JPH08327746A - Measuring method of mechanical characteristics and initial stress of rock-bed - Google Patents

Measuring method of mechanical characteristics and initial stress of rock-bed

Info

Publication number
JPH08327746A
JPH08327746A JP13229195A JP13229195A JPH08327746A JP H08327746 A JPH08327746 A JP H08327746A JP 13229195 A JP13229195 A JP 13229195A JP 13229195 A JP13229195 A JP 13229195A JP H08327746 A JPH08327746 A JP H08327746A
Authority
JP
Japan
Prior art keywords
elastic wave
initial stress
discontinuous
holes
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13229195A
Other languages
Japanese (ja)
Inventor
Takeo Son
建生 孫
Tetsuo Nagai
哲夫 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Corp
Original Assignee
Aoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoki Corp filed Critical Aoki Corp
Priority to JP13229195A priority Critical patent/JPH08327746A/en
Publication of JPH08327746A publication Critical patent/JPH08327746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE: To enable simultaneous measurement of the mechanical characteristics and the initial stress of a discontinuous rock-bed by emitting an elastic wave at different depths in a bored hole and by detecting the elastic wave in the other bored hole. CONSTITUTION: Elastic wave generating-seizing devices are set at three points in the depth direction respectively in two holes (a) and (b) made by boring or the like. Then, elastic waves are emitted sequentially from arbitrary elastic wave generating devices 1, 2 and 3 in one of the holes (a) and (b) and seized by seismometers 1, 2 and 3 in the other of the holes (b) and (a). The results of the seized elastic waves are put in an equation Vij=f (d, ds, θ) in which V denotes the velocity of the elastic wave, (d) an initial stress, (ds) an interval of discontinuous planes, θ a tilt angle of the discontinuous plane and (i) and (j) numbers of measuring places in the holes (a) and (b), and by establishing simultaneous equations thereof, the initial stress, the interval of the discontinuous plane and the tilt angle of the discontinuous plane can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、不連続性岩盤の力学
特性および初期応力測定方法に関するものである。さら
に詳しくは、この発明は、建築、土木等の分野で有用
な、不連続性岩盤の力学特性および初期応力測定方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical property of a discontinuous rock mass and a method for measuring initial stress. More specifically, the present invention relates to a mechanical property of a discontinuous rock mass and a method for measuring initial stress, which are useful in the fields of construction, civil engineering, and the like.

【0002】[0002]

【従来の技術と課題】建築物を構築する上で、その建築
物の土台となる岩盤の初期応力やその岩盤の力学性質を
調査することは、防災上または建築工程の安全性を確保
する観点から非常に重要である。岩盤の初期応力につい
ては、古くから地盤工学・地震工学の分野で、大きな問
題となっていた。それと言うのも、従来、岩盤応力の測
定では、体積歪み計を岩盤中に埋設する方法が一般的で
あるが、この方法では、岩盤応力の変化を知ることはで
きるが、初期応力を直接測定することはできないという
問題があったからである。また、この他、水圧破壊法や
応力解放法等の地球物理学的な岩盤応力測定方法も知ら
れているが、その計測を実施する前に応力解放がすでに
ある程度発生しており、正しい計測はできない。
[Prior Art and Problems] In constructing a building, investigating the initial stress of the bedrock that is the foundation of the building and the mechanical properties of the bedrock are from the viewpoint of ensuring the safety of the disaster prevention or construction process. Very important from. The initial stress of bedrock has long been a major problem in the fields of geotechnical engineering and earthquake engineering. This is because the conventional method for measuring rock mass stress is to embed a volumetric strain gauge in the rock mass. With this method, changes in rock mass stress can be known, but initial stress can be measured directly. Because there was a problem that they could not do it. In addition to this, geophysical rock stress measurement methods such as the hydraulic fracture method and the stress release method are also known, but the stress release has already occurred to some extent before the measurement, and correct measurement is not possible. Can not.

【0003】そして、岩盤の力学特性の測定に関して
は、従来から、人工的に岩盤に振動を起こして、その波
の伝播を観測し、岩盤の状況を推定する地震波探査法
(弾性波探査法)が一般的に採用されている。この地震
波探査法には、測定する波の種類によって、屈折法と反
射法の2通りの方法がある。屈折法は、人工震源から発
せられた地震波に地表面に伝わってくる表面波と岩盤内
で屈折して伝わってくる屈折波とを利用して岩盤の状況
を推定する方法である。また、屈折波は、一度岩盤中に
入った波が、岩盤中に物性の変化した部分がある場合、
その境界面に伝わって再び地上に戻ってくるものであ
る。この屈折波は、岩盤内の層の深さやその傾斜、伝播
速度等によって異なるため、その性質を利用し岩盤内に
存在する層の境界を推定することが可能である。
With respect to the measurement of mechanical properties of rock mass, conventionally, seismic wave exploration method (acoustic wave exploration method) is used to artificially generate vibration in the rock mass and observe the propagation of the wave to estimate the condition of the rock mass. Is generally adopted. This seismic wave exploration method has two methods, a refraction method and a reflection method, depending on the type of wave to be measured. The refraction method is a method of estimating the condition of the rock mass by using a surface wave transmitted to the ground surface and a refraction wave transmitted by being refracted in the rock mass to the seismic wave generated from the artificial hypocenter. In addition, the refraction wave is a wave that once entered the bedrock, if there is a part where the physical properties have changed in the bedrock,
It is transmitted to the boundary surface and returns to the ground again. Since this refraction wave varies depending on the depth of the layer in the bedrock, its inclination, the propagation velocity, etc., it is possible to estimate the boundary of the layer existing in the bedrock by using its properties.

【0004】一方、反射法は、人工震源から発せられた
地震波が岩盤中の層の境界で反射し、再び地上に達する
のを記録し、それによって地下構造を推定する方法であ
る。しかしながら、屈折法および反射法は岩盤の挙動を
左右する節理特性(走向、剛性、間隔)の調査ができな
いし、地下深部での調査もできない。この発明は、以上
の事情に鑑みてなされたものであり、従来法の欠点を解
消し、岩盤の初期応力の測定を可能とし、深さに依存し
ない岩盤の力学特性および初期応力測定方法を提供する
ことを目的としている。
On the other hand, the reflection method is a method of estimating the underground structure by recording the fact that the seismic wave emitted from the artificial hypocenter is reflected at the boundary of layers in the bedrock and reaches the ground again. However, the refraction method and the reflection method cannot investigate the joint characteristics (striking, rigidity, spacing) that influence the behavior of rock mass, nor can they investigate deep underground. The present invention has been made in view of the above circumstances, solves the drawbacks of the conventional method, enables the measurement of the initial stress of the rock mass, and provides the mechanical properties of the rock mass and the initial stress measurement method independent of the depth. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するために、不連続性岩盤の力学特性および初期
応力を同時に測定する方法であって、掘削孔中の異なる
深さで弾性波を発射し、その弾性波を他の掘削孔で検出
することを特徴とする岩盤の力学特性および初期応力測
定方法を提供する。
In order to solve the above problems, the present invention is a method for simultaneously measuring the mechanical properties and initial stress of a discontinuous rock mass, which is elastic at different depths in a drill hole. A method for measuring mechanical characteristics of rock mass and a method for measuring initial stress, which is characterized in that waves are emitted and the elastic waves are detected in another drill hole.

【0006】[0006]

【作用】すなわち、この発明は、まず、発明者による弾
性波と不連続面等を有する岩体との関係の検討結果から
導かれた次の知見を踏まえている。 1)弾性波速度が不連続面上の垂直応力に依存する。 2)弾性波速度が不連続面(節理)の密度に依存する。 3)弾性波速度が測線と不連続面(節理)の交角に依存
する。
That is, the present invention is based on the following knowledge derived from the result of the study by the inventor of the relationship between the elastic wave and the rock body having the discontinuous surface and the like. 1) Elastic wave velocity depends on normal stress on discontinuous plane. 2) The elastic wave velocity depends on the density of the discontinuous surface (joint). 3) The elastic wave velocity depends on the intersection angle between the line and the discontinuity (joint).

【0007】そして、この発明者は、これらが一つの関
係式で表すことが可能であることを見いだした。つま
り、たとえばボーリング等による2つの掘削孔aおよび
掘削孔bを考えるとする。これらの掘削孔a、b中に弾
性波発生装置と接収装置を深さ方向にそれぞれ任意の
数、設定する。
The present inventor has found that these can be expressed by one relational expression. That is, let us consider two drill holes a and b by boring or the like. Arbitrary numbers of elastic wave generators and absorptive devices are respectively set in these excavations a and b in the depth direction.

【0008】次に、掘削孔a中の任意点で装置から、弾
性波の発射を行い、掘削孔b中の装置で、その弾性波を
捉える。この場合、装置は発射と接収の両方ができ、一
つの穴内で、一つの装置として、場所を変わる場合もあ
る。装置は、発射と接収を交替に行ってもよい。掘削孔
a、bの各弾性波発射装置から発せられた波は、掘削孔
b、aに装置によって検出される。このとき、発射と接
収した波の関係は、弾性波速度をV、初期応力をσ、不
連続面の間隔をds、不連続面の傾斜角をθとすると、
下記の式1で表される。
Next, an elastic wave is emitted from the device at an arbitrary point in the excavation hole a, and the elastic wave is captured by the device in the excavation hole b. In this case, the device can both be fired and requisitioned, and may be relocated in one hole as one device. The device may alternate firing and confiscation. The waves emitted from the elastic wave emitting devices in the drill holes a and b are detected by the device in the drill holes b and a. At this time, the relationship between the wave emitted and the wave received is: V is the elastic wave velocity, σ is the initial stress, ds is the distance between the discontinuous surfaces, and θ is the inclination angle of the discontinuous surface.
It is expressed by the following equation 1.

【0009】[0009]

【数1】 ここで、iおよびjは、掘削孔aおよび掘削孔bの中に
計測を行う場所の番号である。両孔内の計測場所を結ぶ
測線の関係式は、それぞれ独立であるので、これらの関
係式を連立させることによって、前記、初期応力と不連
続面間隔および不連続面傾斜角が求められる。
[Equation 1] Here, i and j are the numbers of the locations in the excavation hole a and excavation hole b where measurement is performed. Since the relational expressions of the measuring lines connecting the measurement locations in both holes are independent of each other, the initial stress, the discontinuity spacing, and the discontinuity inclination angle can be obtained by making these relations simultaneous.

【0010】以上のようにして、この発明の方法は確立
されたのであって、これまでの方法の欠点を解消して、
岩盤の力学的特性(特に節理の特性)および初期応力の
測定が可能とされる。以下、実施例を示しさらに詳しく
この発明について説明する。
As described above, the method of the present invention has been established, and the drawbacks of the conventional methods have been resolved.
It is possible to measure the mechanical properties (particularly the properties of joints) and initial stress of bedrock. Hereinafter, the present invention will be described in more detail with reference to examples.

【0011】[0011]

【実施例】たとえば、図1に示すように、2本のボーリ
ング等による掘削孔a、b中に弾性波発生・接収装置を
深さ方向にそれぞれ3点設定する。次に、一方の掘削孔
a、b中の任意の弾性波発生装置1、2、3から順次、
弾性波の発射を行い、他方の掘削孔b、a中の地震計
1、2、3で、その弾性波を捉える。このとき、弾性波
の発射は、掘削孔の上部側の弾性波発射装置からでも、
掘削孔の最下部の弾性波発射装置からでもよいが、2つ
以上の弾性波発射装置から発射される弾性波が同時もし
くは、重なってはならない。
EXAMPLE As shown in FIG. 1, for example, three elastic wave generating / accepting devices are set in the depth direction in two excavation holes a and b formed by two borings or the like. Next, from the arbitrary elastic wave generators 1, 2, and 3 in one of the drill holes a and b,
The elastic wave is emitted, and the elastic wave is captured by the seismographs 1, 2, and 3 in the other drill holes b and a. At this time, the elastic wave is emitted even from the elastic wave emitting device on the upper side of the drill hole.
It may be from the elastic wave emitting device at the bottom of the drill hole, but the elastic waves emitted from two or more elastic wave emitting devices should not be at the same time or overlap.

【0012】捉えられた弾性波は、前記の式1を満たす
ものなので、これらの結果を式1にいれ、それらを連立
させることによって、初期応力、不連続面の間隔および
不連続面の傾斜角を得ることができる。もちろん、掘削
孔(3)については、対象とする岩盤の状態予想を踏ま
えて、さらに複数本設け上記と同様にして測定してもよ
い。より複雑な状況の解明が可能になる。
Since the captured elastic wave satisfies the above-mentioned formula 1, these results are put into the formula 1 and by making them simultaneous, the initial stress, the distance between the discontinuities and the inclination angle of the discontinuities are obtained. Can be obtained. Of course, regarding the excavation hole (3), a plurality of holes may be provided and the measurement may be performed in the same manner as above, in consideration of the state prediction of the target rock mass. It enables the elucidation of more complicated situations.

【0013】[0013]

【発明の効果】以上詳しく説明した通り、この発明によ
って、従来、できなかった初期応力や不連続面(節理)
の分布およびその力学特性の同定が可能となる。また、
さらにボーリングと平行して、岩盤調査作業ができるた
め、調査時間の短縮が可能である。
As described above in detail, according to the present invention, the initial stress and the discontinuity (joint) which could not be achieved in the past can be obtained.
It is possible to identify the distribution of and its mechanical properties. Also,
In addition, since the rock survey work can be performed in parallel with the boring, the survey time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例による岩盤の力学特性および
初期応力測定方法の概略図である。
FIG. 1 is a schematic view of a rock mass mechanical property and an initial stress measuring method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2、3 弾性波発射・接収装置 a、b 掘削孔 1, 2, 3 Elastic wave emission / reception device a, b Drill hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不連続性岩盤の力学特性および初期応力
を同時に測定する方法であって、掘削孔中の異なる深さ
で弾性波を発射し、その弾性波を他の掘削孔で検出する
ことを特徴とする岩盤の力学特性および初期応力測定方
法。
1. A method for simultaneously measuring mechanical properties and initial stress of a discontinuous rock mass, which comprises emitting elastic waves at different depths in a drill hole and detecting the elastic wave in another drill hole. Characteristics of rock mass and method of measuring initial stress.
JP13229195A 1995-05-30 1995-05-30 Measuring method of mechanical characteristics and initial stress of rock-bed Pending JPH08327746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13229195A JPH08327746A (en) 1995-05-30 1995-05-30 Measuring method of mechanical characteristics and initial stress of rock-bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13229195A JPH08327746A (en) 1995-05-30 1995-05-30 Measuring method of mechanical characteristics and initial stress of rock-bed

Publications (1)

Publication Number Publication Date
JPH08327746A true JPH08327746A (en) 1996-12-13

Family

ID=15077860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13229195A Pending JPH08327746A (en) 1995-05-30 1995-05-30 Measuring method of mechanical characteristics and initial stress of rock-bed

Country Status (1)

Country Link
JP (1) JPH08327746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009512A (en) * 2005-06-30 2007-01-18 Nittoc Constr Co Ltd Method of determining grout filling state in cavity in rock structure
KR101064333B1 (en) * 2008-12-22 2011-09-14 한국지질자원연구원 System and method of seismic exploration using horizontal borehole receivers as virtual sources
CN102589775A (en) * 2012-01-12 2012-07-18 山东科技大学 Method for observing appearing process of tunnel tectonic stress

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009512A (en) * 2005-06-30 2007-01-18 Nittoc Constr Co Ltd Method of determining grout filling state in cavity in rock structure
KR101064333B1 (en) * 2008-12-22 2011-09-14 한국지질자원연구원 System and method of seismic exploration using horizontal borehole receivers as virtual sources
CN102589775A (en) * 2012-01-12 2012-07-18 山东科技大学 Method for observing appearing process of tunnel tectonic stress

Similar Documents

Publication Publication Date Title
US10746887B2 (en) Method of calibrating depths of a seismic receiver array
US5372207A (en) Seismic prospecting method and device using a drill bit working in a well
CA2672974C (en) Method of monitoring microseismic events
US20040073370A1 (en) Use of drill bit energy for tomographic modeling of near surface layers
US6488116B2 (en) Acoustic receiver
JP2007231729A (en) Method and device for prior survey in tunnel construction
CN110749927A (en) Optical fiber acoustic sensing orthogonal dipole acoustic logging system and measuring method thereof
US20170285195A1 (en) Integrating vertical seismic profile data for microseismic anisotropy velocity analysis
JP2019078549A (en) Face front probing method
US20150316669A1 (en) Processing microseismic data
US5581514A (en) Surface seismic profile system and method using vertical sensor
CN109655918A (en) Ground shallow well micro-seismic monitoring measuring platform station location determines method and system
NO334654B1 (en) Acoustic logging apparatus and method for determining shear wave velocity and orientation.
Mooney Seismic shear waves in engineering
JP4187042B2 (en) Seismic depth transmission method using underground insertion tube
McCann et al. Application of cross-hole seismic measurements in site investigation surveys
JPH08327746A (en) Measuring method of mechanical characteristics and initial stress of rock-bed
Beeston et al. Shear wave velocities from down‐hole measurements
JP6936751B2 (en) Ground information acquisition method and equipment
EP2577359B1 (en) Method and system for determining the rigidity of a geological layer
JP2005291903A (en) Hydrophone for underwater geophone, and multipoint observation underwater geophone
Bergery et al. The plug drum effect, or why your microseismic events may not be where you think they are
RU2280267C1 (en) Method for seismic research of pile foundations
JP2004138447A (en) Physical property evaluating method for base rock
JP2000186319A (en) Ground investigation method