JPH08327539A - Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device - Google Patents

Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device

Info

Publication number
JPH08327539A
JPH08327539A JP13336095A JP13336095A JPH08327539A JP H08327539 A JPH08327539 A JP H08327539A JP 13336095 A JP13336095 A JP 13336095A JP 13336095 A JP13336095 A JP 13336095A JP H08327539 A JPH08327539 A JP H08327539A
Authority
JP
Japan
Prior art keywords
antireflection film
film
inorganic antireflection
absorptive inorganic
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13336095A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakano
博之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13336095A priority Critical patent/JPH08327539A/en
Publication of JPH08327539A publication Critical patent/JPH08327539A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To judge film quality with accuracy by judging, from a specified value from which the state of film quantity as measured through the application of electromagnetic waves is known, the standing-wave reducing effect of an absorbent inorganic antireflection film when photolithography is performed while the absorbent inorganic antireflection film is actually laminated with a resist. CONSTITUTION: A wavelength range which a film does not absorb is determined in advance by means of a spectral or other ellipsometer and the like. In the wavelength range where absorption does not occur, the film thickness is measured by use of the spectral ellipsometer or other ellipsometers which can be set to those wavelengths. A refractive index, calculated by use of the wavelength at which sensitivity based on the film quantity is greatest and the intensity of the spectral ellipsometer is high, is made to coincide with a spectral refractive index using a database registering the latter, to calculate the spectral refractive index curve of the absorbent inorganic antireflection film measured. An amplitude chart of standing waves at each base is prepared in advance as a database, the amplitude chart and a desired axis are inputted, and from the acceptable and unacceptable areas of the amplitude the area of the database amplitude chart to which the spectral refractive index corresponds is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フォトリソグラフィの
反射防止膜として無機膜を用いる場合の膜質管理などを
目的とした膜質判定方法並びに膜質判定装置及び該装置
と成膜装置を組み合わせた成膜判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film quality determination method, a film quality determination apparatus, and a film formation apparatus and a film deposition apparatus in combination for the purpose of controlling the film quality when an inorganic film is used as an antireflection film for photolithography. Regarding a determination device.

【0002】[0002]

【従来の技術】光リソグラフィにおいて、微細なパター
ンを形成する際、線幅の変動は大きな問題である。近
年、デザインルールの縮小に伴って線幅の変動が増大し
ている。線幅がばらつく要因としては、下地基板の段
差、パターンの疎密性等が考えられる。
2. Description of the Related Art In photolithography, fluctuations in line width are a serious problem when forming fine patterns. In recent years, fluctuations in line width have increased as design rules shrink. The factors that cause the line width to vary include the steps of the underlying substrate, the sparseness and denseness of the pattern, and the like.

【0003】デザインルールの縮小に伴って、光リソグ
ラフィにおける露光波長は、g線(436nm)からi
線(365nm)、更にKrFエキシマレーザー(24
8nm)と短波長化されてきた。図13に示すようなレ
ジスト内部での多重干渉の影響は露光波長の短波長化に
より大きくなる。これは、多重干渉の周期が小さくなる
こと、基板反射率が高くなることに起因している。この
ような多重干渉の影響が大きくなるため、レジスト膜厚
が変化した際の線幅の変動は、図14に示すように大き
くなる。これによって、下地基板の段差により、レジス
ト膜厚が変化し、線幅がばらつくことになる。
With the reduction of design rules, the exposure wavelength in photolithography is changed from g-line (436 nm) to i-line.
Line (365 nm), and KrF excimer laser (24
The wavelength has been shortened to 8 nm). The effect of multiple interference inside the resist as shown in FIG. 13 is increased by shortening the exposure wavelength. This is because the cycle of multiple interference becomes small and the substrate reflectance becomes high. Since the influence of such multiple interference becomes large, the fluctuation of the line width when the resist film thickness changes becomes large as shown in FIG. As a result, the resist film thickness changes due to the step of the underlying substrate, and the line width varies.

【0004】このようなパターンの線幅変動を抑制する
技術の一つとして、図15に示すような反射防止技術が
ある。これはレジストの上部又は下部に吸収性の有機膜
又は無機膜を配することにより、吸収と位相の打ち消し
により、レジスト膜厚が変化したときにレジスト内部で
吸収される光量を一定にし、線幅の変動を抑える方法で
ある。
As one of the techniques for suppressing the line width variation of such a pattern, there is an antireflection technique as shown in FIG. This is because by arranging an absorbing organic film or inorganic film on the upper or lower part of the resist, the amount of light absorbed inside the resist when the resist film thickness is changed by absorption and phase cancellation is made constant, and the line width Is a method of suppressing the fluctuation of.

【0005】反射防止技術としては、図15(A)に示
すように、レジストの上部に透明性の有機反射防止膜を
積層し、材料(屈折率n=1.3のもの)と位相の打ち
消しにより、レジスト内に吸収される光の量を一定にす
る方法がある。また、高反射基板を用いる場合、図15
(B)に示すように、レジスト下部に吸収性の反射防止
膜を形成する方法があり、この方法は、段差などにおい
て様々な方向へ向かう光量が小さくなり、線幅変化、ハ
レーションという意味で有利である。
As an antireflection technique, as shown in FIG. 15 (A), a transparent organic antireflection film is laminated on the upper part of the resist to cancel the phase of the material (having a refractive index n = 1.3). Therefore, there is a method of keeping the amount of light absorbed in the resist constant. Further, when a high reflection substrate is used, as shown in FIG.
As shown in (B), there is a method of forming an absorptive antireflection film under the resist, and this method is advantageous in terms of line width change and halation because the amount of light traveling in various directions at a step or the like becomes small. Is.

【0006】近年、高反射基板用の吸収性の反射防止膜
として、CVD、スパッタリング法により成膜する無機
反射防止膜が用いられるようになってきた。この吸収性
無機反射防止膜の代表的なものとして、本発明者らが提
案したSiOx y :H膜やSiN w :H膜(特願平
4−359750号参照)、あるいは水素を含む非晶質
カーボン膜(a−C:H膜)がある。このa−C:H膜
については、たとえば、第40回応用物理学関係連合講
演会講演予稿集559頁に記載されている。
In recent years, an inorganic antireflection film formed by the CVD or sputtering method has been used as an absorptive antireflection film for a high reflection substrate. As typical examples of the absorptive inorganic antireflection film, a SiO x N y : H film or a Si N H w : H film proposed by the present inventors (see Japanese Patent Application No. 4-359750) or hydrogen is used. There is an amorphous carbon film (aC: H film) containing. This aC: H film is described in, for example, the proceedings of the 40th Joint Lecture in Applied Physics, 559.

【0007】このような吸収性無機反射防止膜は、CV
D又はスパッタリング法を用いて成膜するため、プラズ
マなどに変化が生じると、膜の屈折率が変化するという
特性がある。その一方で、吸収性無機反射防止膜は、例
えばSiOx y :H膜を例にとると、成膜条件を変え
ることにより、図16に示すように、幅広く膜の屈折率
を変化させることができ(複素屈折率の実部(図16
(A)と虚部(図16(B))、この特徴を用いて反射
防止を行うものである。SiOx y :H膜は、図17
に示すように、原料であるSiH4 とN2 Oの成膜比を
変えることにより、nは変化しないが、kが大きく変化
するという特徴(nは複素屈折率の実部、kは複素屈折
率の虚部)があり、このkと膜厚で条件を最適化し、反
射防止を行っている。最適化すれば、図18に示したよ
うに、WSiやAl―Si等の下地基体に対してシュミ
レーションによっても(図18(a)、(b))、実測
でも(図18(c))定在波の影響を排除でき、膜厚に
よるバルク効果のみが残る。このように、無機系の反射
防止膜は屈折率をコントロールすることにより定在波を
ゼロにできるという優れた機能を有する。
Such an absorptive inorganic antireflection film has a CV
Since the film is formed by using the D or sputtering method, there is a characteristic that the refractive index of the film changes when the plasma or the like changes. On the other hand, for the absorptive inorganic antireflection film, for example, a SiO x N y : H film is used, the refractive index of the film can be widely changed as shown in FIG. 16 by changing the film forming conditions. (The real part of the complex refractive index (Fig. 16
(A) and the imaginary part (FIG. 16B), this feature is used to prevent reflection. The SiO x N y : H film is shown in FIG.
As shown in, by changing the film formation ratio of the raw materials SiH 4 and N 2 O, n does not change, but k changes significantly (n is the real part of the complex refractive index, k is the complex refractive index). There is an imaginary part of the ratio), and the condition is optimized with k and the film thickness to prevent reflection. If optimized, as shown in FIG. 18, it can be determined by simulation (FIGS. 18 (a) and 18 (b)) with respect to an underlying substrate such as WSi or Al—Si or by actual measurement (FIG. 18 (c)). The effect of standing waves can be eliminated, and only the bulk effect due to the film thickness remains. As described above, the inorganic antireflection film has an excellent function that the standing wave can be made zero by controlling the refractive index.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、無機系
の反射防止膜は、化学的蒸着法(CVD)、スパッタリ
ング法など物理的蒸着法(PVD)で成膜するものであ
るため、成膜状態により膜質が変化し、屈折率が変化す
る可能性がある。このため、成膜された無機系の反射膜
が所定の膜質を有し、定在波の影響を確実に低減乃至除
去できるか否かをすばやく、かつ精度よく判定し、膜質
を管理することが要望されているが、現在まで成膜状態
をモニターする方法、装置は確立されていない。
However, since the inorganic antireflection film is formed by physical vapor deposition (PVD) such as chemical vapor deposition (CVD) or sputtering, it depends on the state of film formation. The film quality may change and the refractive index may change. Therefore, it is possible to quickly and accurately determine whether or not the formed inorganic reflective film has a predetermined film quality and can reliably reduce or remove the influence of standing waves, and manage the film quality. Although demanded, up to now, the method and apparatus for monitoring the film formation state have not been established.

【0009】本発明は、上記要望に鑑みなされたもの
で、上述したCVD、PVDにより成膜される吸収性無
機反射防止膜のフォトリソグラフィに適用した場合の膜
質を精度よくかつ速やかに判定することができる吸収性
無機反射防止膜の膜質判定方法並びに膜質判定装置及び
成膜状態をモニターできる成膜判定装置を提供すること
を目的とする。
The present invention has been made in view of the above demands, and can accurately and promptly determine the film quality when it is applied to the photolithography of the absorptive inorganic antireflection film formed by the above-mentioned CVD or PVD. It is an object of the present invention to provide a film quality determination method for an absorptive inorganic antireflection film, a film quality determination device, and a film deposition determination device capable of monitoring a film deposition state.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するため、次の吸収性無機反射防止膜の膜質判定方法
並びに膜質判定装置及び成膜判定装置を提供する。 (1)パターニングすべき下地基体とレジスト間に介在
する吸収性無機反射防止膜の膜質判定方法であって、該
下地基体上に成膜された吸収性無機反射防止膜に対して
電磁波を照射することによって、膜質状態を知る特定の
値を測定し、該特定の値から、実際にレジストを該吸収
性無機反射防止膜に積層してフォトリソグラフィを行う
際における該吸収性無機反射防止膜の定在波低減効果を
判定することを特徴とする吸収性無機反射防止膜の膜質
判定方法。 (2)パターニングすべき下地基体とレジスト間に介在
する吸収性無機反射防止膜の膜質判定方法であって、該
下地基体上に成膜された吸収性無機反射防止膜に光を照
射し、吸収性無機反射防止膜の膜厚及び実際にフォトリ
ソグラフィを行う露光波長と異なる波長での屈折率の値
を測定し、上で求められた屈折率と、予め作製した分光
屈折率とを対応させて分光屈折率曲線を求め、得られた
分光屈折率曲線からフォトリソグラフィを行う露光波長
での吸収性無機反射防止膜の屈折率の値を求め、求めた
フォトリソグラフィを行う波長での吸収性無機反射防止
膜の屈折率の値と、予め作製した定在波の振幅データと
を対応させることによって、成膜した吸収性無機反射防
止膜の定在波低減効果を判定することを特徴とする吸収
性無機反射防止膜の膜質判定方法。 (3)求めたフォトリソグラフィを行う波長での吸収性
無機反射防止膜の屈折率の値が、予め作製した定在波の
振幅データに設定されたねらい線幅に対応する合格領域
又は不合格領域いずれかに属するかを判定することによ
り、下地基板に形成した吸収性無機反射防止膜が合格か
否かを判定する上記(2)記載の吸収性無機反射防止膜
の膜質判定方法。 (4)パターニングすべき下地基体とレジスト間に介在
する吸収性無機反射防止膜の膜質判定方法であって、該
下地基体上に成膜された吸収性無機反射防止膜にフォト
リソグラフィを行う露光波長の光を照射してその波長で
の反射率を測定し、予め作製した反射率とレジストを積
層した状態におけるレジスト―下地基体界面反射率との
相関関係から、上で求められた反射率をレジスト―下地
基体界面反射率に変換し、求められたレジスト―下地基
体界面反射率を、予め作製した線幅によるレジスト―下
地基体界面反射率と定在波の振幅の大きさとの関係のデ
ータと対応させることによって、吸収性無機反射防止膜
の定在波低減効果を判定することを特徴とする吸収性無
機反射防止膜の判定方法。 (5)求められたレジスト―下地基体界面反射率を、予
め作製した線幅によるレジスト―下地基体界面反射率と
許容範囲が設定された定在波の振幅の大きさとの関係の
データと対応させることによって、下地基板に形成した
吸収性無機反射防止膜が合格か否かを判定する上記
(4)記載の吸収性無機反射防止膜の膜質判定方法。 (6)パターニングすべき下地基体とレジスト間に介在
する吸収性無機反射防止膜の膜質判定方法であって、該
下地基体上に成膜された吸収性無機反射防止膜にX線を
照射して吸収性無機反射防止膜のX線回折強度を測定
し、上で求められたX線回折強度と予め作製したX線回
折強度と屈折率との関係のデータとの対応から吸収性無
機反射防止膜の屈折率を求め、求めたフォトリソグラフ
ィを行う露光波長での吸収性無機反射防止膜の屈折率の
値と、予め作製した定在波の振幅データとを対応させる
ことによって、成膜した吸収性無機反射防止膜の定在波
低減効果を判定することを特徴とする吸収性無機反射防
止膜の膜質判定方法。 (7)求めたフォトリソグラフィを行う露光波長での吸
収性無機反射防止膜の屈折率の値が、予め作製した定在
波の振幅データに設定されたねらい線幅に対応する合格
領域又は不合格領域いずれかに属するかを判定すること
により、下地基板に形成した吸収性無機反射防止膜が合
格か否かを判定する上記(6)記載の吸収性無機反射防
止膜の膜質判定方法。 (8)パターニングすべき下地基体とレジスト間に介在
する吸収性無機反射防止膜の膜質判定装置であって、該
下地基体上に成膜された吸収性無機反射防止膜に対して
電磁波を照射することによって、膜質状態を知るデータ
を得る測定装置と、該測定装置によって得られたデータ
と予め作製されたデータに基づいて、実際にレジストを
該吸収性無機反射防止膜に積層してフォトリソグラフィ
を行う際における該吸収性無機反射防止膜の定在波低減
効果を求める判定手段とを備えることを特徴とする吸収
性無機反射防止膜の膜質判定装置。 (9)パターニングすべき下地基体とレジスト間に介在
する吸収性無機反射防止膜の膜質判定装置であって、該
下地基体上に成膜された吸収性無機反射防止膜に光を照
射し、吸収性無機反射防止膜の膜厚及び実際にフォトリ
ソグラフィを行う露光波長と異なる波長での屈折率の値
を求める測定装置と、測定された屈折率データと、予め
作製された分光屈折率データとを対応させて分光屈折率
曲線を求める手段と、該手段によって求められた分光屈
折率曲線からフォトリソグラフィを行う露光波長での吸
収性無機反射防止膜の屈折率の値を求める手段と、該手
段によって求められたフォトリソグラフィを行う波長で
の吸収性無機反射防止膜の屈折率データと、予め作製さ
れた定在波の振幅データとを対応させることによって、
成膜した吸収性無機反射防止膜の定在波低減効果を判定
する手段とを備えることを特徴とする吸収性無機反射防
止膜の膜質判定装置。 (10)パターニングすべき下地基体とレジスト間に介
在する吸収性無機反射防止膜の膜質判定装置であって、
該下地基体上に成膜された吸収性無機反射防止膜にフォ
トリソグラフィを行う露光波長の光を照射してその波長
での反射率を求める測定装置と、 予め作製された反射
率とレジストを積層した状態におけるレジスト―下地基
体界面反射率の相関関係のデータから、上記測定装置で
求められた反射率をレジスト―下地基体界面反射率に変
換する手段と、該手段によって変換されたレジスト―下
地基体界面反射率を、予め作製されたレジスト―下地基
体界面反射率と定在波の振幅の大きさとの関係のデータ
と対応させることによって、吸収性無機反射防止膜の定
在波低減効果の判定を行う手段とを備えることを特徴と
する吸収性無機反射防止膜の判定装置。 (11)パターニングすべき下地基体とレジスト間に介
在する吸収性無機反射防止膜の膜質判定装置であって、
該下地基体上に成膜された吸収性無機反射防止膜にX線
を照射して吸収性無機反射防止膜のX線回折強度を求め
る測定装置と、該測定装置によって求められたX線回折
強度と予め作製されたX線回折強度と屈折率との関係の
データとの対比から吸収性無機反射防止膜の屈折率を求
める手段と、該手段によって求められたフォトリソグラ
フィを行う露光波長での吸収性無機反射防止膜の屈折率
の値と、予め作製した定在波の振幅データとを対応させ
ることによって、成膜した吸収性無機反射防止膜の定在
波低減効果を判定する手段とを備えることを特徴とする
吸収性無機反射防止膜の膜質判定装置。 (12)パターニングすべき下地基体上に化学的蒸着法
又は物理的蒸着法により吸収性無機反射防止膜を成膜す
る装置と、上記(8)乃至(11)いずれかに記載の膜
質判定装置とを具備することを特徴とする成膜判定装
置。
In order to achieve the above object, the present invention provides the following method for determining the film quality of an absorptive inorganic antireflection film, a film quality determining apparatus and a film forming determining apparatus. (1) A method for determining the film quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, which comprises irradiating an electromagnetic wave to the absorptive inorganic antireflection film formed on the base substrate. By measuring a specific value for knowing the film quality state, the specific value of the absorptive inorganic antireflection film when a resist is actually laminated on the absorptive inorganic antireflection film and photolithography is performed from the specific value is measured. A method for determining a film quality of an absorptive inorganic antireflection film, which comprises determining a standing wave reducing effect. (2) A method for determining the quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, which comprises irradiating light onto the absorptive inorganic antireflection film formed on the base substrate to absorb the light. Of the refractive index at a wavelength different from the exposure wavelength for actually performing photolithography and the value of the refractive index obtained above, and the spectral refractive index prepared in advance are made to correspond to each other. Obtain the spectral refractive index curve and perform photolithography from the obtained spectral refractive index curve. Determine the value of the refractive index of the absorptive inorganic antireflective film at the exposure wavelength for photolithography, and obtain the absorptive inorganic reflection at the determined wavelength for photolithography. The absorptivity characterized by determining the standing wave reducing effect of the formed absorptive inorganic antireflection film by associating the refractive index value of the anti-reflection film with the amplitude data of the standing wave prepared in advance. Inorganic antireflection film Quality determination method. (3) The value of the refractive index of the absorptive inorganic antireflection film at the determined wavelength for performing photolithography corresponds to the target line width set in the amplitude data of the standing wave prepared in advance. The film quality determination method for the absorptive inorganic antireflection film according to (2) above, which determines whether or not the absorptive inorganic antireflection film formed on the underlying substrate is acceptable by determining which one of them belongs. (4) A method for determining the film quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, the exposure wavelength at which photolithography is performed on the absorptive inorganic antireflection film formed on the base substrate. The reflectance at the wavelength is measured by irradiating the above-mentioned light, and the reflectance obtained above is calculated from the correlation between the reflectance prepared in advance and the reflectance of the resist-base substrate interface in the state where the resist is laminated. -Correspond with the data of the relationship between the resist-underlying substrate interface reflectance and the magnitude of the standing wave amplitude obtained by converting the obtained resist-underlying substrate interface reflectance with the previously prepared line width. A method for determining an absorptive inorganic antireflection film, characterized by determining the standing wave reducing effect of the absorptive inorganic antireflection film. (5) Correlate the obtained resist-underlying substrate interface reflectance with the data on the relationship between the resist-underlying substrate interface reflectance according to the line width prepared in advance and the magnitude of the standing wave amplitude for which the allowable range is set. The film quality determination method for the absorptive inorganic antireflection film according to (4) above, which determines whether or not the absorptive inorganic antireflection film formed on the base substrate is acceptable. (6) A method for determining the film quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, which comprises irradiating an absorptive inorganic antireflection film formed on the base substrate with X-rays. The absorptive inorganic antireflective film was measured from the correspondence between the X-ray diffraction intensity of the absorptive inorganic antireflective film and the above-obtained X-ray diffraction intensity and the previously prepared data on the relationship between the X-ray diffraction intensity and the refractive index. The refractive index of the absorptive inorganic antireflective film at the exposure wavelength at which the obtained photolithography is determined and the value of the refractive index of the absorptive inorganic antireflection film are associated with the amplitude data of the standing wave prepared in advance to form the absorptivity A method for determining a film quality of an absorptive inorganic antireflection film, which comprises determining a standing wave reducing effect of the inorganic antireflection film. (7) The value of the refractive index of the absorptive inorganic antireflection film at the exposure wavelength at which the obtained photolithography is performed corresponds to the aiming line width set in the amplitude data of the standing wave prepared in advance. The film quality determination method for the absorptive inorganic antireflection film according to (6) above, which determines whether or not the absorptive inorganic antireflection film formed on the underlying substrate is acceptable by determining which region the region belongs to. (8) A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein the absorptive inorganic antireflection film formed on the base substrate is irradiated with electromagnetic waves. Therefore, based on the data obtained by the measuring device and the data obtained by the measuring device and the data prepared in advance, the resist is actually laminated on the absorptive inorganic antireflection film to perform photolithography. An apparatus for determining a film quality of an absorptive inorganic antireflection film, comprising: a determining unit that determines a standing wave reducing effect of the absorptive inorganic antireflection film when performing. (9) A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein the absorptive inorganic antireflection film formed on the base substrate is irradiated with light for absorption. Of the refractive index value at a wavelength different from the exposure wavelength for actually performing photolithography and the film thickness of the hydrophilic inorganic antireflection film, the measured refractive index data, and the spectral refractive index data prepared in advance. Corresponding means for obtaining the spectral refractive index curve, means for obtaining the value of the refractive index of the absorptive inorganic antireflection film at the exposure wavelength for performing photolithography from the spectral refractive index curve obtained by the means, and the means By associating the refractive index data of the absorptive inorganic antireflection film at the wavelength for performing the required photolithography and the amplitude data of the standing wave prepared in advance,
A film quality determination device for an absorptive inorganic antireflection film, comprising means for determining a standing wave reduction effect of the formed absorptive inorganic antireflection film. (10) A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist,
An absorptive inorganic antireflection film formed on the base substrate is subjected to photolithography, and a measuring device for irradiating light with an exposure wavelength to obtain the reflectance at that wavelength, and a preliminarily prepared reflectance and a resist are laminated. Means for converting the reflectance obtained by the above-mentioned measuring device into the resist-underlying substrate interface reflectance from the data of the correlation between the resist-underlying substrate interface reflectance in the above-mentioned state, and the resist-underlying substrate converted by the means The standing wave reduction effect of the absorptive inorganic antireflection film can be determined by correlating the interface reflectance with the data of the relationship between the previously prepared resist-base substrate interface reflectance and the magnitude of the standing wave amplitude. A device for determining an absorptive inorganic antireflection film, which comprises: (11) A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist,
A measuring device for irradiating an absorptive inorganic antireflection film formed on the underlying substrate with X-rays to obtain an X-ray diffraction intensity of the absorptive inorganic antireflection film, and an X-ray diffraction intensity obtained by the measuring device. And a means for obtaining the refractive index of the absorptive inorganic antireflection film from the comparison of the data of the relationship between the X-ray diffraction intensity and the refractive index, which has been prepared in advance, and the absorption at the exposure wavelength for performing photolithography obtained by the means. Means for determining the standing wave reducing effect of the formed absorptive inorganic antireflective film by associating the value of the refractive index of the porous inorganic antireflective film with the amplitude data of the standing wave prepared in advance. A film quality determination device for an absorptive inorganic antireflection film, which is characterized in that (12) An apparatus for forming an absorptive inorganic antireflection film on a base substrate to be patterned by a chemical vapor deposition method or a physical vapor deposition method, and the film quality determination apparatus according to any one of (8) to (11) above. An apparatus for determining film formation, comprising:

【0011】[0011]

【作用】本発明の吸収性無機反射防止膜の膜質判定方法
は、まず、パターニングすべき下地基体に吸収性無機反
射防止膜を成膜し、成膜した吸収性無機反射防止膜に
光、X線などの電磁波を照射してこれから吸収性無機反
射防止膜自体の屈折率などの膜質状態を知る特定値を直
接又は間接に測定し、予め求めておいたデータと対応さ
せて成膜された吸収性無機反射防止膜の定在波低減効果
を判定するものである。このような測定方法と判定方法
との組み合わせは種々考えられ、本発明においては3種
を提案している。
According to the method for determining the film quality of the absorptive inorganic antireflection film of the present invention, first, the absorptive inorganic antireflection film is formed on the underlying substrate to be patterned, and the formed absorptive inorganic antireflection film is exposed to light, X Absorption formed by irradiating electromagnetic waves such as lines to measure directly or indirectly specific values such as the refractive index of the absorptive inorganic anti-reflection film itself, which directly or indirectly measure the film quality. The effect of the standing wave reduction of the porous inorganic antireflection film is determined. There are various possible combinations of such measurement methods and determination methods, and three types have been proposed in the present invention.

【0012】即ち、第1の方法は、偏光などの光を照射
して吸収性無機反射防止膜の屈折率を求めるものである
が、この場合、成膜した吸収性無機反射防止膜に光を照
射して直接フォトリソグラフィを行う波長での屈折率を
求めるのは、KrFエキシマ露光波長における248n
mの波長においては、強度が小さく、正確な判定が困難
であるので、強度が大きく正確な判定を行うことができ
る波長での屈折率を間接的に求める。更にその屈折率か
ら定在波低減効果を判定することによって、正確で高ス
ループットに反射防止膜の定在波低減効果を判定し、好
ましくはフォトリソグラフィに用いることができるか否
かまで判定するものである。
That is, the first method is to determine the refractive index of the absorptive inorganic antireflection film by irradiating light such as polarized light. In this case, the absorptive inorganic antireflection film formed is exposed to light. The refractive index at the wavelength for direct photolithography by irradiation is determined by 248n at the KrF excimer exposure wavelength.
At the wavelength of m, since the intensity is small and it is difficult to make an accurate determination, the refractive index at the wavelength at which the intensity is large and an accurate determination can be made is indirectly obtained. Further, by determining the standing wave reducing effect from the refractive index, the standing wave reducing effect of the antireflection film can be determined accurately and with high throughput, and preferably whether or not it can be used for photolithography is determined. Is.

【0013】第2の方法は、定在波の大小は、レジスト
と下地基体界面の反射率によって決まることに着目し、
吸収性無機反射防止膜に光を照射して反射率を測定し、
予め作製したデータと対応させてレジスト―下地基体界
面の反射率に変換し、その反射率に基づいて定在波低減
効果を判定することによって、正確で高スループットに
反射防止膜の定在波低減効果を判定し、好ましくはフォ
トリソグラフィに用いることができるか否かまで判定す
るものである。
The second method focuses on that the magnitude of the standing wave is determined by the reflectance of the interface between the resist and the underlying substrate,
The reflectance is measured by irradiating the absorptive inorganic antireflection film with light,
Corresponding to the data prepared in advance, it is converted into the reflectivity of the resist-base substrate interface, and the standing wave reduction effect is judged based on that reflectivity, thereby reducing the standing wave of the antireflection film with high accuracy and high throughput. The effect is determined, and preferably, it is also determined whether or not it can be used for photolithography.

【0014】また、第3の方法は、電磁波としてX線を
用い、このX線で例えばSiの含有量を求め、これから
吸収性無機反射防止膜の屈折率を求め、更にその屈折率
から定在波低減効果を判定することによって、正確で高
スループットに反射防止膜の定在波低減効果を判定し、
好ましくはフォトリソグラフィに用いることができるか
否かまで判定するものである。
In the third method, X-rays are used as an electromagnetic wave, the content of Si, for example, is determined by the X-rays, the refractive index of the absorptive inorganic antireflection film is determined from the content, and the standing index is determined from the refractive index. By determining the wave reduction effect, the standing wave reduction effect of the antireflection film can be accurately determined with high throughput.
It is preferable to determine whether or not it can be used for photolithography.

【0015】また、本発明の膜質判定装置は、上記方法
に対応するもので、電磁波を照射して特定のデータを得
る測定装置とこの測定装置で得られたデータと予め作製
されたデータに基づいて吸収性無機反射防止膜の膜質を
判定する手段を有する。具体的には、上記第1〜第3の
方法に対応して、測定装置と判定手段とを有する。
Further, the film quality judging device of the present invention corresponds to the above-mentioned method, and is based on a measuring device for irradiating electromagnetic waves to obtain specific data, and data obtained by this measuring device and data prepared in advance. And a means for determining the film quality of the absorptive inorganic antireflection film. Specifically, it has a measuring device and a judging means corresponding to the first to third methods.

【0016】これらの膜質判定装置と、吸収性無機反射
防止膜の成膜を行うCVD又はPVD装置と組み合わせ
た成膜判定装置とすることによって、成膜された吸収性
無機反射防止膜のフォトリソグラフィを行う波長におけ
る定在波低減効果の判定を、成膜直後に、精度よくかつ
速やかに行うことができ、成膜状態のモニターが可能で
ある。
Photolithography of the formed absorptive inorganic antireflective film is achieved by using these film quality evaluation devices and a film formation determination device in combination with a CVD or PVD device for forming an absorptive inorganic antireflective film. The determination of the effect of reducing the standing wave at the wavelength for performing can be accurately and promptly performed immediately after the film formation, and the film formation state can be monitored.

【0017】[0017]

【実施例】以下、本発明について具体的に説明するが、
本発明は、下記の実施例に限定されるものではない。本
発明にかかる吸収性無機反射防止膜の種類は、特に制限
されないが、上述した本発明者らが提案したSiOx
y :H(SiOx y に水素を含有させたもの)膜やS
N w :H膜(特願平4−359750号参照、同じ
くSiN wに水素を含有させたもの)、あるいは水素
を含む非晶質カーボン膜(a−C:H膜)が挙げられる
が、これに制限されるものではなく、CVDやPVDに
よって成膜され、パターニングすべき下地基体とレジス
ト間に介在する吸収性無機反射防止膜として機能するも
のであれば、何れのものも使用可能である。本方法及び
装置は、CVD、PVDの条件で膜質が変動しやすい種
類の無機系反射防止膜に好適に適用することができる。 〔実施例1〕本実施例は、フォトリソグラフィを行う波
長における吸収性無機反射防止膜の屈折率から、反射防
止膜の能力を判定し、フォトリソグラフィに用いること
ができるかできないかまでを示す方法及び装置を示すも
のである。
EXAMPLES The present invention will be described in detail below.
The present invention is not limited to the examples below. The type of the absorptive inorganic antireflection film according to the present invention is not particularly limited, but the above-mentioned SiO x N proposed by the present inventors is proposed.
y : H (SiO x N y containing hydrogen) film or S
i N H w : H film (see Japanese Patent Application No. 4-359750, also Si N H w containing hydrogen) or an amorphous carbon film containing hydrogen (aC: H film). However, the present invention is not limited to this, and any one can be used as long as it functions as an absorptive inorganic antireflection film that is formed by CVD or PVD and is interposed between the base substrate to be patterned and the resist. It is possible. The present method and apparatus can be suitably applied to an inorganic antireflection film of a type in which the film quality easily changes under the conditions of CVD and PVD. [Embodiment 1] In this embodiment, a method of judging the ability of an antireflection film from the refractive index of an absorptive inorganic antireflection film at a wavelength for performing photolithography and showing whether or not it can be used for photolithography And the device.

【0018】屈折率を測定する装置としては、無機吸収
膜のように吸収を図る場合、通常例えば分光楕円偏光計
(分光エリプソ)等を用いる。分光エリプソは、200
〜800nm程度の波長域において偏光を用いて屈折率
を求める装置である。分光エリプソを用いて屈折率を求
める場合、通常、吸収のない波長域を見つけ、その波長
を用いて複素屈折率のnとd(膜厚)を求め、求めた膜
厚から各波長における複素屈折率のkとnを求める。
As an apparatus for measuring the refractive index, a spectroscopic ellipsometer (spectral ellipsometer) or the like is usually used when absorption is intended like an inorganic absorption film. Spectral ellipso is 200
This is a device for obtaining a refractive index using polarized light in a wavelength range of about 800 nm. When obtaining the refractive index using spectral ellipsometry, usually, a wavelength range without absorption is found, the complex refractive index n and d (film thickness) are obtained using the wavelength, and the complex refraction at each wavelength is calculated from the obtained film thickness. Find the k and n of the rates.

【0019】しかし、本方法を用いて屈折率を求める場
合、例えばKrFエキシマ露光波長における248nm
の波長においては、強度が小さく、正確な判定が困難で
ある。またスループット的にも不利になる。このため、
本実施例においては、次に示すような方法、又はアルゴ
リズムを持つ装置によって、屈折率を求め、正確で高ス
ループットに吸収性無機反射防止膜の判定を行う。
However, when the refractive index is obtained using this method, for example, 248 nm at the KrF excimer exposure wavelength is used.
At that wavelength, the intensity is small and it is difficult to make an accurate determination. Also, it is disadvantageous in terms of throughput. For this reason,
In this embodiment, the refractive index is obtained by an apparatus having the following method or algorithm, and the absorptive inorganic antireflection film is accurately determined with high throughput.

【0020】即ち、図1の流れ図に示すように、次の手
順で行うことができる。 <手順1>図1<1>に示すように、予め分光エリプソ
その他のエリプソ等で膜の吸収のない波長域(図中斜線
の領域)を求めておく。その吸収のない波長域におい
て、分光エリプソ又はその波長に設定できるエリプソを
用いて膜厚を求める。 <手順2>図1<2>に示すように、予め膜質の変化に
よる分光屈折率を求めてデータベースを作製しておく。
そのデータベースにおいて、図1<2>の斜線部分に示
したように、膜質による感度が一番大きく、しかも分光
エリプソの強度の大きい波長を用いて屈折率を求める。
これは、例えば1〜3回、波長を変化させて求める。 <手順3><手順2>において、1〜3点求めた屈折率
を、予め作製した分光屈折率を登録したデータベースを
用いてこれと対応させ、図1<3>に示すように、測定
した吸収性無機反射防止膜における分光屈折率曲線を求
める。 <手順4>求めた分光屈折率曲線から、フォトリソグラ
フィを行う波長、例えばKrFエキシマレーザーリソグ
ラフィでは248nmでの屈折率を求める。勿論、この
波長に限らずArF(193nm)、i線(365n
m)等あらゆる波長で対応可能である。 <手順5>図1<5>に示すように、予め各下地基体に
おける定在波の振幅図をデータベースとして作製してお
き、その振幅図とねらい線幅を入力することによる振幅
の合格エリア、不合格エリアから、<手順4>で求めた
屈折率が、このデータベースの振幅図のどこに対応する
かを求める。なお、図1<5>は2次元で表現している
が、実際には3次元のグラフである。また、この図には
予め線幅毎に合格エリアを前もって設定しておく(図中
斜線で示した部分)。 <手順6><手順4>で求めた屈折率が合格エリアに入
っているか否かでその膜がフォトリソグラフィ的に合格
か不合格かを判断する。 <手順7>アッシング、HF等の乾式又は湿式法で無機
膜を剥離する。 <手順8>モニターウエハーとして成膜する。
That is, as shown in the flowchart of FIG. 1, the following procedure can be performed. <Procedure 1> As shown in FIG. 1 <1>, a wavelength range (a shaded area in the figure) in which the film is not absorbed by a spectroscopic ellipso or other ellipso is obtained in advance. In the wavelength range where there is no absorption, the film thickness is obtained by using a spectroscopic ellipso or an ellipso that can be set to the wavelength. <Procedure 2> As shown in FIG. 1 <2>, a database is prepared in advance by obtaining a spectral refractive index due to a change in film quality.
In the database, as shown by the shaded area in FIG. 1 <2>, the refractive index is obtained using the wavelength having the highest sensitivity due to the film quality and the large spectral ellipso intensity.
This is obtained by changing the wavelength, for example, 1 to 3 times. <Procedure 3> In <Procedure 2>, the refractive indexes obtained at 1 to 3 points were made to correspond to this using a database in which spectral refractive indexes prepared in advance were registered, and measured as shown in FIG. 1 <3>. A spectral refractive index curve in the absorptive inorganic antireflection film is obtained. <Procedure 4> From the obtained spectral refractive index curve, the refractive index at a wavelength for performing photolithography, for example, 248 nm in KrF excimer laser lithography is determined. Of course, not limited to this wavelength, ArF (193 nm), i-line (365n)
m) and other wavelengths are available. <Procedure 5> As shown in FIG. 1 <5>, an amplitude diagram of the standing wave in each base substrate is prepared in advance as a database, and the amplitude diagram and the target area of the amplitude by inputting the target line width, From the rejected area, it is determined where the refractive index obtained in <Procedure 4> corresponds to the amplitude diagram of this database. Although FIG. 1 <5> is expressed in two dimensions, it is actually a three-dimensional graph. In addition, in this figure, pass areas are set in advance for each line width (hatched portions in the figure). <Procedure 6> Whether the film is photolithographically pass or fail is determined by whether or not the refractive index obtained in <Procedure 4> is in the pass area. <Procedure 7> The inorganic film is peeled off by a dry or wet method such as ashing or HF. <Procedure 8> A film is formed as a monitor wafer.

【0021】なお、上記手順6と手順7とは省略可能で
ある。以上説明したフローチャートを実現する装置とし
て、例えば図3に示すような成膜判定装置を例示するこ
とができる。この成膜判定装置は、ウエハに吸収性無機
反射防止膜を成膜する特に図示しないCVD装置と、こ
のCVD装置に隣接又は一体に設けられた膜質判定装置
とから構成されている。膜質判定装置は、成膜した吸収
性無機反射防止膜の屈折率を測定するための分光エリプ
ソを内部に配置した測定室と、測定室から搬送されたウ
エハの無機膜を剥離する無機膜剥離室と、分光エリプソ
からの測定データを受けてこれを処理する電子計算機と
から構成されている。
It should be noted that steps 6 and 7 can be omitted. As a device that realizes the above-described flowchart, a film formation determination device as shown in FIG. 3 can be exemplified. This film formation determination device is composed of a CVD device (not shown) for forming an absorptive inorganic antireflection film on a wafer, and a film quality determination device provided adjacent to or integrally with this CVD device. The film quality determination device includes a measurement chamber in which a spectroscopic ellipso for measuring the refractive index of the formed absorptive inorganic antireflection film is arranged, and an inorganic film peeling chamber for peeling the inorganic film of the wafer transferred from the measurement chamber. And an electronic computer that receives measurement data from the spectroscopic ellipso and processes it.

【0022】この膜質判定装置の作用について説明する
と、まず、ウエハに直接又はウエハ上に設けられたパタ
ーニングすべき下地基体上に所定の条件で吸収性無機反
射防止膜をCVDにより成膜する。吸収性無機反射防止
膜が成膜されたウエハを直接評価した後、又は直接評価
せずに測定室内に搬送し、ステージ上で分光エリプソに
よる測定を行い、分光エリプソのデータを上記データベ
ースを記憶した電子計算機で処理して、直ちに成膜した
吸収性無機反射防止膜が所定の定在波低減効果を満たす
か否かの判定を行う。必要により、この判定に基づい
て、直ちにCVD装置のフィードバックして条件の調整
を行う。測定の終了したウエハは、次いで無機膜剥離室
に搬送され、ここで、乾式又は湿式法により無機膜を剥
離し、ウエハを再利用可能にする。無機膜を剥離したウ
エハを必要により再度CVD工程に送る。
Explaining the operation of this film quality judging device, first, an absorptive inorganic antireflection film is formed by CVD under a predetermined condition directly on a wafer or on a base substrate to be patterned provided on the wafer. After directly evaluating the wafer on which the absorptive inorganic antireflection film was formed, or directly without evaluation, the wafer was transferred into the measurement chamber, and the spectroscopic ellipso measurement was performed on the stage, and the spectroscopic ellipso data was stored in the database. It is processed by an electronic computer, and it is immediately determined whether or not the formed absorptive inorganic antireflection film satisfies a predetermined standing wave reducing effect. If necessary, based on this judgment, the CVD device is immediately fed back to adjust the conditions. The wafer after the measurement is then transferred to the inorganic film peeling chamber, where the inorganic film is peeled by a dry method or a wet method so that the wafer can be reused. The wafer from which the inorganic film has been peeled off is sent again to the CVD process if necessary.

【0023】本装置においては、Bare―Siウエハ
をモニターとして用いる方法、また、CVDに実際に製
造するウエハとモニター用ウエハとを同時に成膜してC
VD装置と一体とする方法が考えられる。また、ウエハ
面内の測定ポイント、場所についても自由に設定可能で
あることは勿論である。 〔実施例2〕本実施例は、吸収性無機反射防止膜の反射
率から該吸収性無機反射防止膜の能力を判定し、フォト
リソグラフィに用いることができるか否かまで示す方法
及び装置である。
In this apparatus, a Bare-Si wafer is used as a monitor, and a wafer to be actually manufactured in CVD and a monitor wafer are simultaneously formed into a film to form a C film.
A method of integrating with the VD device can be considered. Further, it goes without saying that the measurement points and locations on the wafer surface can be freely set. [Embodiment 2] This embodiment is a method and apparatus for judging the ability of the absorptive inorganic antireflection film from the reflectance of the absorptive inorganic antireflection film and showing whether or not it can be used for photolithography. .

【0024】通常、フォトリソグラフィを行う場合、定
在波の大小は、レジストと基板界面の反射率で決まる。
図4に、定在波の大小とレジスト―基板界面の反射率の
関係を示す。この図から、反射率の大きいものほど、定
在波が大きいことがわかる。また、図5に示したよう
に、レジスト―基板界面の反射率と基板の反射率とは一
般に異なる。
Usually, when performing photolithography, the magnitude of the standing wave is determined by the reflectance of the interface between the resist and the substrate.
FIG. 4 shows the relationship between the magnitude of the standing wave and the reflectance at the resist-substrate interface. From this figure, it can be seen that the higher the reflectance, the larger the standing wave. Further, as shown in FIG. 5, the reflectance at the resist-substrate interface and the reflectance at the substrate are generally different.

【0025】これをふまえた上で、以下に示すような方
法、又はアルゴリズムを持つ装置によって、フォトリソ
グラフィに用いた場合の正確でかつ高スループットに反
射防止膜の評価ができる。以下、この方法の流れ図を示
す図6を参照しながら説明する。
Based on this, an antireflection film can be evaluated accurately and at high throughput when used in photolithography by a method or an apparatus having an algorithm as described below. Hereinafter, description will be made with reference to FIG. 6, which shows a flow chart of this method.

【0026】なお、以下に説明する方法では、分光反射
率測定装置を用いているため、200nm以上の波長に
おける反射率が求められるが、用いる装置によってこれ
よりも短波長の反射率も求めることができる。 <手順1>図4に示したようなレジスト―基板界面の反
射率と定在波の振幅の大きさのデータベースを予め作製
し、目標の定在波の大きさから、図6<5>に示すよう
に、レジスト―基板界面の反射率の許容範囲を決めてお
く。このデータベースは、各レジストについて作製す
る。 <手順2>図6<2>に示すように、レジスト―基板界
面の反射率と基板反射率の相関をデータベースとして作
製する。 <手順3>分光反射計又は分光反射計を内部に持つ装置
を用い、CVD又はスパッタリングによって成膜した吸
収性無機反射防止膜のフォトリソグラフィを行う波長で
の反射率を測定する。 <手順4>手順2で作製したデータベースを用いて、手
順3で得た反射率をレジスト―基板界面の反射率に変換
する。 <手順5>手順1で作製したデータベースを用いて、手
順4で求めた屈折率が振幅図のどこに対応するかを求め
る。 <手順6>レジスト―基板界面の反射率が合格か不合格
かを判断する。図6<5>に示す許容反射率の中に入っ
ていれば合格とする。 <手順7>アッシング、HF等の乾式又は湿式法で無機
膜を剥離する。 <手順8>モニターウエハーとして成膜する。
In the method described below, since the spectral reflectance measuring device is used, the reflectance at a wavelength of 200 nm or more can be obtained. However, depending on the device used, the reflectance at a shorter wavelength than this can also be obtained. it can. <Procedure 1> A database of the reflectivity of the resist-substrate interface and the magnitude of the amplitude of the standing wave as shown in FIG. 4 is prepared in advance. As shown, the allowable range of the reflectance at the resist-substrate interface is determined. This database is created for each resist. <Procedure 2> As shown in FIG. 6 <2>, a correlation between the reflectance at the resist-substrate interface and the substrate reflectance is prepared as a database. <Procedure 3> The reflectance of the absorptive inorganic antireflection film formed by CVD or sputtering at the wavelength for photolithography is measured using a spectroreflectometer or a device having a spectroreflectometer inside. <Procedure 4> Using the database prepared in Procedure 2, the reflectance obtained in Procedure 3 is converted into the reflectance at the resist-substrate interface. <Procedure 5> Using the database prepared in Procedure 1, it is determined where in the amplitude diagram the refractive index obtained in Procedure 4 corresponds. <Procedure 6> It is judged whether the reflectance at the resist-substrate interface is acceptable or unacceptable. If it is within the allowable reflectance shown in <5> of FIG. <Procedure 7> The inorganic film is peeled off by a dry or wet method such as ashing or HF. <Procedure 8> A film is formed as a monitor wafer.

【0027】なお、上記手順6と手順7とは省略可能で
ある。図7に、上記手順を実現できる装置を示す。この
装置は、上記実施例1で示した図3における分光エリプ
ソを分光反射計に置き換え、電子計算機のデータベース
が相違するだけであるので、その詳細は省略する。
The steps 6 and 7 can be omitted. FIG. 7 shows an apparatus capable of realizing the above procedure. In this apparatus, the spectroscopic ellipso in FIG. 3 shown in the first embodiment is replaced with a spectroscopic reflectometer, and the database of the electronic computer is different, and therefore the details thereof will be omitted.

【0028】本装置においても、Bare―Siウエハ
をモニターとして用いる方法、また、CVDに実際に製
造するウエハとモニター用ウエハとを同時に成膜してC
VD装置と一体とする方法が考えられる。また、ウエハ
面内の測定ポイント、場所についても自由に設定可能で
あることは勿論である。
Also in this apparatus, a method of using a Bare-Si wafer as a monitor, and a wafer to be actually manufactured in CVD and a monitor wafer are simultaneously formed into a film to form a C film.
A method of integrating with the VD device can be considered. Further, it goes without saying that the measurement points and locations on the wafer surface can be freely set.

【0029】本方法は、反射率の測定波長を変えること
により、KrFエキシマレーザー波長(248nm)だ
けでなく、ArF(193nm)、i線(365nm)
にも適用可能である。 〔実施例3〕本実施例は、吸収性無機反射防止膜のX線
回折強度から反射防止膜の能力を判定し、フォトリソグ
ラフィに用いることができるかできないかまでを判定す
る方法、装置である。
This method changes not only the KrF excimer laser wavelength (248 nm), but also ArF (193 nm) and i-line (365 nm) by changing the reflectance measurement wavelength.
It is also applicable to. [Embodiment 3] This embodiment is a method and apparatus for judging the ability of the antireflection film from the X-ray diffraction intensity of the absorptive inorganic antireflection film and judging whether or not it can be used for photolithography. .

【0030】図8に示すように、SiOx y :H等の
膜を構成するガス種の比と、構成元素比、従って屈折率
とは一定の関係を持っている。また、X線回折法は、図
9に示すように、ピークの積分強度と組成量には一定の
相関を持っている。
As shown in FIG. 8, the ratio of the gas species composing the film such as SiO x N y : H and the ratio of the constituent elements, that is, the refractive index have a fixed relationship. Also, in the X-ray diffraction method, as shown in FIG. 9, the integrated intensity of the peak and the composition amount have a certain correlation.

【0031】これらの関係を利用して、以下に示すよう
な方法又はアルゴリズムを持つ装置によって、正確でか
つ高スループットに反射防止膜をフォトリソグラフィに
使用できるかできないかを判定することができる。以
下、この方法のフローチャートを示す図10を参照しな
がら具体的に説明する。 <手順1>解析する膜について、予め図9に示すよう
な、X線強度と構成元素の比率のデータベース及び図1
1に示すような構成元素比と屈折率のデータベースを作
製する。この場合、SiOx y :H等は、図8からわ
かるように、ガス組成によりSiの含有量が変化し、ま
た、X線では通常、O、N、Hは定量に不向きであるた
め、Siについて注目する。 <手順2>X線で強度が大きいピーク(配向にあまり影
響がないように選択する)を測定し、積分強度を求め
る。 <手順3>手順1で作製したデータベースの図9と図1
1とから、膜の屈折率を求める。 <手順4>図2<5>に示したような各下地基板におけ
る定在波の振幅図をデータベースとして予め作製し、そ
の振幅図とねらい線幅を入力することによる振幅の合格
エリア、不合格エリアから、手順3で求めた屈折率が振
幅図のどこに対応するかを求める。 <手順5>その膜がフォトリソグラフィ的に合格か不合
格かを判定する。 <手順6>アッシング、HF等の乾式法又は湿式法で無
機膜を剥離する。 <手順7>モニターウエハーとして成膜する。
By utilizing these relationships, it is possible to accurately determine whether or not the antireflection film can be used for photolithography in photolithography by a device having a method or algorithm as described below. Hereinafter, a specific description will be given with reference to FIG. 10 showing a flowchart of this method. <Procedure 1> Regarding the film to be analyzed, a database of the ratio of X-ray intensity and constituent elements as shown in FIG. 9 and FIG.
A database of constituent element ratios and refractive indexes as shown in 1 is prepared. In this case, SiO x N y : H, etc., as shown in FIG. 8, the Si content changes depending on the gas composition, and in the case of X-rays, O, N, and H are usually unsuitable for quantitative determination. Attention is paid to Si. <Procedure 2> A peak having a large intensity (selected so as not to affect orientation significantly) is measured by X-ray to obtain an integrated intensity. <Procedure 3> FIG. 9 and FIG. 1 of the database created in Procedure 1
From 1, the refractive index of the film is obtained. <Procedure 4> The amplitude diagram of the standing wave on each substrate as shown in Fig. 2 <5> is created in advance as a database, and the amplitude diagram and the target line width are input, and the pass / fail area of the amplitude is obtained. From the area, the position in the amplitude diagram where the refractive index found in step 3 corresponds is found. <Procedure 5> It is determined whether the film is photolithographically pass or fail. <Procedure 6> The inorganic film is peeled off by a dry method or a wet method such as ashing or HF. <Procedure 7> A film is formed as a monitor wafer.

【0032】なお、上記手順6と手順7とは省略可能で
ある。図12に、上記手順を実現できる装置を示す。こ
の装置は、上記実施例1で示した図3における分光エリ
プソをX線回折計に置き換え、電子計算機のデータベー
スが相違するだけであるので、その詳細は省略する。
The above steps 6 and 7 can be omitted. FIG. 12 shows an apparatus that can realize the above procedure. In this apparatus, the spectroscopic ellipso in FIG. 3 shown in the first embodiment is replaced with an X-ray diffractometer, and the database of the electronic computer is different, and the details thereof will be omitted.

【0033】本装置においても、Bare―Siウエハ
をモニターとして用いる方法、また、CVDに実際に製
造するウエハとモニター用ウエハとを同時に成膜してC
VD装置と一体とする方法が考えられる。また、ウエハ
面内の測定ポイント、場所についても自由に設定可能で
あることは勿論である。
Also in this apparatus, a method of using a Bare-Si wafer as a monitor, or a wafer to be actually manufactured in CVD and a monitor wafer are simultaneously formed into a film to form a C film.
A method of integrating with the VD device can be considered. Further, it goes without saying that the measurement points and locations on the wafer surface can be freely set.

【0034】本方法は、反射率の測定波長を変えること
により、KrFエキシマレーザー波長(248nm)だ
けでなく、ArF(193nm)、i線(365nm)
にも適用可能である。以上説明した実施例1〜実施例3
の吸収性無機反射防止膜の判定方法及び装置によれば、
吸収性無機反射防止膜の光学的な膜質がフォトリソグラ
フィを行う波長において、十分に定在波を低減できるか
否かを、短スループットで、精度よく示すことができ
る。しかも、非破壊検査であり、モニターウエハを何回
でも使用することができ、経済的である。更に、ウエハ
ー内の測定領域を自由に設定することができるので、予
め不良を生じやすい場所に設定することができ、検査精
度が良好である。
This method changes not only the KrF excimer laser wavelength (248 nm) but also ArF (193 nm) and i-line (365 nm) by changing the reflectance measurement wavelength.
It is also applicable to. Examples 1 to 3 described above
According to the method and apparatus for determining the absorptive inorganic antireflection film,
Whether or not the optical film quality of the absorptive inorganic antireflection film can sufficiently reduce the standing wave at the wavelength for performing photolithography can be accurately shown with a short throughput. Moreover, since it is a non-destructive inspection, the monitor wafer can be used any number of times, which is economical. Further, since the measurement area in the wafer can be freely set, it can be set in advance in a place where defects easily occur, and the inspection accuracy is good.

【0035】[0035]

【発明の効果】本発明の吸収性無機反射防止膜の膜質判
定方法及び装置によれば、成膜された吸収性無機反射防
止膜が適切に定在波効果を減少することができるか否か
を精度よくかつ速やかに判定することができる。
According to the method and apparatus for determining the film quality of the absorptive inorganic antireflection film of the present invention, whether or not the formed absorptive inorganic antireflection film can appropriately reduce the standing wave effect. Can be determined accurately and quickly.

【0036】また、本発明の成膜判定装置は、CVD装
置又はPVD装置と上記膜質判定装置とを組み合わせた
ことにより、吸収性無機反射防止膜の成膜のモニターが
可能である。
Further, the film formation judging apparatus of the present invention can monitor the film formation of the absorptive inorganic antireflection film by combining the CVD apparatus or the PVD apparatus with the above film quality judging apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の膜質判定方法を説明する流れ図であ
る。
FIG. 1 is a flowchart illustrating a film quality determination method according to a first embodiment.

【図2】図1の続きを説明する流れ図である。FIG. 2 is a flowchart illustrating a continuation of FIG.

【図3】実施例1の膜質判定装置を示す概略図である。FIG. 3 is a schematic diagram showing a film quality determination device of Example 1.

【図4】定在波の大きさとレジスト―基板界面の反射率
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the magnitude of a standing wave and the reflectance at the resist-substrate interface.

【図5】レジスト―基板界面の反射率と基板反射率の関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the reflectance of the resist-substrate interface and the reflectance of the substrate.

【図6】実施例2の膜質判定方法を説明する流れ図であ
る。
FIG. 6 is a flowchart illustrating a film quality determination method according to a second embodiment.

【図7】実施例2の膜質判定装置を示す概略図である。FIG. 7 is a schematic diagram illustrating a film quality determination device according to a second embodiment.

【図8】SiOx y :H膜の膜を構成するガス種と構
成元素比を示すグラフである。
FIG. 8 is a graph showing gas species and constituent element ratios which form a SiO x H y : H film.

【図9】X線の積分強度とSiの量の関係を示すグラフ
である。
FIG. 9 is a graph showing the relationship between the integrated intensity of X-rays and the amount of Si.

【図10】実施例3の膜質判定方法を説明する流れ図で
ある。
FIG. 10 is a flowchart illustrating a film quality determination method according to a third exemplary embodiment.

【図11】nとkのSiH4 /N2 O比依存性を示すグ
ラフである。
FIG. 11 is a graph showing the dependency of n and k on the SiH 4 / N 2 O ratio.

【図12】実施例3の膜質判定装置を示す概略図であ
る。
FIG. 12 is a schematic diagram illustrating a film quality determination device according to a third embodiment.

【図13】レジスト内部での多重干渉を示す概略図であ
る。
FIG. 13 is a schematic diagram showing multiple interference inside a resist.

【図14】レジスト膜厚の変化における線幅変動を示す
グラフである。
FIG. 14 is a graph showing variations in line width due to changes in resist film thickness.

【図15】反射防止技術を説明するもので、(A)はレ
ジスト上部に反射防止膜を形成した概略図、(B)はレ
ジストと基板の間に反射防止膜を形成した概略図であ
る。
15A and 15B are views for explaining an antireflection technique. FIG. 15A is a schematic diagram in which an antireflection film is formed on a resist, and FIG. 15B is a schematic diagram in which an antireflection film is formed between a resist and a substrate.

【図16】SiOx y :H膜の波長変化における屈折
率の変化を示すグラフであり、(A)は屈折率の実部、
(B)は虚部を示す。
FIG. 16 is a graph showing changes in the refractive index of a SiO x H y : H film with changes in wavelength, where (A) is the real part of the refractive index,
(B) shows an imaginary part.

【図17】SiOx y :H反射防止膜のnとk(複素
屈折率の実部と虚部)の関係を示すグラフである。
FIG. 17 is a graph showing the relationship between n and k (real part and imaginary part of complex refractive index) of a SiO x H y : H antireflection film.

【図18】SiOx y :H膜の定在波低減を示すグラ
フで、(a)はWSiに対するシュミレーション、
(b)はAl―Siに対するシュミレーション、(c)
はWSiに対する実測データである。
FIG. 18 is a graph showing the standing wave reduction of a SiO x H y : H film, (a) is a simulation for WSi,
(B) is a simulation of Al-Si, (c)
Is actual measurement data for WSi.

【符号の説明】[Explanation of symbols]

ARL・・・反射防止膜 ARL: Antireflection film

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】パターニングすべき下地基体とレジスト間
に介在する吸収性無機反射防止膜の膜質判定方法であっ
て、 該下地基体上に成膜された吸収性無機反射防止膜に対し
て電磁波を照射することによって、膜質状態を知る特定
の値を測定し、 該特定の値から、実際にレジストを該吸収性無機反射防
止膜に積層してフォトリソグラフィを行う際における該
吸収性無機反射防止膜の定在波低減効果を判定すること
を特徴とする吸収性無機反射防止膜の膜質判定方法。
1. A method for determining the film quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein an electromagnetic wave is applied to the absorptive inorganic antireflection film formed on the base substrate. By irradiating, a specific value for knowing the film quality state is measured, and from this specific value, the absorptive inorganic antireflective film when a resist is actually laminated on the absorptive inorganic antireflective film and photolithography is performed. A method for determining the film quality of an absorptive inorganic antireflection film, characterized by determining the effect of reducing standing waves.
【請求項2】パターニングすべき下地基体とレジスト間
に介在する吸収性無機反射防止膜の膜質判定方法であっ
て、 該下地基体上に成膜された吸収性無機反射防止膜に光を
照射し、吸収性無機反射防止膜の膜厚及び実際にフォト
リソグラフィを行う露光波長と異なる波長での屈折率の
値を測定し、 上で求められた屈折率と、予め作製した分光屈折率とを
対応させて分光屈折率曲線を求め、 得られた分光屈折率曲線からフォトリソグラフィを行う
露光波長での吸収性無機反射防止膜の屈折率の値を求
め、 求めたフォトリソグラフィを行う波長での吸収性無機反
射防止膜の屈折率の値と、予め作製した定在波の振幅デ
ータとを対応させることによって、成膜した吸収性無機
反射防止膜の定在波低減効果を判定することを特徴とす
る吸収性無機反射防止膜の膜質判定方法。
2. A method of determining the film quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, which comprises irradiating light to the absorptive inorganic antireflection film formed on the base substrate. Measures the film thickness of the absorptive inorganic antireflection film and the value of the refractive index at a wavelength different from the exposure wavelength at which photolithography is actually performed. Corresponds the refractive index obtained above to the spectral refractive index prepared in advance. Then, the spectral refractive index curve is obtained, and the absorptivity at the exposure wavelength at which photolithography is performed is determined from the obtained spectral refractive index curve. A characteristic is that the effect of standing wave reduction of the formed absorptive inorganic antireflection film is determined by associating the value of the refractive index of the inorganic antireflection film with the amplitude data of the standing wave prepared in advance. Absorbable inorganic anti Method of judging film quality of anti-reflection film.
【請求項3】求めたフォトリソグラフィを行う波長での
吸収性無機反射防止膜の屈折率の値が、予め作製した定
在波の振幅データに設定されたねらい線幅に対応する合
格領域又は不合格領域いずれかに属するかを判定するこ
とにより、下地基板に形成した吸収性無機反射防止膜が
合格か否かを判定する請求項2記載の吸収性無機反射防
止膜の膜質判定方法。
3. The obtained refractive index value of the absorptive inorganic antireflection film at the wavelength for performing photolithography is a pass region or a defect area corresponding to an aim line width set in amplitude data of standing waves prepared in advance. 3. The film quality determination method for an absorptive inorganic antireflection film according to claim 2, wherein it is determined whether the absorptive inorganic antireflection film formed on the underlying substrate is acceptable by determining which of the acceptance regions belongs.
【請求項4】パターニングすべき下地基体とレジスト間
に介在する吸収性無機反射防止膜の膜質判定方法であっ
て、 該下地基体上に成膜された吸収性無機反射防止膜にフォ
トリソグラフィを行う露光波長の光を照射してその波長
での反射率を測定し、 予め作製した反射率とレジストを積層した状態における
レジスト―下地基体界面反射率との相関関係から、上で
求められた反射率をレジスト―下地基体界面反射率に変
換し、 求められたレジスト―下地基体界面反射率を、予め作製
した線幅によるレジスト―下地基体界面反射率と定在波
の振幅の大きさとの関係のデータと対応させることによ
って、吸収性無機反射防止膜の定在波低減効果を判定す
ることを特徴とする吸収性無機反射防止膜の判定方法。
4. A method for determining a film quality of an absorptive inorganic antireflection film interposed between an underlying substrate to be patterned and a resist, wherein the absorptive inorganic antireflection film formed on the underlying substrate is subjected to photolithography. The reflectance obtained above was calculated from the correlation between the reflectance prepared in advance and the reflectance of the resist-base substrate interface when the resist was laminated by measuring the reflectance at that wavelength by irradiating light of the exposure wavelength. Is converted to the resist-underlying substrate interface reflectance, and the obtained resist-underlying substrate interface reflectance is the data of the relationship between the resist-underlying substrate interface reflectance and the magnitude of standing wave amplitude according to the line width prepared in advance. A method for determining an absorptive inorganic antireflection film, characterized by determining the standing wave reducing effect of the absorptive inorganic antireflection film by corresponding to
【請求項5】求められたレジスト―下地基体界面反射率
を、予め作製した線幅によるレジスト―下地基体界面反
射率と許容範囲が設定された定在波の振幅の大きさとの
関係のデータと対応させることによって、下地基板に形
成した吸収性無機反射防止膜が合格か否かを判定する請
求項4記載の吸収性無機反射防止膜の膜質判定方法。
5. The relationship between the obtained resist-underlying substrate interface reflectance and the resist-underlying substrate interface reflectance according to a previously prepared line width and the magnitude of the standing wave amplitude for which an allowable range is set, The film quality determination method of the absorptive inorganic antireflection film according to claim 4, wherein it is determined whether or not the absorptive inorganic antireflection film formed on the base substrate is acceptable by corresponding.
【請求項6】パターニングすべき下地基体とレジスト間
に介在する吸収性無機反射防止膜の膜質判定方法であっ
て、 該下地基体上に成膜された吸収性無機反射防止膜にX線
を照射して吸収性無機反射防止膜のX線回折強度を測定
し、 上で求められたX線回折強度と予め作製したX線回折強
度と屈折率との関係のデータとの対応から吸収性無機反
射防止膜の屈折率を求め、 求めたフォトリソグラフィを行う露光波長での吸収性無
機反射防止膜の屈折率の値と、予め作製した定在波の振
幅データとを対応させることによって、成膜した吸収性
無機反射防止膜の定在波低減効果を判定することを特徴
とする吸収性無機反射防止膜の膜質判定方法。
6. A method for determining a film quality of an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein the absorptive inorganic antireflection film formed on the base substrate is irradiated with X-rays. Then, the X-ray diffraction intensity of the absorptive inorganic antireflection film was measured, and the absorptive inorganic reflection was found from the correspondence between the X-ray diffraction intensity obtained above and the data of the relationship between the X-ray diffraction intensity and the refractive index prepared in advance. The refractive index of the anti-reflection film was obtained, and the film was formed by associating the value of the refractive index of the absorptive inorganic anti-reflection film at the exposure wavelength at which the obtained photolithography was performed with the amplitude data of the standing wave prepared in advance. A method for determining a film quality of an absorptive inorganic antireflection film, which comprises determining a standing wave reducing effect of the absorptive inorganic antireflection film.
【請求項7】求めたフォトリソグラフィを行う露光波長
での吸収性無機反射防止膜の屈折率の値が、予め作製し
た定在波の振幅データに設定されたねらい線幅に対応す
る合格領域又は不合格領域いずれかに属するかを判定す
ることにより、下地基板に形成した吸収性無機反射防止
膜が合格か否かを判定する請求項6記載の吸収性無機反
射防止膜の膜質判定方法。
7. The value of the refractive index of the absorptive inorganic antireflection film at the exposure wavelength at which the obtained photolithography is performed corresponds to the aiming line width set in the amplitude data of the standing wave prepared in advance, or the pass range or The film quality determination method for an absorptive inorganic antireflection film according to claim 6, wherein it is determined whether the absorptive inorganic antireflection film formed on the underlying substrate is acceptable by determining which of the rejection regions belongs.
【請求項8】パターニングすべき下地基体とレジスト間
に介在する吸収性無機反射防止膜の膜質判定装置であっ
て、 該下地基体上に成膜された吸収性無機反射防止膜に対し
て電磁波を照射することによって、膜質状態を知るデー
タを得る測定装置と、 該測定装置によって得られたデータと予め作製されたデ
ータに基づいて、実際にレジストを該吸収性無機反射防
止膜に積層してフォトリソグラフィを行う際における該
吸収性無機反射防止膜の定在波低減効果を求める判定手
段とを備えることを特徴とする吸収性無機反射防止膜の
膜質判定装置。
8. A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein an electromagnetic wave is applied to the absorptive inorganic antireflection film formed on the base substrate. A measuring device that obtains data for knowing the film quality state by irradiation, and a resist is actually laminated on the absorptive inorganic antireflection film based on the data obtained by the measuring device and the data prepared in advance. A film quality determination device for an absorptive inorganic antireflection film, comprising: a determining unit that determines a standing wave reducing effect of the absorptive inorganic antireflection film when performing lithography.
【請求項9】パターニングすべき下地基体とレジスト間
に介在する吸収性無機反射防止膜の膜質判定装置であっ
て、 該下地基体上に成膜された吸収性無機反射防止膜に光を
照射し、吸収性無機反射防止膜の膜厚及び実際にフォト
リソグラフィを行う露光波長と異なる波長での屈折率の
値を求める測定装置と、 測定された屈折率データと、予め作製された分光屈折率
データとを対応させて分光屈折率曲線を求める手段と、 該手段によって求められた分光屈折率曲線からフォトリ
ソグラフィを行う露光波長での吸収性無機反射防止膜の
屈折率の値を求める手段と、 該手段によって求められたフォトリソグラフィを行う波
長での吸収性無機反射防止膜の屈折率データと、予め作
製された定在波の振幅データとを対応させることによっ
て、成膜した吸収性無機反射防止膜の定在波低減効果を
判定する手段とを備えることを特徴とする吸収性無機反
射防止膜の膜質判定装置。
9. A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein the absorptive inorganic antireflection film formed on the base substrate is irradiated with light. , A film thickness of the absorptive inorganic antireflection film and a measuring device for obtaining the value of the refractive index at a wavelength different from the exposure wavelength for actually performing photolithography, the measured refractive index data, and the spectral refractive index data prepared in advance And a means for obtaining a spectral refractive index curve corresponding to the above, and a means for obtaining a value of the refractive index of the absorptive inorganic antireflection film at the exposure wavelength for performing photolithography from the spectral refractive index curve obtained by the means, The film was formed by associating the refractive index data of the absorptive inorganic antireflection film at the wavelength for performing photolithography determined by the method with the amplitude data of the standing wave prepared in advance. A film quality determination device for an absorptive inorganic antireflection film, comprising: means for determining a standing wave reduction effect of the absorptive inorganic antireflection film.
【請求項10】パターニングすべき下地基体とレジスト
間に介在する吸収性無機反射防止膜の膜質判定装置であ
って、 該下地基体上に成膜された吸収性無機反射防止膜にフォ
トリソグラフィを行う露光波長の光を照射してその波長
での反射率を求める測定装置と、 予め作製された反射率とレジストを積層した状態におけ
るレジスト―下地基体界面反射率の相関関係のデータか
ら、上記測定装置で求められた反射率をレジスト―下地
基体界面反射率に変換する手段と、 該手段によって変換されたレジスト―下地基体界面反射
率を、予め作製されたレジスト―下地基体界面反射率と
定在波の振幅の大きさとの関係のデータと対応させるこ
とによって、吸収性無機反射防止膜の定在波低減効果の
判定を行う手段とを備えることを特徴とする吸収性無機
反射防止膜の判定装置。
10. A film quality determination device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein photolithography is performed on the absorptive inorganic antireflection film formed on the base substrate. A measuring device that irradiates light of the exposure wavelength to obtain the reflectance at that wavelength, and the above-mentioned measuring device from the data of the correlation between the reflectance and the resist-base substrate interface reflectance in the state where the reflectance and the resist are laminated in advance. Means for converting the reflectance obtained in step 1 into the reflectance of the resist-underlying substrate interface, and the reflectance of the resist-underlying substrate interface converted by the means, with the previously prepared resist-underlying substrate interface reflectance and standing wave. And a means for determining the standing wave reducing effect of the absorptive inorganic antireflection film by associating with the data of the relationship with the magnitude of the amplitude of Machine antireflection film determination device.
【請求項11】パターニングすべき下地基体とレジスト
間に介在する吸収性無機反射防止膜の膜質判定装置であ
って、 該下地基体上に成膜された吸収性無機反射防止膜にX線
を照射して吸収性無機反射防止膜のX線回折強度を求め
る測定装置と、 該測定装置によって求められたX線回折強度と予め作製
されたX線回折強度と屈折率との関係のデータとの対比
から吸収性無機反射防止膜の屈折率を求める手段と、 該手段によって求められたフォトリソグラフィを行う露
光波長での吸収性無機反射防止膜の屈折率の値と、予め
作製した定在波の振幅データとを対応させることによっ
て、成膜した吸収性無機反射防止膜の定在波低減効果を
判定する手段とを備えることを特徴とする吸収性無機反
射防止膜の膜質判定装置。
11. A film quality judging device for an absorptive inorganic antireflection film interposed between a base substrate to be patterned and a resist, wherein the absorptive inorganic antireflection film formed on the base substrate is irradiated with X-rays. And a measuring device for obtaining the X-ray diffraction intensity of the absorptive inorganic antireflection film, and a comparison between the X-ray diffraction intensity obtained by the measuring device and the data of the relation between the X-ray diffraction intensity and the refractive index, which are prepared in advance. Means for obtaining the refractive index of the absorptive inorganic antireflection film from the above, the value of the refractive index of the absorptive inorganic antireflection film at the exposure wavelength for performing photolithography obtained by the means, and the amplitude of the standing wave prepared in advance A film quality determination device for an absorptive inorganic antireflection film, comprising means for determining a standing wave reducing effect of the formed absorptive inorganic antireflection film by associating with the data.
【請求項12】パターニングすべき下地基体上に化学的
蒸着法又は物理的蒸着法により吸収性無機反射防止膜を
成膜する装置と、請求項8乃至11いずれかに記載の膜
質判定装置とを具備することを特徴とする成膜判定装
置。
12. An apparatus for forming an absorptive inorganic antireflection film on a base substrate to be patterned by a chemical vapor deposition method or a physical vapor deposition method, and the film quality judging apparatus according to claim 8. A film forming determination apparatus comprising:
JP13336095A 1995-05-31 1995-05-31 Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device Pending JPH08327539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13336095A JPH08327539A (en) 1995-05-31 1995-05-31 Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13336095A JPH08327539A (en) 1995-05-31 1995-05-31 Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device

Publications (1)

Publication Number Publication Date
JPH08327539A true JPH08327539A (en) 1996-12-13

Family

ID=15102909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13336095A Pending JPH08327539A (en) 1995-05-31 1995-05-31 Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device

Country Status (1)

Country Link
JP (1) JPH08327539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122206A (en) * 2006-11-10 2008-05-29 Tokyo Electron Ltd Optical constant calculation method and substrate treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122206A (en) * 2006-11-10 2008-05-29 Tokyo Electron Ltd Optical constant calculation method and substrate treatment system

Similar Documents

Publication Publication Date Title
US5363171A (en) Photolithography exposure tool and method for in situ photoresist measurments and exposure control
US6327035B1 (en) Method and apparatus for optically examining miniature patterns
US5916717A (en) Process utilizing relationship between reflectivity and resist thickness for inhibition of side effect caused by halftone phase shift masks
KR102649117B1 (en) Method of inspecting defects of a substrate and defect inspection apparatus
US5968690A (en) Thin film thickness and optimal focus measuring using reflectivity
Kalk et al. Attenuated phase-shifting photomasks fabricated from Cr-based embedded shifter blanks
JPH08327539A (en) Method and device for judging quantity of absorbent inorganic antireflection film and film formation judging device
US7259850B2 (en) Approach to improve ellipsometer modeling accuracy for solving material optical constants N &amp; K
TW200949230A (en) A method for determining an optical property of an optical layer
Boher et al. Characterization of resists and antireflective coatings by spectroscopic ellipsometry in the UV and deep-UV range
KR102418325B1 (en) An Apparatus For Measuring Phase Shift For Blank Phase Shift Mask
Pettibone et al. Inspection of EUV reticles
Liberman et al. Determination of optical properties of thin films and surfaces in 157-nm lithography
Milner et al. Lithography process monitor using light diffracted from a latent image
Boher et al. New method for determination of the photoresist Dill parameters using spectroscopic ellipsometry
Chandhok et al. Techniques for directly measuring the absorbance of photoresists at EUV wavelengths
Callegari et al. Optical characterization of attenuated phase shifters
JP2802177B2 (en) Method for measuring dissolution rate of photoresist surface
JP2000100797A (en) Manufacture of element and manufacturing device
JPH10135112A (en) Measurement of resist photosensitive parameter and semiconductor lithography based thereon
KR950015551A (en) Manufacturing method and apparatus for manufacturing semiconductor integrated circuit device
JP2005331275A (en) Intensity measuring method of single-wavelength light in euv domain
Hilfiker et al. Metrology applications in lithography with variable angle spectroscopic ellipsometry
JP3339243B2 (en) X-ray reflectance analysis method and apparatus
Ho et al. In-situ monitoring of photoresist thickness contour