JPH0832943B2 - Method for producing rare earth-B-Fe sintered magnet - Google Patents

Method for producing rare earth-B-Fe sintered magnet

Info

Publication number
JPH0832943B2
JPH0832943B2 JP62306367A JP30636787A JPH0832943B2 JP H0832943 B2 JPH0832943 B2 JP H0832943B2 JP 62306367 A JP62306367 A JP 62306367A JP 30636787 A JP30636787 A JP 30636787A JP H0832943 B2 JPH0832943 B2 JP H0832943B2
Authority
JP
Japan
Prior art keywords
temperature
sintered
powder
corrosion resistance
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62306367A
Other languages
Japanese (ja)
Other versions
JPH01147041A (en
Inventor
宗明 渡辺
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62306367A priority Critical patent/JPH0832943B2/en
Publication of JPH01147041A publication Critical patent/JPH01147041A/en
Publication of JPH0832943B2 publication Critical patent/JPH0832943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐食性にすぐれ、同時に磁気特性の劣化
のない、Yを含む希土類元素のうち少なくとも1種(以
下、Rで示す)、BおよびFeを必須成分とする焼結磁石
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides at least one of the rare earth elements including Y (hereinafter, referred to as R), B, and B, which are excellent in corrosion resistance and do not deteriorate magnetic properties at the same time. The present invention relates to a method for manufacturing a sintered magnet containing Fe as an essential component.

〔従来の技術〕[Conventional technology]

近年、従来のSm−Co系磁石に比較し、より高い磁気特
性を有し、かつ資源的にも高価なSmやCoを必ずしも含ま
ないNd−B−Fe系永久磁石が発見された。このNd−B−
Fe系永久磁石の製造方法は、まず原料粉末を溶解、鋳造
し、得られた合金インゴットを粉砕し、必要に応じて磁
界を印加しながらプレス成形し、さらに焼結するもので
ある。
In recent years, Nd-B-Fe-based permanent magnets have been discovered that have higher magnetic properties than conventional Sm-Co-based magnets and that do not necessarily include Sm and Co, which are expensive in terms of resources. This Nd-B-
In the method for producing an Fe-based permanent magnet, first, a raw material powder is melted and cast, the obtained alloy ingot is crushed, press-molded while applying a magnetic field if necessary, and further sintered.

しかし、このNd−B−Fe系永久磁石は、その優れた磁
気特性の一方で、非常に腐食され易く、それに伴う磁気
特性の劣化が大きいという欠点を合わせ持っている。
However, this Nd-B-Fe-based permanent magnet has its excellent magnetic properties, but on the other hand, it has a drawback that it is very easily corroded and the magnetic properties are greatly deteriorated.

これらの対策として、特開昭61−185910号公報では、
R−B−Fe系永久磁石の表面にZnの薄膜を拡散形成する
方法、特開昭61−270308号公報ではR−B−Fe系永久磁
石の表面層を除去したのち、Alの薄膜層を被着させる方
法が示されている。
As a countermeasure for these, in JP-A-61-185910,
A method of forming a Zn thin film by diffusion on the surface of an RB-Fe based permanent magnet. In JP-A-61-270308, after removing the surface layer of the RB-Fe based permanent magnet, an Al thin film layer is formed. The method of deposition is shown.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、上記従来の技術で述べられているNd−B−
Fe系永久磁石の防食方法は、いずれも上記永久磁石の表
面にZnやAl等の耐食性のある保護膜を被着させるもの
で、磁石の製造工程とは別の工程が必要となり、工程が
複雑化する上にコスト高となる。また上記防食方法は、
上記永久磁石の外部を腐食等に対して保護するにすぎ
ず、上記保護膜がはく離したりまたは亀裂が生じたりし
た場合には、それらの個所から内部に腐食が浸透し、内
部的な腐食は防止できず、それに伴って磁気特性も劣化
するという問題点があった。
However, the Nd-B-
The corrosion protection method for Fe-based permanent magnets involves applying a corrosion-resistant protective film such as Zn or Al to the surface of the permanent magnet, and requires a separate process from the magnet manufacturing process, which makes the process complicated. In addition, the cost increases. In addition, the above anticorrosion method,
It only protects the outside of the permanent magnet against corrosion, etc., and if the protective film peels or cracks, the corrosion penetrates from those places to the inside and the internal corrosion is There has been a problem that the magnetic characteristics cannot be prevented and the magnetic characteristics are deteriorated accordingly.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、耐食性にすぐれたR−B−Fe
系永久磁石を開発すべく研究を行なった結果、R−B−
Fe系合金粉末に、Ni,Co,Mn,Cr,Ti,VおよびNbの酸化物の
うち少なくとも1種を、合計で0.0005〜2.5重量%添加
した粉末を、成形、焼結し、必要に応じて熱処理を行な
うことにより耐食性が向上し、磁気特性劣化のないR−
B−Fe系焼結磁石を製造することができるという知見を
得たのである。
Then, the present inventors have proposed RB-Fe having excellent corrosion resistance.
As a result of conducting research to develop a system permanent magnet, RB-
Fe-based alloy powder, to which at least one of Ni, Co, Mn, Cr, Ti, V and Nb oxides was added in a total amount of 0.0005 to 2.5 wt% was molded and sintered, and if necessary, Corrosion resistance is improved by performing heat treatment with R-
They have found that a B-Fe based sintered magnet can be manufactured.

この発明は、かかる知見にもとづいてなされたもので
あって、この発明のR−B−Fe系焼結磁石の製造方法を
さらに詳述すると以下の通りである。
The present invention has been made based on such knowledge, and the method for producing an RB-Fe-based sintered magnet of the present invention will be described below in further detail.

(1) 一定の組成を有するR−B−Fe系合金粉末が用
意される。このR−B−Fe系合金粉末は、例えば、溶
解、鋳造し、インゴットを粉砕する方法、溶解してアト
マイズする方法、または希土類酸化物を出発原料とする
還元拡散法等で作成させる。
(1) RB-Fe alloy powder having a constant composition is prepared. The RB-Fe alloy powder is prepared by, for example, a method of melting, casting, crushing an ingot, a method of melting and atomizing, or a reduction diffusion method using a rare earth oxide as a starting material.

上記R−B−Fe系合金粉末に、Ni,Co,Mn,Cr,Ti,Vおよ
びNbの酸化物のうち少なくとも1種が合計で0.0005〜2.
5重量%の配合される。この範囲に定めた理由は、0.005
重量%未満では耐食性の効果が十分でなく、一方、2.5
重量%を越えると磁気特性が不十分になることによるも
のである。
At least one of oxides of Ni, Co, Mn, Cr, Ti, V and Nb is added to the RB-Fe alloy powder in a total amount of 0.0005 to 2.
5% by weight is blended. The reason for setting this range is 0.005
If it is less than 5% by weight, the effect of corrosion resistance is not sufficient.
This is because the magnetic properties become insufficient when the content exceeds the weight percentage.

(2) 上記方法で得られた混合粉末を圧縮プレスなど
にて成形、圧密化を行なう。この時の圧力は0.5〜10t/c
m2の成形圧力が良好で、必要に応じて成形時に磁界(5K
Oe以上)を印加することにより磁気特性は向上する。一
連の成形、圧密化は湿式あるいは乾式でもよく、雰囲気
は非酸化性雰囲気がより望ましく、例えば、真空中、不
活性ガス中あるいは還元性ガス中にて行うとよい。成形
時において、必要であれば成形助剤(結合剤、潤滑剤
等)を加えてもよい。これらには、パラフィン、障脳、
ステアリン酸、ステアリン酸アミド、ステアリン酸塩等
が使用でき、その添加量は0.001〜2重量%が好まし
い。上記成形助剤の添加量が0.001重量%未満では成形
時に必要な潤滑性等が不十分で好ましくなく、一方、2
重量%を越えると焼結後、焼結体の磁気特性の劣化が著
しい。
(2) The mixed powder obtained by the above method is molded and compacted by a compression press or the like. The pressure at this time is 0.5-10t / c
molding pressure of m 2 is good, the magnetic field at the time of molding as required (5K
By applying Oe or more, the magnetic characteristics are improved. The series of molding and consolidation may be wet or dry, and the atmosphere is more preferably a non-oxidizing atmosphere. For example, it may be performed in a vacuum, in an inert gas, or in a reducing gas. At the time of molding, if necessary, a molding aid (a binder, a lubricant, etc.) may be added. These include paraffin, brain damage,
Stearic acid, stearic acid amide, stearic acid salt and the like can be used, and the addition amount is preferably 0.001 to 2% by weight. If the amount of the molding aid is less than 0.001% by weight, the lubricity required for molding is insufficient, which is not preferable.
If the content is more than 10% by weight, the magnetic properties of the sintered body deteriorate significantly after sintering.

(3) 得られた成形体を温度:900〜1200℃にて焼結す
る。温度:900℃未満では残留磁束密度(以下Brと記す)
が十分でなく、温度:1200℃を越えるとBrと角型性が低
下するため好ましくない。焼結は酸化防止のため非酸化
性雰囲気中にて行なうことが望ましい。すなわち真空、
不活性ガスまたは還元性ガスの雰囲気がよい。焼結時の
昇温速度は、1〜2000℃/minの間であればよい。また成
形助剤を用いた場合は、昇温速度を1〜1.5℃/min程度
に小さくし、昇温中に上記成形助剤を取り除いた方が磁
気特性的に望ましい。焼結時の保持時間は、0.5〜20時
間の間でよく、0.5時間より短い時間では焼結密度にバ
ラツキを生じ、20時間より長い時間では酸化等の問題が
生ずるためである。焼結後の冷却速度は、1〜2000℃/m
inの間でよいが、あまり早すぎると焼結体中に亀裂が生
じたりする可能性が高く、逆にゆっくりだと工業生産的
な効率の面で問題があるので上記範囲に定めた。
(3) The obtained compact is sintered at a temperature of 900 to 1200 ° C. Temperature: Residual magnetic flux density below 900 ° C (hereinafter referred to as Br)
Is not sufficient, and when the temperature exceeds 1200 ° C., Br and the squareness decrease, which is not preferable. Sintering is preferably performed in a non-oxidizing atmosphere to prevent oxidation. Ie a vacuum,
An atmosphere of an inert gas or a reducing gas is preferable. The temperature rising rate during sintering may be between 1 and 2000 ° C./min. When a molding aid is used, it is desirable in terms of magnetic properties that the temperature rising rate is reduced to about 1 to 1.5 ° C./min and the molding aid is removed during the temperature rise. This is because the holding time during sintering may be 0.5 to 20 hours, and if the time is shorter than 0.5 hours, the sintering density will vary, and if it is longer than 20 hours, problems such as oxidation will occur. Cooling rate after sintering is 1-2000 ℃ / m
However, if it is too early, cracks may occur in the sintered body, and if it is too slow, there is a problem in terms of industrial productivity, so the above range was set.

(4) 以上の焼結後、さらに磁気特性を向上せしめる
ために、温度:400〜700℃で熱処理を行なう。上記熱処
理は焼結と同じく非酸化性雰囲気が望ましい。この熱処
理の昇温速度は10〜2000℃/minで行ない、上記温度:400
〜700℃で0.5〜10時間保持し、冷却速度:10〜2000℃/mi
nで行なうとよい。上記熱処理は基本的には昇温、保
持、冷却というパターンでよいが、必要に応じてこれを
くり返えすことや段階的に温度を変化させるパターンで
も同様の効果を得ることができる。
(4) After the above sintering, heat treatment is performed at a temperature of 400 to 700 ° C. to further improve the magnetic characteristics. The heat treatment is desirably in a non-oxidizing atmosphere as in sintering. The temperature rise rate of this heat treatment is 10 to 2000 ° C./min, and the above temperature: 400
Hold at ~ 700 ° C for 0.5-10 hours, cooling rate: 10-2000 ° C / mi
You can do it with n. The heat treatment may be basically performed in a pattern of raising, holding, and cooling, but the same effect can be obtained by repeating the pattern as needed or by changing the temperature stepwise.

次に、この発明に適用するR−B−Fe系焼結磁石の成
分組成およびその限定理由について説明する。
Next, the component composition of the RB-Fe based sintered magnet applied to the present invention and the reason for the limitation will be described.

この発明で製造する磁石は、R,BおよびFeを必須元素
とする。Rとしては、Nd,Prまたはそれらの混合物が好
ましく、その他にTb,Dy,La,Ce,Ho,Er,Eu,Sm,Gd,Pm,Tm,Y
b,LnおよびYなどの希土類元素を含んでもよく、総量で
8〜30元素%とされる。8原子%未満では十分な保持力
(以下iHcと記す)が得られず、30原子%を越えるとBr
が低下するためである。
The magnet manufactured by the present invention contains R, B and Fe as essential elements. As R, Nd, Pr or a mixture thereof is preferable, and in addition, Tb, Dy, La, Ce, Ho, Er, Eu, Sm, Gd, Pm, Tm, Y
Rare earth elements such as b, Ln and Y may be contained, and the total amount is 8 to 30 element%. If it is less than 8 atom%, sufficient holding power (hereinafter referred to as iHc) cannot be obtained, and if it exceeds 30 atom%, Br
This is because the

Bは2〜28原子%とされる。2原子%未満では十分な
iHcは得られず、28原子%を越えるとBrが低下し、優れ
た磁気特性が得られないためである。
B is 2 to 28 atomic%. Less than 2 atomic% is sufficient
This is because iHc cannot be obtained, and if it exceeds 28 atomic%, Br decreases, and excellent magnetic properties cannot be obtained.

上記R,B,およびFeを必須元素とし、R−B−Fe系焼結
磁石は作成されるが、Feの一部を他の元素で置換するこ
とや不純物を含んでもこの発明の効果は失なわれない。
R-B-Fe-based sintered magnets are produced using R, B, and Fe as essential elements, but the effect of the present invention is lost even if part of Fe is replaced with other elements or impurities are included. Not done.

すなわち、Feの代りに50原子%以下のCoで代替しても
よい。Coが50原子%を越えると高いiHcが得られないた
めである。上記以外の元素として下記の所定の原子%以
下の元素の1種以上(但し、2種以上含む場合の元素の
総量はこれらの元素のうち最大値を有するものの値以
下)をFe元素と置換してもこの発明の効果は失なわれな
い。これら元素を下記する(単位は原子%) Ti:4.7,Ni:8.0,Bi:5.0,W:8.8, Zr:5.5,Ta:10.5,Mo:8.7,Ca:8.0, Hf:5.5,Ge:6.0,Nb:12.5,Mg:8.0, Cr:8.5,Sn:3.5,Al:9.5,Sr:7.5, Mn:8.0,Sb:2.5,V:10.5,Be:3.5, Ba:2.5,Cu:3.5,S:2.5,P:3.3, C:4.0,O:1.0 この発明の酸化物添加による耐食性の向上の原因とし
ては、焼結中において発生したRリッチの液相により、
これらの酸化物の一部が還元され、これらが結晶粒界に
金属状態で析出することにより、本来、これらの金属自
身が耐食性であることから、磁石の耐食性向上に寄与し
ていることが考えられる。
That is, 50 atomic% or less of Co may be substituted for Fe. This is because high iHc cannot be obtained if Co exceeds 50 atomic%. As an element other than the above, one or more of the following specified atomic% or less elements (however, when two or more elements are contained, the total amount of elements is less than or equal to the maximum value of these elements) is replaced with Fe element. However, the effect of the present invention is not lost. These elements are listed below (unit: atomic%) Ti: 4.7, Ni: 8.0, Bi: 5.0, W: 8.8, Zr: 5.5, Ta: 10.5, Mo: 8.7, Ca: 8.0, Hf: 5.5, Ge: 6.0 , Nb: 12.5, Mg: 8.0, Cr: 8.5, Sn: 3.5, Al: 9.5, Sr: 7.5, Mn: 8.0, Sb: 2.5, V: 10.5, Be: 3.5, Ba: 2.5, Cu: 3.5, S : 2.5, P: 3.3, C: 4.0, O: 1.0 The cause of the improvement of the corrosion resistance by the oxide addition of the present invention is that the R-rich liquid phase generated during sintering
Some of these oxides are reduced, and these are precipitated in the grain boundaries in the metallic state, and these metals themselves are inherently corrosion resistant, so it is considered that they contribute to the improvement of the corrosion resistance of the magnet. To be

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明
するが、この発明は、これら実施例に限定されるもので
はない。なお、この実施例で焼結体表面の錆の状況の判
定は、耐食試験した焼結体を切断し、目視により、切断
面周囲に錆が認められないものを「錆なし」、切断面周
囲に錆が認められるものを「錆あり」、さらに切断面周
囲に錆が認められ且つ錆が内部に浸透しているものを
「著しい錆あり」とした。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In this example, the determination of the state of rust on the surface of the sintered body was performed by cutting the sintered body subjected to the corrosion resistance test, and visually confirming that no rust was observed around the cut surface. When rust was observed, the sample was rated "rust", and when rust was observed around the cut surface and rust had penetrated into the interior, "significant rust" was determined.

(1) 実施例1〜5および比較例1〜3 15%Nd−8%B−残Fe(但し%は原子%)となるよう
に溶解し、合金インゴットを得た。上記合金インゴット
粉砕し、平均粒径:3.5μmの微粉末を得、これに平均粒
径:1.2μmのCr2O3粉末を第1表の如く配合し、混合し
て原料粉末とした。得られた原料粉末を大気中で、成形
圧:2t/cm2で磁場中(14KOe)で成形して、たて:12mm×
横:10mm×高さ:10mmの成形体を作成し、この成形体を真
空中(10-5Torr)で、昇温速度:5℃/minで昇温し、温
度:1100℃、1時間保持の条件で焼結後、50℃/minの速
度で冷却した。
(1) Examples 1 to 5 and Comparative Examples 1 to 3 15% Nd-8% B-remaining Fe (however,% is atomic%) were melted to obtain alloy ingots. The alloy ingot was crushed to obtain fine powder having an average particle diameter of 3.5 μm, and Cr 2 O 3 powder having an average particle diameter of 1.2 μm was blended as shown in Table 1 and mixed to obtain a raw material powder. The raw material powder obtained was molded in a magnetic field (14 KOe) at a molding pressure of 2 t / cm 2 in the air, and the vertical length was 12 mm ×
Width: 10 mm x Height: 10 mm A molded body is created, and this molded body is heated in vacuum (10 -5 Torr) at a heating rate of 5 ° C / min and held at a temperature of 1100 ° C for 1 hour. After sintering under the conditions described above, it was cooled at a rate of 50 ° C / min.

つぎに、この焼結体をArガス中にて、昇温速度:10℃/
minで昇温し、温度:620℃に2時間保持したのち、降温
速度:100℃/minの速度で冷却し熱処理を行なった。
Next, this sintered body was heated in Ar gas at a heating rate of 10 ° C /
After raising the temperature at min and maintaining the temperature at 620 ° C. for 2 hours, the temperature was lowered at a temperature of 100 ° C./min for heat treatment.

これら熱処理した焼結体の磁気特性を測定した後、耐
食試験を行なった。耐食試験は、大気中、温度:60℃、
湿度:90%中にて、650時間放置して行った。上記耐食試
験を行った後、再び磁気特性を測定し、錆の発生状況を
観察し、これらの結果を第1表に示した。
After measuring the magnetic properties of these heat-treated sintered bodies, a corrosion resistance test was conducted. Corrosion resistance test, in air, temperature: 60 ℃,
Humidity: 90%, left for 650 hours. After carrying out the above corrosion resistance test, the magnetic characteristics were measured again and the rust generation state was observed. The results are shown in Table 1.

(2) 実施例6〜10および比較例4〜6 13.5%Nd−1.5%Dy−8%B−残Fe(但し%は原子
%)となるように溶解し、合金インゴットを得た。この
合金インゴットをジョークラッシャー、ディスクミルお
よびボールミルを用いて粉砕し、平均粒径:3.2μmを微
粉末を得た。この微粉末に平均粒径:1.5μmのTiO2粉末
を第2表の如く配合し、混合して原料粉末とした。得ら
れた原料粉末を成形圧:1.5t/cm2で磁場中(14KOe)で成
形し、たて:12mm×横:100mm×高さ:10mmの成形体を作成
し、この成形体を減圧Ar中(250Torr)で、昇温速度:10
℃/minで昇温し、温度:1080℃、2時間焼結した後、100
℃/minの冷却速度で冷却した。ついで、この焼結体をAr
ガス中にて昇温速度:20℃/minで昇温し、温度:650℃、
1.5時間保持したのち、100℃/minの速度で冷却し熱処理
を行った。
(2) Examples 6 to 10 and Comparative Examples 4 to 6 13.5% Nd-1.5% Dy-8% B-remaining Fe (however,% is atomic%) were melted to obtain alloy ingots. This alloy ingot was crushed using a jaw crusher, a disc mill and a ball mill to obtain a fine powder with an average particle size of 3.2 μm. TiO 2 powder having an average particle size of 1.5 μm was blended with this fine powder as shown in Table 2 and mixed to obtain a raw material powder. The raw material powder thus obtained is molded in a magnetic field (14 KOe) at a molding pressure of 1.5 t / cm 2 to form a molded body of 12 mm in length × 100 mm in width × 10 mm in height. Medium (250 Torr), heating rate: 10
Temperature rises at ℃ / min, temperature: 1080 ℃, after sintering for 2 hours, 100
Cooled at a cooling rate of ° C / min. Then, this sintered body is Ar
Temperature rising rate in gas: 20 ℃ / min, temperature: 650 ℃,
After holding for 1.5 hours, it was cooled at a rate of 100 ° C./min to perform heat treatment.

これら熱処理したTiO2粉末含有の焼結体の磁気特性を
測定したのち、温度:60℃、湿度:90%の大気中に650時
間放置し、耐食試験を行ない、上記耐食試験後に再び磁
気測定し、錆の発生状況を目視により観察し、この結果
も第2表に示した。
After measuring the magnetic properties of these heat-treated TiO 2 powder-containing sintered bodies, they were left in the atmosphere at a temperature of 60 ° C and a humidity of 90% for 650 hours to carry out a corrosion resistance test. The appearance of rust was visually observed, and the results are also shown in Table 2.

(3) 実施例11〜16おび比較例7〜8 上記実施例6〜10および比較例4〜6で用いた13.5Nd
−1.5%Dy−8%B−残Fe(但し%は原子%)合金粉末
に、平均粒径:1.0μmのMnO2粉末を第3表に示される割
合に配合し、混合して原料粉末とし、この原料粉末を成
形圧:5t/cm2で磁場(12KOe)中で成形し、たて:12mm×
横:10mm×高さ:10mmの成形体を作製した。これらの成形
体を減圧Ar中(250Torr)で15℃/minで昇温したのち温
度:1200℃、2時間保持の条件で焼結し、焼結終了後150
℃/minで冷却した。
(3) Examples 11 to 16 and Comparative Examples 7 to 8 13.5 Nd used in the above Examples 6 to 10 and Comparative Examples 4 to 6
-1.5% Dy-8% B-remaining Fe (however,% is atomic%) alloy powder was mixed with MnO 2 powder having an average particle diameter of 1.0 μm in a ratio shown in Table 3 and mixed to obtain a raw material powder. , This raw material powder was molded in a magnetic field (12KOe) at a molding pressure of 5t / cm 2 , and vertical: 12mm ×
A compact having a width of 10 mm and a height of 10 mm was produced. These compacts were heated in decompressed Ar (250 Torr) at a rate of 15 ° C / min, and then sintered under the conditions of temperature: 1200 ° C and held for 2 hours.
Cooled at ° C / min.

つぎに、この焼結体を30℃/minで加熱昇温し、650
℃、1.5時間保持したのち、200℃/minで冷却した。この
熱処理した焼結体の磁気特性を測定したのち、温度:60
℃、湿度:90%の大気中にて650時間放置の耐食試験を行
い、再度磁気特性を測定し、錆の発生状況を目視により
観察し、それらの結果を第3表に示した。
Next, this sintered body is heated at 30 ° C./min and heated to 650
After maintaining at ℃ for 1.5 hours, it was cooled at 200 ℃ / min. After measuring the magnetic properties of the heat-treated sintered body, the temperature was set to 60.
A corrosion resistance test was conducted by leaving it for 650 hours in the atmosphere of 90 ° C. and humidity of 90%, the magnetic characteristics were measured again, and the rust generation state was visually observed. The results are shown in Table 3.

(4) 実施例17〜22および比較例9〜10 上記実施例6〜10および比較例4〜6で用いた13.5Nd
−1.5%Dy−8%B−残Fe(但し%は原子%)合金粉末
に、平均粒径:1.2μmのCo2O3粉末を第4表に示される
割合に配合し、混合して原料粉末とし、この原料粉末を
成形圧:10t/cm2で磁場中(20KOe)中で成形し、たて:20
mm×横:20mm×高さ:15mmの成形体を作製した。これらの
成形体を減圧Ar中(250Torr)で20℃/minで昇温速度で
加熱し、温度900℃、20時間保持の条件で焼結し、500℃
/minの冷却速度で冷却した。
(4) Examples 17-22 and Comparative Examples 9-10 13.5 Nd used in the above Examples 6-10 and Comparative Examples 4-6
-1.5% Dy-8% B-remaining Fe (however,% is atomic%) alloy powder was mixed with Co 2 O 3 powder having an average particle diameter of 1.2 μm in a ratio shown in Table 4 and mixed to obtain a raw material. This raw material powder was compacted in a magnetic field (20KOe) at a compaction pressure of 10t / cm 2 and a vertical length of 20
A molded body of mm × width: 20 mm × height: 15 mm was produced. These compacts were heated in Ar at a reduced pressure (250 Torr) at a heating rate of 20 ° C / min and sintered at a temperature of 900 ° C for 20 hours and then 500 ° C.
It cooled at the cooling rate of / min.

つぎに、この焼結体を1000℃/minの加熱速度で500℃
に加熱し、7時間保持したのち、500℃/minの速度で冷
却した。
Next, this sintered body is heated to 500 ° C at a heating rate of 1000 ° C / min.
It was heated to, held for 7 hours, and then cooled at a rate of 500 ° C./min.

この熱処理焼結体の磁気特性を測定したのち、温度:6
0℃、湿度:90%の大気中にて650時間放置して耐食試験
を行い、再度磁気特性を測定し、さらに錆の発生状況を
目視により観察し、それらの結果を第4表に示した。
After measuring the magnetic properties of this heat-treated sintered body, temperature: 6
The corrosion resistance test was carried out by leaving it in the atmosphere of 0 ° C and humidity of 90% for 650 hours, the magnetic characteristics were measured again, and the rust generation was visually observed. The results are shown in Table 4. .

(5) 実施例23〜29および比較例11〜12 上記実施例6〜10および比較例4〜6で用いた13.5Nd
−1.5%Dy−8%B−残Fe(但し%は原子%)合金粉末
に、平均粒径:1.0μmのNiO粉末を第5表に示される割
合に配合し、混合して原料粉末とし、この原料粉末を成
形圧:15t/cm2で磁場中(14KOe)中で成形し、たて:12mm
×横:10mm×高さ:10mmの成形体を作製した。これら成形
体を真空中(10-5Torr)で5℃/minで昇温したのち、温
度:1080℃1時間保持の条件で焼結し、50℃/minで冷却
した。
(5) Examples 23 to 29 and Comparative Examples 11 to 12 13.5 Nd used in the above Examples 6 to 10 and Comparative Examples 4 to 6
-1.5% Dy-8% B-remaining Fe (however,% is atomic%) alloy powder was mixed with NiO powder having an average particle diameter of 1.0 μm in a ratio shown in Table 5, and mixed to obtain a raw material powder, This raw material powder was compacted in a magnetic field (14KOe) at a compaction pressure of 15t / cm 2 , and vertical length: 12mm
A molded product having a width of 10 mm and a height of 10 mm was prepared. These compacts were heated in vacuum (10 −5 Torr) at 5 ° C./min, sintered at a temperature of 1080 ° C. for 1 hour, and cooled at 50 ° C./min.

つぎに、この焼結体を、加熱速度:20℃/minで昇温
し、温度:800℃、1時間および温度:620℃、1.5時間保
持したのち、100℃/minで冷却し、熱処理した。
Next, this sintered body was heated at a heating rate of 20 ° C./min, held at a temperature of 800 ° C. for 1 hour and at a temperature of 620 ° C. for 1.5 hours, then cooled at 100 ° C./min and heat treated. .

この熱処理した焼結体の磁気特性を測定したのち、温
度:60℃、湿度:90%の大気中にて650時間放置すること
により耐食試験を行ない、上記耐食試験後の磁気特性を
測定するとともに錆の発生状況を観察し、その結果を第
5表に示した。
After measuring the magnetic properties of this heat-treated sintered body, leave it in the atmosphere of temperature: 60 ° C, humidity: 90% for 650 hours to perform a corrosion resistance test and measure the magnetic properties after the above corrosion resistance test. The state of rust generation was observed, and the results are shown in Table 5.

(6) 実施例30〜35および比較例13〜14 上記実施例1〜5および比較例1〜3で製造した15%
Nd−8%B−残Fe(但し%は原子%)合金粉末に、平均
粒径:1.4μmのV2O5粉末を第6表に示される割合となる
ように配合し、混合して原料粉末とした。この原料粉末
を成形圧:7t/cm2の磁場中(20KOe)にて成形し、たて:2
0mm×横:20mm×高さ:15mmの成形体を作製した。これら
成形体を真空中(10-5Torr)で100℃/minの昇温速度に
て加熱し、温度:1000℃、10時間保持の条件で焼結し、3
00℃/minの冷却速度で冷却した。
(6) Examples 30 to 35 and Comparative Examples 13 to 14 15% produced in the above Examples 1 to 5 and Comparative Examples 1 to 3
Nd-8% B-remaining Fe (however,% is atomic%) alloy powder was mixed with V 2 O 5 powder having an average particle diameter of 1.4 μm in a ratio shown in Table 6, and mixed to prepare a raw material. It was made into powder. This raw material powder was compacted in a magnetic field (20KOe) at a compacting pressure of 7t / cm 2 , and the vertical length was 2
A molded body of 0 mm x width: 20 mm x height: 15 mm was produced. These compacts were heated in vacuum (10 -5 Torr) at a heating rate of 100 ° C / min, and sintered at a temperature of 1000 ° C for 10 hours, then 3
It was cooled at a cooling rate of 00 ° C / min.

つぎに、この焼結体を加熱速度:100℃/minで加熱し、
温度:550℃、2時間保持したのち、300℃/minの冷却速
度で冷却し熱処理した。
Next, this sintered body is heated at a heating rate of 100 ° C./min,
Temperature: 550 ° C. After holding for 2 hours, it was cooled at a cooling rate of 300 ° C./min and heat treated.

この熱処理した焼結体の磁気特性を測定し、この焼結
体を温度:60℃、湿度:90%の大気の大気中に650時間放
置して耐食試験を行なった後、再度磁気特性を測定する
とともに錆の発生状況を目視により観察し、それらの結
果を第6表に示した。
The magnetic properties of this heat-treated sintered body were measured, and the sintered body was left in the atmosphere of temperature: 60 ° C, humidity: 90% for 650 hours to perform a corrosion resistance test, and then the magnetic properties were measured again. In addition, the generation of rust was visually observed and the results are shown in Table 6.

(7) 実施例36〜41および比較例15〜16 上記実施例1〜5および比較例1〜3で使用した15%
Nd−8%B−残Fe(但し%は原子%)合金粉末に、平均
粒径:1.2μmのNb2O3粉末を第7表に示される割合とな
るようにそれぞれ配合し、混合して原料粉末とした。こ
の原料粉末を、成形圧:1t/cm2で磁場中(5KOe)にて成
形し、たて:12mm×横:10mm×高さ:10mmの成形体を作製
した。これら成形体を真空中(10-5Torr)にて、昇温速
度:3℃/minにて加熱し、温度:1200℃、0.5時間保持して
焼結し、5℃/minの冷却速度で冷却した。
(7) Examples 36 to 41 and Comparative Examples 15 to 16 15% used in the above Examples 1 to 5 and Comparative Examples 1 to 3
Nd-8% B-remaining Fe (however,% is atomic%) alloy powder was mixed with Nb 2 O 3 powder having an average particle diameter of 1.2 μm in the proportions shown in Table 7, and mixed. The raw material powder was used. This raw material powder was molded in a magnetic field (5 KOe) at a molding pressure of 1 t / cm 2 to prepare a compact having a length of 12 mm, a width of 10 mm, and a height of 10 mm. These compacts were heated in vacuum (10 -5 Torr) at a temperature rising rate of 3 ° C / min, and then sintered at a temperature of 1200 ° C for 0.5 hour and then cooled at a cooling rate of 5 ° C / min. Cooled.

この焼結体を、加熱速度:20℃/minで加熱し、温度:45
0℃、2時間保持したのち、900℃/minの冷却速度で冷却
し熱処理した。
This sintered body was heated at a heating rate of 20 ° C / min and a temperature of 45 ° C.
After holding at 0 ° C. for 2 hours, it was cooled at a cooling rate of 900 ° C./min and heat-treated.

上記熱処理したのち焼結体の磁気特性を測定し、この
焼結体を温度60℃、湿度:90%の大気中に650時間放置し
て耐食試験を行い、上記耐食試験後の磁気特性を測定
し、表面の錆の発生を状況を観察し、その結果を第7表
に示した。
After the above heat treatment, the magnetic properties of the sintered body are measured, and the sintered body is left in an atmosphere at a temperature of 60 ° C. and a humidity of 90% for 650 hours to perform a corrosion resistance test, and the magnetic characteristics after the corrosion resistance test are measured. Then, the occurrence of rust on the surface was observed and the results are shown in Table 7.

(8) 実施例42〜54および比較例17〜21 上記実施例6〜10および比較例4〜6で使用した13.5
Nd−1.5%Dy−8%B−残Fe(但し%は原子%)合金粉
末に、Cr2O3(平均粒径:1.2μm)、NiO(平均粒径:1.0
μm)、Co2O3(平均粒径:1.2μm)MnO2(平均粒径:1.
0μm)、TiO2(平均粒径:1.5μm)、V2O3(平均粒径:
1.4μm)およびNb2O3(平均粒径:1.2μm)の酸化物粉
末のうち2種以上を第8表に示される割合で配合し混合
して原料粉末とした。
(8) Examples 42 to 54 and Comparative Examples 17 to 21 13.5 used in the above Examples 6 to 10 and Comparative Examples 4 to 6
Nd-1.5% Dy-8% B-remaining Fe (however,% is atomic%) alloy powder, Cr 2 O 3 (average particle size: 1.2 μm), NiO (average particle size: 1.0
μm), Co 2 O 3 (average particle size: 1.2 μm) MnO 2 (average particle size: 1.
0 μm), TiO 2 (average particle size: 1.5 μm), V 2 O 3 (average particle size:
Two or more kinds of oxide powders of 1.4 μm) and Nb 2 O 3 (average particle size: 1.2 μm) were blended and mixed at a ratio shown in Table 8 to obtain a raw material powder.

上記原料粉末を成形圧:1.5t/cm2で磁場中(14KOe)に
て成形し、たて:12mm×横:10mm×高さ:10mmの成形体を
作成し、この成形体を減圧Ar中(250Torr)にて昇温速
度:10℃/minで加熱し、温度:1080℃、2時間保持の条件
で焼結し、冷却速度:100℃/minで冷却した。
The above raw material powder is molded in a magnetic field (14 KOe) at a molding pressure of 1.5 t / cm 2 to create a compact of vertical: 12 mm × width: 10 mm × height: 10 mm, and the compact is depressurized in Ar. The sample was heated at (250 Torr) at a heating rate of 10 ° C / min, sintered at a temperature of 1080 ° C for 2 hours, and cooled at a cooling rate of 100 ° C / min.

ついで、この焼結体をArガス中にて昇温速度:20℃/mi
nで昇温し、温度:650℃、1.5時間保持したのち、100℃/
minの冷却速度で冷却し熱処理を行った。これら熱処理
した上記酸化物含有の焼結体の磁気特性を測定したの
ち、温度:60℃、湿度:90%の大気中にて650時間放置
し、耐食試験を行ない、上記耐食試験を行なった後に、
再び磁気特性を測定し、表面の錆の発生状況を目視によ
り観察し、それらの結果を第8表に示した。
Then, this sintered body was heated in Ar gas at a heating rate of 20 ° C / mi.
Temperature is raised at n, temperature: 650 ℃, hold for 1.5 hours, then 100 ℃ /
Heat treatment was performed by cooling at a cooling rate of min. After measuring the magnetic properties of these heat-treated oxide-containing sintered bodies, the samples were left in the air at a temperature of 60 ° C. and a humidity of 90% for 650 hours, subjected to a corrosion resistance test, and subjected to the corrosion resistance test. ,
The magnetic characteristics were measured again, and the generation state of rust on the surface was visually observed. The results are shown in Table 8.

〔発明の効果〕 上記第1〜8表の結果から、R−B−Fe系合金粉末を
成形し、焼結して製造した焼結磁石は、耐食試験後に表
面に錆が発生し、その錆は内部に浸透して著しい腐食を
生じ、耐食試験後の磁気特性の劣化も著しいが、上記R
−B−Fe系合金粉末に、Ni,Co,Mn,Cr,Ti,V,Nbの酸化物
のうち少なくとも1種を合計で0.0005〜2.5重量%加え
た粉末を原料粉末として焼結磁石を製造すると、耐食性
のすぐれた焼結磁石を製造することができ、しかも耐食
試験後の磁気特性の劣化を抑えることができることがわ
かる。
[Effect of the Invention] From the results of Tables 1 to 8 above, the sintered magnet produced by molding and sintering the RB-Fe alloy powder had rust on the surface after the corrosion resistance test, and the rust was generated. Penetrates into the interior to cause remarkable corrosion, and the deterioration of the magnetic properties after the corrosion resistance test is also remarkable.
-Sintered magnets are manufactured by using powder obtained by adding 0.0005 to 2.5% by weight of at least one of Ni, Co, Mn, Cr, Ti, V, and Nb oxides to B-Fe alloy powder in total. Then, it can be seen that a sintered magnet having excellent corrosion resistance can be manufactured, and further deterioration of the magnetic properties after the corrosion resistance test can be suppressed.

上記酸化物が合計で2.5重量%を越えて添加されたR
−B−Fe系合金粉末により製造された焼結磁石は、表面
に錆の発生はみられないが、製造された焼結磁石自体の
磁気特性が低くなり、さらに上記酸化物の添加量が0.00
05重量%未満の原料粉末を用いると焼結磁石を表面に錆
が生じ、耐食試験後の磁気特性の劣化も著しくなる。
R in which the above oxides are added in total exceeding 2.5% by weight
The sintered magnet produced from the -B-Fe alloy powder does not show rust on the surface, but the magnetic properties of the produced sintered magnet itself are low, and the amount of addition of the oxide is 0.00
If less than 05% by weight of raw material powder is used, rust will occur on the surface of the sintered magnet and the magnetic properties after the corrosion resistance test will be significantly deteriorated.

上述のように、R−B−Fe系合金粉末に上記酸化物粉
末の1種または2種以上を合計で0.0005〜2.5重量%添
加した原料粉末を用いて製造したR−B−Fe系焼結磁石
は、耐食性に優れ、磁気特性を劣化が改善されるので、
この発明の製造方法で製造されたR−B−Fe系焼結磁石
には表面処理する必要がなく、また焼結磁石の磁気特性
の劣化が少ないので、この磁石を組み込んだ装置の性能
の低下が防止されるという産業上すぐれた効果を奏する
ものである。
As described above, R-B-Fe based sintering produced by using a raw material powder obtained by adding one or more of the above oxide powders in total to 0.0005 to 2.5% by weight to the R-B-Fe based alloy powder. Since the magnet has excellent corrosion resistance and the deterioration of magnetic properties is improved,
The RB-Fe-based sintered magnet manufactured by the manufacturing method of the present invention does not require surface treatment, and the magnetic characteristics of the sintered magnet are less deteriorated. This is an excellent industrial effect of preventing the above.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(Rは、Yを含む希土類元素のうち少な
くとも1種)、BおよびFeを必須成分とするR−B−Fe
系合金粉末に、Ni,Co,Mn,Cr,Ti,VおよびNbの酸化物のう
ち少なくとも1種を合計で0.0005〜2.5重量%加えた粉
末を、成形し、焼結を行なうことを特徴とする希土類−
B−Fe系焼結磁石の製造方法。
1. R—B—Fe containing R (R is at least one of rare earth elements including Y), B and Fe as essential components.
A powder obtained by adding 0.0005 to 2.5% by weight of at least one of oxides of Ni, Co, Mn, Cr, Ti, V and Nb in total to a base alloy powder, and performing sintering. Rare earth
Manufacturing method of B-Fe system sintered magnet.
【請求項2】上記希土類−B−Fe系焼結磁石の製造方法
により製造した希土類−B−Fe系焼結磁石を熱処理する
ことを特徴とする特許請求の範囲第1項記載の希土類−
B−Fe系焼結磁石の製造方法。
2. The rare earth-B-Fe system sintered magnet produced by the method for producing a rare earth-B-Fe system sintered magnet as described above, wherein the rare earth-B-Fe system sintered magnet is heat-treated.
Manufacturing method of B-Fe system sintered magnet.
JP62306367A 1987-12-03 1987-12-03 Method for producing rare earth-B-Fe sintered magnet Expired - Fee Related JPH0832943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62306367A JPH0832943B2 (en) 1987-12-03 1987-12-03 Method for producing rare earth-B-Fe sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306367A JPH0832943B2 (en) 1987-12-03 1987-12-03 Method for producing rare earth-B-Fe sintered magnet

Publications (2)

Publication Number Publication Date
JPH01147041A JPH01147041A (en) 1989-06-08
JPH0832943B2 true JPH0832943B2 (en) 1996-03-29

Family

ID=17956200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306367A Expired - Fee Related JPH0832943B2 (en) 1987-12-03 1987-12-03 Method for producing rare earth-B-Fe sintered magnet

Country Status (1)

Country Link
JP (1) JPH0832943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439385B2 (en) * 2008-12-26 2014-03-12 昭和電工株式会社 R-T-B rare earth permanent magnet manufacturing method and motor

Also Published As

Publication number Publication date
JPH01147041A (en) 1989-06-08

Similar Documents

Publication Publication Date Title
CA1269029A (en) Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
US8317937B2 (en) Alloy for sintered R-T-B-M magnet and method for producing same
JP3405806B2 (en) Magnet and manufacturing method thereof
EP1420418A1 (en) R-Fe-B sintered magnet
EP0249973B1 (en) Permanent magnetic material and method for producing the same
EP0389626B1 (en) SINTERED RARE EARTH ELEMENT-B-Fe-MAGNET AND PROCESS FOR ITS PRODUCTION
US11335484B2 (en) Permanent magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JP2791470B2 (en) RB-Fe sintered magnet
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH01175705A (en) Manufacture of rare earth magnet
CN113517104B (en) Main-auxiliary phase alloy samarium-cobalt magnet material, material for sintered body, preparation method and application thereof
HUT57286A (en) Alloy, permanent magnet and process for producing them
JP2586597B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in magnetic properties and corrosion resistance
JP3143396B2 (en) Manufacturing method of sintered rare earth magnet
CN114496438A (en) Method for manufacturing rare earth sintered magnet
JPH0832943B2 (en) Method for producing rare earth-B-Fe sintered magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH0146575B2 (en)
JP2581161B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JP2600374B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JPH0146574B2 (en)
JP2682619B2 (en) Manufacturing method of rare earth permanent magnet
JP2940623B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JP2823076B2 (en) Warm magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees