
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US20050037140A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
KR20060115593A (en) Manufacturing method of magnetic recording medium
US6808830B2 (en) Magnetic recording medium, production process and apparatus thereof, and magnetic recording and reproducing apparatus
US7833640B2 (en) Intermediate tri-layer structure for perpendicular recording media
JP2002334424A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording and reproducing device
US7105240B2 (en) Perpendicular media with improved corrosion performance
JP4716534B2 (en) Magnetic recording medium
JPH05274644A (en) Magnetic recording medium and its production
US6475611B1 (en) Si-containing seedlayer design for multilayer media
JP3437024B2 (en) Magnetic recording media
US6168861B1 (en) High coercivity, high signal-to-noise ratio dual magnetic layer media
US6972157B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP3625865B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US6090496A (en) Magnetic recording medium and non-magnetic alloy film
JPH10233014A (en) Magnetic recording medium
JPH0817032A (en) Magnetic recording medium and its production
JP3682132B2 (en) Method for manufacturing magnetic recording medium
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JP2002183927A (en) Perpendicular magnetic recording medium
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JPH02210614A (en) Magnetic recording medium
WO2006038630A1 (en) Magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees