TW200949230A - A method for determining an optical property of an optical layer - Google Patents

A method for determining an optical property of an optical layer Download PDF

Info

Publication number
TW200949230A
TW200949230A TW98109258A TW98109258A TW200949230A TW 200949230 A TW200949230 A TW 200949230A TW 98109258 A TW98109258 A TW 98109258A TW 98109258 A TW98109258 A TW 98109258A TW 200949230 A TW200949230 A TW 200949230A
Authority
TW
Taiwan
Prior art keywords
reflection
transmission
value
spectrum
optical
Prior art date
Application number
TW98109258A
Other languages
Chinese (zh)
Inventor
Jurgen Schroder
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP08009845A external-priority patent/EP2128603A1/en
Priority claimed from US12/129,143 external-priority patent/US20090296100A1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200949230A publication Critical patent/TW200949230A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/558Measuring reflectivity and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings

Abstract

The invention relates to a method for determining an optical property of an optical Layer, comprising detecting (101) a transmission value or a transmission spectrum and a reflection value or a reflection spectrum of the optical Layer, and determining (103) the optical property based on the transmission value or the transmission spectrum, the reflection value or the reflection spectrum and a model of the optical Layer.

Description

200949230 六、發明說明: 【發明所屬之技術領域】 本發明係關於判定光層的厚度及光學特性。 【先前技術】 當今太陽能電池(s〇lar ceU)係由一或複數個光層所 組成’該等光層的光學特性顯著地影響到可能的能量生 ❹ 成。該等光層之一者係通常由矽(Si)形成的吸收層。對於 吸收層而言’能帶間隙(energy band gap )或其位置為 實質性參數’因為其決定被吸收及不被吸收之陽光的光 譜範圍。為了確保大表面太陽能電池的所需品質,因此 能帶間隙以及其他吸收特性必須符合有關吸收光譜之特 定需求。 能帶間隙的能量位置可以藉由適當的方式而加以影 響’例如藉由執行塗佈製程’而該製程係用以形成吸收 ® 層。該能量位置係特別地取決於所使用之矽的晶髖結 構,從而例如對於薄層太陽能電池而言,可以透過一或 . 複數個塗佈製程參數來調整在非晶矽和微晶矽之間的混 合比率’以使光能帶間隙的能量位置相應於一目標值。 該非晶矽和微晶矽的混合比率例如可以藉由拉曼光譜 (Raman-Spectroscopy)決定 ° 為了直接判定能帶間隙,例如可以從利用橢圓偏光計 (ellipsometer )的光學量測來判定折射率n(又)和消光係 200949230 數k(A)的光譜分佈,其中a係代表波長。 判定能帶間隙的已知概念之缺點為通常僅可以在實驗 室中幾何尺寸較小的樣品上執行能帶間隙之判定。因為 目前生產之樣品過大,而無法進行此種量測,因此必須 事先對其切割,而必需増加額外製程步驟。再者,需要 大量的量測以保證所需的製程均勻性,而其在實驗室條 件下比較耗時。200949230 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to determining the thickness and optical characteristics of an optical layer. [Prior Art] Today's solar cells (s〇lar ceU) are composed of one or a plurality of optical layers. The optical characteristics of these optical layers significantly affect the possible energy generation. One of the optical layers is an absorbing layer typically formed of bismuth (Si). For the absorbing layer, the 'energy band gap' or its position is a substantial parameter' because it determines the spectral range of the sunlight that is absorbed and not absorbed. In order to ensure the required quality of large surface solar cells, the band gap and other absorption characteristics must meet the specific requirements of the relevant absorption spectrum. The energy position with gaps can be affected by appropriate means, e.g., by performing a coating process, which is used to form the Absorbing ® layer. The energy position is particularly dependent on the crystal hip structure of the crucible used, such that, for example, for a thin-film solar cell, it can be adjusted between amorphous and microcrystalline by one or more coating process parameters. The mixing ratio 'to make the energy position of the light energy band gap correspond to a target value. The mixing ratio of the amorphous germanium and the microcrystalline germanium can be determined, for example, by Raman-Spectroscopy. In order to directly determine the energy band gap, for example, the refractive index n can be determined from an optical measurement using an ellipsometer (ellipsometer). (also) and the extinction system 200949230 number k (A) spectral distribution, where a represents the wavelength. A disadvantage of the known concept of determining the band gap is that the band gap determination can usually only be performed on samples of smaller geometry in the laboratory. Since the samples currently produced are too large to be measured, they must be cut beforehand and additional process steps must be added. Furthermore, a large amount of measurement is required to ensure the required process uniformity, which is time consuming under laboratory conditions.

關於如何判定大面積上的沉積塗層之特性,可以參考 EP1 632746和US 2006/0007430。其中所揭示的計算重點 係判定層厚度或層厚度分佈,其中額外地改變光層特 性,例如折射率η(λ)和消光係數ku)的光譜分佈等, 可以被認為係透過對所有波長均相等的常量(c〇nstant) 進行。因此,現有函數nU)和k(A)僅受到縱座標偏移。 但是對於量測光譜範圍内的所有波長所使用的常量,考 慮其光能帶間隙係位於一個量測的光譜範圍内並具其能 量位置會因所量測點的不同而有所改變,因此在橫座標 上導致的能量位置偏移不變。 【發明内容】 因此本發明的目的係提供用於一種更專門之概糸,而 用於判定例如光層的能帶間隙的光學特性。 此目的由申請專利範圍的獨立項之特性所實現。 在附屬項中係提供有利的實施例。 200949230 本發明係基於尋找到光層的光學模型,而此模型係用 於判定能帶間隙的已知方法場合,例如Tauc L〇rentz模 型,而其也可以用於基於光譜光度量測而判定能帶間 隙。根據本發明,可以基於採用光層的光學模型之光譜 透射值τ( λ )的量測以及光譜反射值R(又)之量測來判定 能帶間隙的位置。如果光層的模型例如可以藉由改變一 或數個參數而參數化,則可以判定例如各個能帶間隙, 而其可以與各透射及/或反射值關聯並且最近似對應於 ® 所偵測的值。例如可以基於採用光層模型的最小化作業 來判定光學特性》 為了偵測透射值和反射值,例如可以採用一可二維度 量測的量測系統來保證大面積塗層(例如大於i V表面 積)的光學均一性。此種量測系統例如可以判定光譜透 射τ(;ι)及光譜反射R(几)以及其他層特性,例如透射及 反射最大及最小的彩色光譜或能量位置。根據本發明, Φ 該類型之量測系統還可以用於判定光能帶間隙,從而該 等量測既不需要用橢圓偏光計執行,也不需要在 BreWster_angle下執行透射量測。取而代之的是例如可 以用光譜光度計來量測透射Τ(λ)及反射R(A)e可以儲 存例如對任何位置的量測資料,其中例如一電腦程式可 讀取每—位置的光譜資料,並將其饋送至適當的光學楔 型,基於此,可以判定例如光層厚度d、光譜分佈η(λ), 光譜分佈Κ(又)和光能帶間隙或其位置等光學特性。例如 可以藉由擬合軟體(fit-software )而基於光層的光學棋 5 200949230 型來债測光學特性。因此根據本發明之方法可以例如透 過擴展一系統來實現’而該系統在兩維度上進行量測, 以驗證大面積塗層的光學均一性,並將一光能帶間隙位 置解析判定作為額外參數。 為了判定例如沉積在大面積上的太陽能吸收層之光學 特性’可以採用具有較大掃描桌(scanning table)的橢圓 偏光計。但是’使用橢圓偏光計量測相較於使用光譜光 度计而需要較多時間。而且,相較於光譜光度計,橢圓 偏光計較昂貴,並且當調整樣品時,其需要較高的精准 度,而此比較耗時且容易出錯。 本發明係關於一種用於判定光層之光學特性方法,包 括:偵測該光層的透射值或透射光譜,及反射值或反射 光譜’並且基於該透射值或透射光譜、該反射值或反射 光譜和該光層之模型來判定光學特性。 根據一實施例,該光學特性為能帶間隙,或其位置, 或吸收係數’或消光係數,或折射率,或層厚度。 根據一實施例’可藉由光譜光度量測來偵測該透射值 或透射光譜及/或該反射值或反射光譜。 根據一實施例’可在光層的預定範圍内偵測透射值或 透射光譜及/或反射值或反射光譜。 根據一實施例,可在光層的預定部分中偵測透射值或 透射光譜及反射值或反射光谱,其中在該光層的一額外 預定部分中偵測額外透射值或額外透射光譜及/或額外 反射值或額外反射光譜’其中基於該些透射值或該些透 6 200949230 射光譜以及該些反射值或該些反射光譜而判定光學特性 的分佈,特別是一局部(.local )分佈。 根據一實施例’該光層為一太陽能(solar )吸收層。 根據一實施例,係採用該光層的模型而執行一最佳化 方法’特別是一非線性最佳化方法,藉以判定光學特性。 根據一實施例’可判定理論反射值或理論反射光譜以 及理論透射值或理論.透射光譜,其中為了判定光學特 性’係採用理論反射值或理論反射光譜以及理論透射值 ® 或理論透射光譜、偵測'的反射值或偵測的反射光譜以及 偵測的透射值或偵測的透射光譜,而藉以判定一與該光 層之該模型相關的評估函數的一最小值。 根據一實施例,光層之模型為一可參數化的光學模 型、或Urbach模型、或Tauc模型、或Tauc_L〇rentz模 型、或 Foroui-Bloomer 模型、或 Dasgupta 模型、或 〇’Leary 模型、或Cody-Lorentz-模型。 ❹ 本發明進一步關於一種用於判定光層之光學特性的裝 置,其係藉由:一偵測裝置(特別是一光譜光度計),係 用於偵測光層的透射值或透射光譜或反射值或反射光 譜;以及一處理器,係用於基於該透射值或透射光譜、 該反射值或反射光譜和一光層的模型來判定光學特性。 根據一實施例,該處理器的程式係配置以執行根據本 發明的方法》 本方法進一步關於一種電腦程式,當該電腦程式在電 腦上執行時,用於執行根據本發明的方法。 7 200949230 本發明進-步關於程式驅動袭置,其係配置以執行電 腦程式,而用以執行根據本發明之方法。 【實施方式】 如帛1®所*,為判定光層的光學特性,初始在步驟 101 H光層的透射和反射,丨中可並行或連續地執行 該偵測。在隨後步驟103,基於透射、反射和光層模型 ❹ 可判定光學特性(例如能帶間隙及/或消光係數及/或折射 率及/或層厚度)。光層模型較佳為光學模型,其例如可 以由評估函數來表徵,從而例如可以透過使該評估函數 最小化而判定光學特性。 為判定光學特性,尤其可以採用數學非線性最佳化方 法或最佳化演算法,例如Nelder和Mead的Simplex方 法、Powell演算法或透過遺傳演算法的最佳化方法。 從原理上考慮,非線性最佳化基於尋找到評估函數的 ❹ 最小值,該最小值可例如藉由以下取值判定:所量測之 反射值及/或透射值與例如理論計算反射值及/或透射值 之間的偏差平方和(sum of deviation squares )。理論反 射及/或透射值可說明為例如是吸收係數、折射率、層厚 度或例如能帶間隙的函數。較佳地,例如可選擇一目標 層厚度用於採用非線性最佳化演算法的最佳化方法,而 可例如判定目標層厚度,或者開始或初始值,其中該初 始值可例如為80、100、120、180和2〇〇 nm (奈米)。 % 200949230 第2圖示出利用量測電腦203判定一光層2〇ι的光學 特性之組件,其中包括區域(local)資料記憶體205和 分析電腦207。分析電腦2〇7可為單獨的電腦,並且可 與量測電腦203為不同的電腦。但是根據一實施例,量 測電腦203與分析電腦207根據本發明之功能可以在單 個電腦中實現。 將光層201例如提供至一光譜光度計(邛⑽… photometer ) 209,而光譜光度計2〇9包括透射埠(ρ〇η ) 眷 211和反射埠213。提供量測電腦203以控制量測處理, 並同時利用區域資料記憶體205以儲存量測的光譜透射 值Τ(λ )和反射值R(A ) » 區域資料記憶體205例如可以安裝在量測電腦2〇3的 硬體中。但是根據實施例,區域資料記憶體2〇5可以為 可攜式,並且可以連接到分析電腦207。再者,量測電 腦203和分析電腦207例如可以利用網路相互通訊。 參為了偵測光學特性,分析電腦2〇7檢索所量測的光譜 值Τ( λ )和R( λ ) ’並利用光學模型基於量測值而計算光 學特性,其中該特性例如為層厚度、折射率η(λ )的光譜 分佈、吸收率Κ( λ)的光譜分佈、以及光帶間隙(〇bg)。 知:供分析電腦207以例如執行一軟體,其配置用來判定 光譜分佈η(又)、k(又)和光能帶間隙&。 較佳基於光層的光學模型來執行光學特性的量測,例 如基於Tanc-Lorentz模型,其在由F JelHs〇n和M〇dene 發表的《Parameterization of the 〇ptical functi〇ns 〇f 200949230 amorphous materials in the inter band region (在内能帶 區域中非晶材料的光學函數之參數化)》(Applied Physics Letters 69 (3), July 15, 1996 and Applied Physics Letters, September 13,1996)中有所描述。Tauc-Lorentz 模型係以數學定義如下:For information on how to determine the properties of a deposited coating over a large area, reference is made to EP 1 632 746 and US 2006/0007430. The calculation focus disclosed therein is to determine the layer thickness or the layer thickness distribution, wherein additionally changing the characteristics of the light layer, such as the refractive index η (λ) and the extinction coefficient ku), can be considered to be equal to all wavelengths. The constant (c〇nstant) is performed. Therefore, the existing functions nU) and k(A) are only offset by the ordinate. However, for the constants used to measure all wavelengths in the spectral range, consider that the optical band gap is in a measured spectral range and its energy position will vary depending on the measured points. The energy position offset caused by the abscissa is unchanged. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an optical profile for determining a band gap, such as an optical layer, for a more specialized profile. This objective is achieved by the nature of the separate items of the patent application. Advantageous embodiments are provided in the dependents. 200949230 The present invention is based on finding an optical model of a light layer, which is used in known methods for determining band gaps, such as the Tauc L〇rentz model, which can also be used to determine energy based on spectral light metrology. With a gap. According to the present invention, the position of the band gap can be determined based on the measurement of the spectral transmission value τ(λ) of the optical model using the optical layer and the measurement of the spectral reflection value R (again). If the model of the optical layer can be parameterized, for example, by changing one or several parameters, then for example individual energy band gaps can be determined, which can be associated with the respective transmission and/or reflection values and most closely correspond to the detected by ® value. For example, the optical characteristics can be determined based on the minimization operation using the optical layer model. In order to detect the transmission value and the reflection value, for example, a two-dimensional measurement measurement system can be used to ensure a large-area coating (for example, larger than the i V surface area). Optical uniformity. Such a measurement system can, for example, determine spectral transmission τ (; ι) and spectral reflection R (several) as well as other layer characteristics such as transmission and reflection of the largest and smallest color spectrum or energy position. In accordance with the present invention, Φ of this type of measurement system can also be used to determine the optical band gap such that the measurements do not need to be performed with an ellipsometer or perform a transmission measurement under the BreWster_angle. Instead, for example, a spectrophotometer can be used to measure the transmission Τ (λ) and the reflection R (A) e can store, for example, measurement data for any location, wherein, for example, a computer program can read the spectral data for each location. And feeding it to an appropriate optical wedge type, based on which optical characteristics such as the optical layer thickness d, the spectral distribution η (λ), the spectral distribution Κ (again), and the optical band gap or its position can be determined. For example, optical properties can be measured by optical layer-based optical chess 5 200949230 by fitting software (fit-software). Therefore, the method according to the present invention can be implemented, for example, by expanding a system, and the system is measured in two dimensions to verify the optical uniformity of the large-area coating, and an optical energy band gap position determination is taken as an additional parameter. . In order to determine the optical characteristics of, for example, a solar absorbing layer deposited on a large area, an ellipsometer having a large scanning table may be employed. However, it takes more time to use ellipsometry than to use a spectrophotometer. Moreover, ellipsometers are more expensive than spectrophotometers and require higher precision when adjusting samples, which is time consuming and error prone. The present invention relates to a method for determining optical characteristics of an optical layer, comprising: detecting a transmission value or a transmission spectrum of the optical layer, and a reflection value or a reflection spectrum 'and based on the transmission value or transmission spectrum, the reflection value or reflection The spectrum and the model of the layer of light determine the optical properties. According to an embodiment, the optical characteristic is an energy band gap, or a position thereof, or an absorption coefficient or an extinction coefficient, or a refractive index, or a layer thickness. The transmission or transmission spectrum and/or the reflection or reflection spectrum can be detected by spectral light metrology according to an embodiment. According to an embodiment, a transmission value or a transmission spectrum and/or a reflection value or a reflection spectrum can be detected within a predetermined range of the optical layer. According to an embodiment, the transmission value or the transmission spectrum and the reflection value or the reflection spectrum may be detected in a predetermined portion of the optical layer, wherein an additional transmission value or an additional transmission spectrum is detected in an additional predetermined portion of the optical layer and/or An additional reflectance value or an additional reflectance spectrum 'where the distribution of optical properties, in particular a partial (.local) distribution, is determined based on the transmission values or the transmitted spectra of the 200949230 and the reflected values or the reflected spectra. According to an embodiment, the optical layer is a solar absorber layer. According to one embodiment, an optimization method, particularly a non-linear optimization method, is performed using the model of the optical layer to determine optical characteristics. According to an embodiment, a theoretical reflection value or a theoretical reflection spectrum and a theoretical transmission value or a theoretical transmission spectrum can be determined, wherein a theoretical reflection value or a theoretical reflection spectrum and a theoretical transmission value or a theoretical transmission spectrum are used for determining optical characteristics. The reflected value or the detected reflected spectrum and the detected transmitted value or the detected transmitted spectrum are measured to determine a minimum value of the evaluation function associated with the model of the optical layer. According to an embodiment, the model of the optical layer is a parametric optical model, or a Urbach model, or a Tauc model, or a Tauc_L〇rentz model, or a Foroui-Bloomer model, or a Dasgupta model, or a 'Leary model, or a Cody -Lorentz-model. The invention further relates to a device for determining the optical properties of an optical layer by: a detecting device (especially a spectrophotometer) for detecting the transmission value or transmission spectrum or reflection of the optical layer a value or a reflectance spectrum; and a processor for determining optical characteristics based on the transmission or transmission spectrum, the reflection or reflection spectrum, and a model of an optical layer. According to an embodiment, the program of the processor is configured to perform the method according to the invention. The method further relates to a computer program for performing the method according to the invention when the computer program is executed on a computer. 7 200949230 The present invention further relates to a program-driven attack that is configured to execute a computer program for performing the method in accordance with the present invention. [Embodiment] If 帛1®* is used, in order to determine the optical characteristics of the optical layer, the detection may be performed in parallel or continuously in the transmission and reflection of the H layer in step 101 initially. In a subsequent step 103, optical properties (e.g., band gap and/or extinction coefficient and/or refractive index and/or layer thickness) can be determined based on transmission, reflection, and optical layer models. The optical layer model is preferably an optical model which can be characterized, for example, by an evaluation function such that optical characteristics can be determined, for example, by minimizing the evaluation function. In order to determine optical characteristics, mathematical nonlinear optimization methods or optimization algorithms such as Nelder and Mead's Simplex method, Powell algorithm or genetic algorithm optimization method can be used. In principle, the nonlinear optimization is based on finding the ❹ minimum value of the evaluation function, which can be determined, for example, by the following values: the measured reflection value and/or the transmission value and, for example, the theoretically calculated reflection value and / or sum of deviation squares between transmission values. The theoretical reflection and/or transmission values can be illustrated as, for example, absorption coefficients, refractive indices, layer thicknesses or functions such as band gaps. Preferably, for example, a target layer thickness may be selected for an optimization method using a nonlinear optimization algorithm, and for example, a target layer thickness, or a start or initial value may be determined, wherein the initial value may be, for example, 80. 100, 120, 180 and 2 〇〇 nm (nano). % 200949230 Fig. 2 shows a component for determining the optical characteristics of a light layer 2 〇 by the measurement computer 203, which includes a local data memory 205 and an analysis computer 207. The analysis computer 2〇7 can be a separate computer and can be a different computer than the measurement computer 203. However, according to an embodiment, the functions of the measurement computer 203 and the analysis computer 207 in accordance with the present invention can be implemented in a single computer. The optical layer 201 is supplied, for example, to a spectrophotometer (邛(10)... photometer) 209, and the spectrophotometer 2〇9 includes a transmission 埠(ρ〇η) 211 211 and a reflection 埠213. A measurement computer 203 is provided to control the measurement process, and at the same time, the spectral data transmission value Τ(λ) and the reflection value R(A) are stored by using the area data memory 205. The area data memory 205 can be installed, for example, in the measurement. The computer is 2〇3 in the hardware. However, according to an embodiment, the regional data memory 2〇5 may be portable and may be connected to the analysis computer 207. Furthermore, the measurement computer 203 and the analysis computer 207 can communicate with each other, for example, using a network. In order to detect the optical characteristics, the analysis computer 2〇7 retrieves the measured spectral values Τ(λ) and R(λ)′ and calculates the optical characteristics based on the measured values using an optical model, such as layer thickness, The spectral distribution of the refractive index η(λ), the spectral distribution of the absorptance Κ(λ), and the optical band gap (〇bg). It is known that the analysis computer 207, for example, executes a software configured to determine the spectral distribution η (又作), k (又作), and the optical band gap & The measurement of optical properties is preferably performed based on an optical model of the optical layer, for example based on the Tanc-Lorentz model, which is published by F JelHs〇n and M〇dene, "Parameterization of the 〇ptical functi〇ns 〇f 200949230 amorphous materials In the inter band region (described in Applied Physics Letters 69 (3), July 15, 1996 and Applied Physics Letters, September 13, 1996) . The Tauc-Lorentz model is mathematically defined as follows:

, ACa^ , E〇+E 2+aE εΧΕ)- 6τ,{«ή+—-In —=-S-^ lV 11 2πζΑαΕ0 E02+Eg2-aEg 2E +<x — 2E + cc πζ% :-arctan —5-+arctan— - 2AE0 πζ^α A£0C E2+Et ^, ACa^ , E〇+E 2+aE εΧΕ)- 6τ, {«ή+—-In —=-S-^ lV 11 2πζΑαΕ0 E02+Eg2-aEg 2E +<x — 2E + cc πζ% :- Arctan —5-+arctan— - 2AE0 πζ^α A£0C E2+Et ^

C C λ:+2 arctan > l J \E-EC 2AE0C<4C C λ: +2 arctan > l J \E-EC 2AE0C<4

EE

In E+Ea 5 -In \E-Eg[{E+Eg) J(JS02-Bs2)2 + Eg2C2 針對E>Eg AE0C(E-Eg)2 1 (B2-El)+C2E2'1 ε2(Ε) = 0 針對ESEg 200949230 ato = (Bg2-Bq2)E2+(Eg2Cl)-E0\E02+3Eg2) = {E2 - ^〇2)(£〇2 + Es2)+^g2C2) =(52-72)2+2!^. 4 a = ^4E0z-C2 如此’ ε ϊ(Ε)和ε 2(E)代表介電常數的實數部分和虛數 部分’Ε是電磁波的能量,其中,e [eV] = 124〇a[nm], ε ~代表對於較大波長(λ— 〇〇)之介電函數的實數部分,a 是Tauc-Lorentz振蕩器的振幅,c是Tauc-Lorentz振蕩 器的寬度’ E0代表Tauc-Lorentz振蕩器的係數,其包括 平均波長和平均能量的比率。另外,Eg描述能帶間隙的 能量’其令如果沒有發生吸收現象,則保持以下關係: 對於ε 2=0,E$Eg。此外’保持以下關係:ε i=n2_k2和^ 2=2nk ° 第3圖著重說明根據能量£的吸收分佈^2,其中能亨 間隙Eg的位置由箭頭指示。基於在帛3圖中示出的》 佈能帶間隙的位置及其移位例如可以被認 光學模型的非必須可選擇的參數。 疋取决方 第4圖著重說明用 X1300毫米)上偵測 於在破璃片4〇1(其尺寸例如為1100 TQ)和RU)的預定量剛點。量測 200949230 點同時判定一量測蘭电 圖案,例如包括441個資料點,& 些資料點例如在第4 1固貝卄點,而該 X轴偏移53毫来。外=出的Y軸方向偏㈣毫来,在 2〇毫米。在第4圖中^_從玻璃片的邊緣偏移例如 可以為15分鐘。 置列碍間例如 為判定光學特性,在 2〇3可針對較大面積圖中示出的量測或控制電腦 ^ 、測系統(正被使用)初而始判 定例如在第4圖中示屮认旦 4 參 的量測點。再者,針對透射與反 射量測而定義額外沾I μ 定掃、量測參數,例如特定掃描速度或特 疋掃描精麵。用於0GB判定的分析或處理電腦2〇7當 時例如處於閒置狀態。 有可能例如利用在隹 第2圖中示出的組件來執行對τ(入) 和R( λ )在待測層的牿& 特足關注部分進行手動單次量測,其 中在處理電腦207收隹胡从且,> 收集關於量測的資訊,並將與光層相 關的基板資料載入。針對虚 奸對處理目的’在處理電腦2〇7可 進一步預先判定相關# 關的光譜範圍’其中例如可利用前述 擬合軟體(fit-software、袖紅 如 ware )執行。隨後’將藉此得到的結 果進行評估以用於在丨中 ,β 、判定’如果理論計算的光譜分佈或光 譜值與量測結果不同,則判定其差別大小。因此,例如 小於〇·5%的差異可被^略。藉由執行-個導致在理論計 算的光譜值和量測結果之間產生更小差異的修改,而有 可能改良量測概念。進—步,可修改光譜值。 在額外步驟中,在另一關注區域而例如透過量測電 腦203可手動執行額外的τ(λ)和R(A)量測其中針對 12 200949230 額外位置的量測結果之處理係在分析電腦2〇7中執行, 其係採用擬合軟體,其中每個結果的描述如前所述。 在額外步騾中,例如可藉由量測電腦203而啟動自動 量測,其中依序地到達前述的程式化量測點,並且其中 在預定位置處量測Τ(λ)和RU卜其後,分析電腦2〇7 可開始自動處理,因此其初始地被監視例如對於一量測 點(例如對一第一量測點)是否出現一預期的光譜對 鲁 (sPectralPair) Τ(λ}如果測試結果為正,則可以載入 ΊΧλ )和R(又)’其中係根據量測概念來執行該處理。因 此’可針對該點而判定例如層厚度及/或能帶間隙Eg。另 外’可計算ε〇β、A、€和E〇。隨後,其可被監視是否出 現下一個預期的光譜對Τ( λ )和R( λ ),其中係持續執行 上述方法’直至最後的預定量測點已經處理。處理結果 例如可以儲存在分析電腦2〇7中。最後,量測電腦2〇3 和分析電腦207可以被設為閒置模式,直至量測另一樣 品9 根據本發明的方法例如可以用來判定沉積在大面積上 的太陽能吸收層之光能帶間隙。因此在第2圖中示出的 示例大面積量測系統可以用於判定光譜透射Τ( λ )和反 射R(;l),其在光層的預定部分而量測該等值。 【圖式簡單說明】 參考附圖還描述了其他實施例。附圖中: 13 200949230 第1圖係用於判定光學特性的方法之流程圖; 第2圖係判定光學特性的組件; 第3圖係以能量為函數的消光係數分佈;以及 第4圖係量測圖案。 【主要元件符號說明】 101 步驟 103 步驟 201 光層 203 電腦 205 記憶體 207 電腦 209 光譜光度計 211 透射埠 213 反射埠 401 玻璃片In E+Ea 5 -In \E-Eg[{E+Eg) J(JS02-Bs2)2 + Eg2C2 for E>Eg AE0C(E-Eg)2 1 (B2-El)+C2E2'1 ε2(Ε ) = 0 for ESEg 200949230 ato = (Bg2-Bq2)E2+(Eg2Cl)-E0\E02+3Eg2) = {E2 - ^〇2)(£〇2 + Es2)+^g2C2) =(52-72)2 +2!^. 4 a = ^4E0z-C2 Thus 'ε ϊ(Ε) and ε 2(E) represent the real and imaginary parts of the dielectric constant 'Ε is the energy of the electromagnetic wave, where e [eV] = 124 〇a[nm], ε ~ represents the real part of the dielectric function for the larger wavelength (λ - 〇〇), a is the amplitude of the Tauc-Lorentz oscillator, and c is the width of the Tauc-Lorentz oscillator 'E0 stands for Tauc The coefficient of the Lorentz oscillator, which includes the ratio of the average wavelength to the average energy. In addition, Eg describes the energy of the band gap, which maintains the following relationship if no absorption occurs: For ε 2 = 0, E$Eg. Further, the following relationship is maintained: ε i = n2_k2 and ^ 2 = 2nk ° Fig. 3 highlights the absorption distribution ^2 according to the energy £, wherein the position of the energy gap Eg is indicated by an arrow. The position based on the band gap shown in Fig. 3 and its displacement can be, for example, a non-essentially selectable parameter of the optical model.第 决 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 。 。 X X X X X X X Measurement 200949230 Point simultaneously determines a quantity of blue-light patterns, for example, including 441 data points, & some data points, for example, at the 41st solid point, and the X-axis is offset by 53 milli. Outside = out of the Y-axis direction (four) millimeters, at 2 mm. In Fig. 4, the offset from the edge of the glass sheet can be, for example, 15 minutes. For example, in the case of determining the optical characteristics, the measurement or control computer (measurement system) shown in the larger area map can be determined at the beginning of the determination, for example, in FIG. The measuring point of the Dandan 4 parameter. Furthermore, additional sizing and measuring parameters such as specific scanning speeds or special scanning fine surfaces are defined for transmission and reflection measurements. The analysis or processing computer for the 0 GB decision is, for example, in an idle state. It is possible, for example, to perform a manual single measurement of the τ &; 特 特 特 , , , , , , , , , , , , , , , , , , , , , , , , , , , , Collecting information, and collecting information about the measurement, and loading the substrate data related to the optical layer. For the purpose of dealing with fraud, the processing of the computer 2 can further determine the spectral range of the relevant #2, which can be performed, for example, using the aforementioned fitting software (fit-software, sleeves such as ware). Then, the results obtained therefrom are evaluated for use in 丨, β, decision ‘if the theoretically calculated spectral distribution or spectral value is different from the measurement result, the difference size is determined. Therefore, for example, a difference of less than 〇·5% can be abbreviated. It is possible to improve the measurement concept by performing a modification that results in a smaller difference between the theoretically calculated spectral values and the measurement results. Step-by-step to modify the spectral value. In an additional step, the additional τ(λ) and R(A) measurements can be manually performed in another region of interest, such as through the measurement computer 203, wherein the processing of the measurement results for the 12 200949230 additional locations is in the analysis computer 2 Executed in 〇7, which uses a fitting software, where each result is described as previously described. In an additional step, automatic measurement can be initiated, for example, by measuring computer 203, where the aforementioned stylized measurement points are sequentially reached, and wherein Τ(λ) and RU are measured at predetermined positions. The analysis computer 2〇7 can start automatic processing, so it is initially monitored, for example, for a certain measuring point (for example, for a first measuring point) whether an expected spectral pair s (PectralPair) Τ (λ} is tested. If the result is positive, then ΊΧλ ) and R (also) can be loaded, which is performed according to the measurement concept. Therefore, for example, the layer thickness and/or the band gap Eg can be determined for this point. In addition, ε〇β, A, €, and E〇 can be calculated. It can then be monitored for the next expected spectral pair Τ(λ) and R(λ), where the above method continues to be performed until the last predetermined measurement point has been processed. The processing result can be stored, for example, in the analysis computer 2〇7. Finally, the measurement computer 2〇3 and the analysis computer 207 can be set to idle mode until another sample is sampled. 9 The method according to the invention can be used, for example, to determine the optical band gap of a solar absorption layer deposited over a large area. . Thus the exemplary large area measurement system illustrated in Figure 2 can be used to determine the spectral transmission Τ(λ) and the reflection R(;l), which are measured at predetermined portions of the optical layer. BRIEF DESCRIPTION OF THE DRAWINGS Other embodiments are described with reference to the drawings. In the drawings: 13 200949230 Fig. 1 is a flow chart of a method for determining optical characteristics; Fig. 2 is a component for determining optical characteristics; Fig. 3 is a distribution of extinction coefficients as a function of energy; Measure the pattern. [Main component symbol description] 101 Step 103 Step 201 Optical layer 203 Computer 205 Memory 207 Computer 209 Spectrophotometer 211 Transmission 213 Reflection 埠 401 Glass

Claims (1)

200949230 七、申請專利範圍: 1. 一種用於判定一光層之一光學特性的方法,包括: 偵測(101)該光層的一透射值或一透射光譜以及一 反射值或一反射光譜;以及 基於該透射值或該透射光譜、該反射值或該反射光 譜以及該光層的一模型以判定(103)該光學特性。 2. 如申請專利範圍第1項所述之方法,其中該光學特 性為一能帶間隙,或一吸收係數或一消光係數或一折射 率或一層厚度。 3. 如申請專利範圍第1項或第2項所述之方法,其中 係藉由一光譜光度量測(spectral ph〇t〇metric measurement)來偵測該透射值或該透射光譜及/或該反 射值或該反射光譜。 ❹ 4. 如申請專利範圍第1項所述之方法,其中係在該光 層的一預定部分中偵測該透射值或該透射光譜及/或該 反射值或該反射光譜。 5. 如申請專利範圍第1項所述之方法,其中係在該光 層的一預定部分中偵測該透射值或該透射光譜及該反射 值或該反射光譜’其中在該光層的另一預定部分中偵測 15 200949230 一額外透射值或一額外透射光譜及一額外反射值或一額 外反射光譜,以及其中係基於該些透射值或該些透射光 譜以及該些反射值或該些反射光譜而判定該光學特性的 一分佈’特別是一局部(l〇cal)分佈。 6.如申請專利範圍第1項所述之方法,其中該光層為 一太陽能(solar)吸收層〇 7·如申請專利範圍第1項所述之方法,其中係採用該 光層的該模型而執行一最佳化方法,且特別是一非線性 最佳化方法,用以判定該光學特性。 8. 如申請專利範圍第1項所述之方法,其中基於該光 層之該模型’則可判定一理論反射值或一理論反射光譜 以及一理論透射值或一理論透射光譜,並且其中為了判 定該光學特性,係採用該理論反射值或該理論反射光譜 以及該理論透射值或該理論透射光譜、該偵測的反射值 或該偵測的反射光譜以及該偵測的透射值或該偵測的透 射光譜’而藉以判定與該光層之該模型關聯的一評估函 數的一最小值。 9. 如申請專利範圍第1項所述之方法,其中該光層的 該模型為一可參數化(parameterized )的光學模型,或 疋 一 Urbach 模型、或 一 Tauc 模型、或 一 Tauc-Lorentz 16 200949230 模型、或一 Forouhi-Bloomer 模型、或一Dasgupta 模型、 或 O’Leary 模型,或一’Cody-Lorentz 模型。 10· —種用於判定一光層之一光學特性的裝置,包括: 一偵測裝置,特別是一光譜光度計,係用於偵測該 光層的一透射值或一透射光譜及一反射值或一反射光 譜;以及 一處理器,係用於基於該透射值或該透射光譜、該 反射值或該反射光譜和該光層之一模型來判定該光學特 性。 11.如申請專利範圍第項所述之裝置,立 且丹甲該處理器 係經程式化,並配置以執行根據申請專利範圍第^ 項之一者所述的方法。 9 參 12. -種電腦程式’當該電職式在—電腦巾 係用於執行根據申請專利範園第1至 >, 該方法。 ㉟之―者所述的 ’而藉 的該方 13. —種程式化設備,係配置以運行一電腦程 以執行根據申請專利範圍第1至9焐 哨 < 一者所 法。 17200949230 VII. Patent Application Range: 1. A method for determining an optical characteristic of an optical layer, comprising: detecting (101) a transmission value or a transmission spectrum of the optical layer and a reflection value or a reflection spectrum; And determining (103) the optical characteristic based on the transmission value or the transmission spectrum, the reflection value or the reflection spectrum, and a model of the optical layer. 2. The method of claim 1, wherein the optical characteristic is a band gap, or an absorption coefficient or an extinction coefficient or a refractive index or a layer thickness. 3. The method of claim 1 or 2, wherein the transmission value or the transmission spectrum is detected by a spectral ph〇t〇metric measurement and/or The reflection value or the reflection spectrum. 4. The method of claim 1, wherein the transmission value or the transmission spectrum and/or the reflection value or the reflection spectrum is detected in a predetermined portion of the optical layer. 5. The method of claim 1, wherein detecting the transmission value or the transmission spectrum and the reflection value or the reflection spectrum in a predetermined portion of the optical layer 'where another in the optical layer Detecting 15 200949230 an additional transmission value or an additional transmission spectrum and an additional reflection value or an additional reflection spectrum in a predetermined portion, and based therein on the transmission values or the transmission spectra and the reflection values or the reflections A distribution of the optical properties is determined by the spectrum, in particular a partial distribution. 6. The method of claim 1, wherein the optical layer is a solar absorbing layer, and the method of claim 1, wherein the model of the optical layer is used. An optimization method, and in particular a nonlinear optimization method, is performed to determine the optical characteristic. 8. The method of claim 1, wherein the model based on the optical layer determines a theoretical reflection value or a theoretical reflection spectrum and a theoretical transmission value or a theoretical transmission spectrum, and wherein The optical characteristic is the theoretical reflection value or the theoretical reflection spectrum and the theoretical transmission value or the theoretical transmission spectrum, the detected reflection value or the detected reflection spectrum, and the detected transmission value or the detection. The transmission spectrum' is used to determine a minimum of an evaluation function associated with the model of the optical layer. 9. The method of claim 1, wherein the model of the optical layer is a parameterized optical model, or a Urbach model, or a Tauc model, or a Tauc-Lorentz 16 200949230 model, or a Forouhi-Bloomer model, or a Dasgupta model, or an O'Leary model, or a 'Cody-Lorentz model. 10. A device for determining optical properties of an optical layer, comprising: a detecting device, in particular a spectrophotometer, for detecting a transmission value or a transmission spectrum and a reflection of the optical layer a value or a reflection spectrum; and a processor for determining the optical characteristic based on the transmission value or the transmission spectrum, the reflection value or the reflection spectrum and a model of the optical layer. 11. The apparatus of claim 1, wherein the processor is programmed and configured to perform the method of one of the claims. 9 Ref. 12. - A computer program 'When the electric job is in - the computerized towel is used to execute the method according to the patent application No. 1 to >. 35. The borrower's borrowed party 13. The stylized device is configured to run a computer program to execute the method according to claims 1 to 9 of the patent application. 17
TW98109258A 2008-05-29 2009-03-20 A method for determining an optical property of an optical layer TW200949230A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08009845A EP2128603A1 (en) 2008-05-29 2008-05-29 A method for determining an optical property of an optical layer
US12/129,143 US20090296100A1 (en) 2008-05-29 2008-05-29 Method for determining an optical property of an optical layer

Publications (1)

Publication Number Publication Date
TW200949230A true TW200949230A (en) 2009-12-01

Family

ID=40756429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109258A TW200949230A (en) 2008-05-29 2009-03-20 A method for determining an optical property of an optical layer

Country Status (2)

Country Link
TW (1) TW200949230A (en)
WO (1) WO2009143921A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012795A1 (en) 2010-07-23 2012-01-26 First Solar, Inc In-line metrology system and method
WO2014105557A1 (en) 2012-12-27 2014-07-03 First Solar, Inc. Method and system for in-line real-time measurements of layers of multilayered front contacts of photovoltaic devices and calculation of opto-electronic properties and layer thicknesses thereof
WO2014105555A1 (en) * 2012-12-27 2014-07-03 First Solar, Inc. Method and system for in-line real-time calculation of semiconductor layer thicknesses
US9664734B2 (en) * 2015-05-21 2017-05-30 Kla-Tencor Corporation Multi-oscillator, continuous Cody-Lorentz model of optical dispersion
BE1025251B1 (en) * 2017-05-22 2018-12-18 Soleras Advanced Coatings Bvba Feedback system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123470B4 (en) * 2001-05-15 2010-08-19 Carl Zeiss Jena Gmbh Method and arrangement for non-contact determination of product properties

Also Published As

Publication number Publication date
WO2009143921A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Hilfiker et al. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry
US7478019B2 (en) Multiple tool and structure analysis
Sullivan et al. Deposition error compensation for optical multilayer coatings. I. Theoretical description
JP5444610B2 (en) Method for measuring process parameters of semiconductor manufacturing process using optical measurement
TW200949230A (en) A method for determining an optical property of an optical layer
CN1811378A (en) Method of determining physical properties of an optical layer or layer system
Fried et al. Expanded beam (macro-imaging) ellipsometry
Trost et al. Roughness and scatter in optical coatings
CN116879181A (en) Method for measuring optical characteristics and geometric characteristics of film material
KR102504761B1 (en) Method for Measuring Properties of Thin Film
CN113281266A (en) Spectral combined analysis method of film substance and application thereof
Zhaoxian et al. Generalized simulated annealing algorithm applied in the ellipsometric inversion problem
Murata et al. Characterization of μc-Si: H/a-Si: H tandem solar cell structures by spectroscopic ellipsometry
Montecchi et al. Thickness and model optimization in characterization of optical interference films by using discontinuities of n (lambda) solutions
US8233158B2 (en) Method and apparatus for determining the layer thickness and the refractive index of a sample
Popov et al. Spectroscopic ellipsometric characterization of transparent thin film amorphous electronic materials: integrated analysis
EP2128603A1 (en) A method for determining an optical property of an optical layer
JP2014016194A (en) Optical characteristics measuring system and optical characteristics measuring method
Liu et al. Interference-aided spectrum-fitting method for accurate film thickness determination
CN110687052A (en) Method and system for measuring optical band gap
Kong et al. Analysis of time-evolved spectroscopic ellipsometry data from patterned structures for etching process monitoring and control
US20090296100A1 (en) Method for determining an optical property of an optical layer
Zudans et al. In situ measurements of sensor film dynamics by spectroscopic ellipsometry. Demonstration of back-side measurements and the etching of indium tin oxide
CN109856114A (en) The determination method of the multi-layer graphene number of plies of chemical vapour deposition technique preparation
TWI481850B (en) Crystallization index acquisition apparatus and crystallization index acquisition method