JPH08327538A - Spectral analysis measuring device - Google Patents
Spectral analysis measuring deviceInfo
- Publication number
- JPH08327538A JPH08327538A JP15708495A JP15708495A JPH08327538A JP H08327538 A JPH08327538 A JP H08327538A JP 15708495 A JP15708495 A JP 15708495A JP 15708495 A JP15708495 A JP 15708495A JP H08327538 A JPH08327538 A JP H08327538A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- conical
- amount
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010183 spectrum analysis Methods 0.000 title abstract 3
- 238000009792 diffusion process Methods 0.000 claims abstract description 30
- 238000002835 absorbance Methods 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims description 28
- 238000004611 spectroscopical analysis Methods 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229930002875 chlorophyll Natural products 0.000 description 10
- 235000019804 chlorophyll Nutrition 0.000 description 10
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000013074 reference sample Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000005338 frosted glass Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8466—Investigation of vegetal material, e.g. leaves, plants, fruits
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は分光分析測定装置に関
し、特に植物の葉の成分量測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic measurement device, and more particularly to a plant leaf component amount measurement device.
【0002】[0002]
【従来の技術】従来の技術においては、葉に含まれる生
育に関わる成分量を直接測定できる簡便な装置はなかっ
た。これに代わるものとして、従来から葉の葉色を色票
(カラースケール)と比較して窒素量を推定したり、対
象の葉に光を照射してその透過光から赤色光量と赤外光
量とを測定することにより葉に含まれる葉緑素量(クロ
ロフィル)を測定して、葉緑素量から窒素量を推定して
いた。また、ここで推定された窒素量と生育時期とに見
合う施肥量を判断していた。特に稲作に見られるよう
に、推定された窒素量により判断されるその後の施肥時
期と施肥量は、穀物の収量を確保しながら稲が倒伏しな
いようにするための重要なポイントとなっている。2. Description of the Related Art In the prior art, there has been no simple device for directly measuring the amount of growth-related components contained in leaves. As an alternative to this, conventionally, the leaf color is compared with a color chart to estimate the amount of nitrogen, or the target leaf is irradiated with light to determine the red light amount and the infrared light amount from the transmitted light. By measuring the amount of chlorophyll contained in the leaves (chlorophyll), the amount of nitrogen was estimated from the amount of chlorophyll. Moreover, the amount of fertilizer to be applied, which is commensurate with the estimated amount of nitrogen and the growing season, was determined. Especially, as seen in rice cultivation, the subsequent fertilization timing and fertilization amount, which are judged by the estimated nitrogen content, are important points for securing the grain yield and preventing the rice from lodging.
【0003】さて、葉の葉色を色票と比較する方法は経
験を要するだけでなく、目に見える葉色が天候や太陽光
の位置によって左右されることや、植物の一部を見るか
あるいは全体を見るかの違いによって、また観察角度に
よっても判断される結果が異なることが多い。しかし、
測定方法が簡便なことや、使用される色票が安価なこと
などから利用率が高いのも事実である。Now, the method of comparing the leaf color of a leaf with a color chart requires not only experience, but also that the visible leaf color depends on the weather and the position of sunlight, or whether a part of a plant is seen or the whole is seen. The judgment result often differs depending on whether or not the user looks at, and also depending on the observation angle. But,
It is also a fact that the utilization rate is high due to the simple measurement method and the inexpensive color chips used.
【0004】この色票に代わるものとして葉緑素測定装
置が開発されている。代表的な葉緑素計の測定原理は、
図3に示すように、測定しようとする葉50に光源51
から光を照射してその透過光を測定するもので、透過光
はダイクロイックミラー52によって葉緑素に関連する
クロロフィル成分に影響される赤色光域(受光素子5
3)の透過光量と影響されない赤外光域(受光素子5
4)の透過光量とを測定してその光量差を求めることに
よって被破壊で単位面積当たりのクロロフィル濃度を推
定している。ただし実際にはこのクロロフィル濃度と窒
素濃度とが比例関係にあることを前提として窒素濃度を
推定し、植物への施肥量を決定することに利用されてい
る。A chlorophyll measuring device has been developed as an alternative to the color chart. The measurement principle of a typical chlorophyll meter is
As shown in FIG. 3, the light source 51 is attached to the leaf 50 to be measured.
The transmitted light is measured by irradiating light from the red light region (the light receiving element 5 which is affected by the chlorophyll component related to chlorophyll by the dichroic mirror 52).
3) The amount of transmitted light and the infrared light region that is not affected (the light receiving element 5
The chlorophyll concentration per unit area is estimated to be destroyed by measuring the transmitted light amount in 4) and obtaining the difference in the light amounts. However, in reality, the nitrogen concentration is estimated on the assumption that the chlorophyll concentration and the nitrogen concentration are in a proportional relationship, and this is used to determine the amount of fertilizer applied to plants.
【0005】ところで、本出願人は、植物の窒素量を簡
便に測定する葉の成分量測定装置を、特願平6−165
871号により既に考案している。これを図4を参照し
ながら詳細に説明する。図4は葉の成分量測定装置の主
要構成である光学測定部60であり、被測定葉61に任
意波長の近赤外光を照射するための発光手段62と、発
光ダイオード等からなる近赤外発光素子63と任意波長
の近赤外光のみが通過する狭帯域フィルター64とから
構成している。そして、被測定葉61の葉面に均一に近
赤外光が照射されるよう被測定葉61を平面的に挟持す
るとともに、挟持した被測定葉61からの透過光と反射
光とを測定するための測定窓65A,65Bを開設した
葉保持手段66A,66Bを設けてある。この葉保持手
段66Bの測定窓65Bと前記発光手段62とは積分球
67によって光学的に連絡してある。つまり、発光手段
62は照射光を積分球67内部に照射して散乱するよう
積分球67に固設してあり、さらに積分球67には前記
測定窓65Bに連通する開口部68と、他方にシリコン
フォトダイオードからなる反射受光手段69を固設する
開口部70を開設してある。By the way, the applicant of the present invention has proposed a leaf component amount measuring device for simply measuring the nitrogen amount of a plant, in Japanese Patent Application No. 6-165.
It has already been devised by 871. This will be described in detail with reference to FIG. FIG. 4 shows an optical measuring unit 60 which is a main component of the leaf component amount measuring apparatus, and includes a light emitting means 62 for irradiating the measured leaf 61 with near infrared light of an arbitrary wavelength, and a near red light emitting diode or the like. The external light emitting element 63 and the narrow band filter 64 that allows only near infrared light of an arbitrary wavelength to pass therethrough. Then, the leaf 61 to be measured is planarly sandwiched so that the leaf surface of the leaf 61 to be measured is uniformly irradiated with near-infrared light, and the transmitted light and the reflected light from the sandwiched leaf 61 to be measured are measured. Leaf holding means 66A and 66B having measurement windows 65A and 65B are provided. The measuring window 65B of the leaf holding means 66B and the light emitting means 62 are optically connected by an integrating sphere 67. That is, the light emitting means 62 is fixed to the integrating sphere 67 so as to irradiate and scatter the irradiation light inside the integrating sphere 67. Further, the integrating sphere 67 has an opening 68 communicating with the measurement window 65B and the other. An opening 70 for fixing the reflection light receiving means 69 made of a silicon photodiode is provided.
【0006】上記構成の葉の成分量測定装置の作用を述
べると、発光手段62から照射された近赤外光は積分球
67内で散乱し測定窓65Bから被測定葉61面に照射
される。また、被測定葉61による反射光は積分球67
内で散乱し反射受光手段69に受光される。更に、被測
定葉61に照射された近赤外光のうち透過したものは、
葉保持手段66の測定窓65A側に固設してあるシリコ
ーンフォトダイオードからなる透過受光手段71で透過
光として受光される。The operation of the leaf component amount measuring device having the above structure will be described. Near infrared light emitted from the light emitting means 62 is scattered in the integrating sphere 67 and is emitted from the measurement window 65B onto the surface of the leaf 61 to be measured. . Further, the light reflected by the measured leaf 61 is reflected by the integrating sphere 67.
The light is scattered inside and is received by the reflection light receiving means 69. Further, among the near-infrared light emitted to the measured leaf 61, the transmitted one is
It is received as transmitted light by the transmitted / received means 71 formed of a silicone photodiode fixed to the measurement window 65A side of the leaf holding means 66.
【0007】[0007]
【発明が解決しようとする課題】上記構成における積分
球67の使用においては、光源の光量を大きくすること
と、測定精度を確保するため、測定に使用する波長数が
多くなった場合に、どの波長の光も発光位置に関係なく
被測定葉に均一に照射できる利点がある。しかしなが
ら、この積分球67は内部に球面加工を施し、その球面
を梨地加工後、金メッキして仕上げる工程があり、部品
を製作するコストが高くなっていた。In the use of the integrating sphere 67 in the above configuration, it is necessary to increase the light quantity of the light source and to ensure the measurement accuracy when the number of wavelengths used for measurement increases. There is an advantage that the light to be measured can be uniformly irradiated to the measured leaf regardless of the light emitting position. However, the integrating sphere 67 has a step of spherically processing the inside, finishing the surface of the spherical surface by gold-plating after finishing the satin processing, and the cost of manufacturing the parts is high.
【0008】本発明は上記問題点にかんがみ、積分球を
製造する場合の球面の機械加工が簡略化され、積分球を
使用するより低コストであり、しかも光量のバラツキは
積分球と比較して測定精度に影響がでない分光分析測定
装置を提供することを技術的課題とする。In view of the above problems, the present invention simplifies the machining of the spherical surface in the case of manufacturing an integrating sphere, is lower in cost than using an integrating sphere, and has a variation in the amount of light as compared with the integrating sphere. It is a technical object to provide a spectroscopic measurement device that does not affect the measurement accuracy.
【0009】[0009]
【課題を解決するための手段】前記課題を解決するため
本発明は、被測定物に任意波長の近赤外光を照射する光
源部と、前記被測定物からの透過光又は反射光を受光す
る光量検出手段と、該光量検出手段から得られる透過光
量又は反射光量から被測定物の吸光度を算出するととも
に、あらかじめ成分量が既知の被測定物に前記近赤外光
を照射したときに得られる吸光度と前記既知の成分量と
によって成分量推定式を定め、該成分量推定式と前記被
測定物の吸光度とにより被測定物の成分量を演算する演
算手段とからなる分光分析測定装置であって、前記光源
部は、複数の発光素子からなる光源と、内部に円錐状の
中空部を有し該円錐状中空部の底部を開放し頂点に外部
と連通する開口部を設けるとともに該円錐状中空部の円
錐底部には光が拡散しながら透過する散乱板を設けた円
錐拡散胴と、前記発光素子を適宜発光させる発光装置と
からなり、前記円錐拡散胴は前記前記発光素子が発光す
る光を円錐底部の散乱板を透過して円錐拡散胴の頂点の
開口部から被測定物を照射するように位置した。In order to solve the above problems, the present invention provides a light source unit for irradiating an object to be measured with near-infrared light having an arbitrary wavelength, and a transmitted light or a reflected light from the object to be measured. With the light amount detection means to calculate the absorbance of the measured object from the transmitted light amount or the reflected light amount obtained from the light amount detection means, when the near-infrared light is irradiated to the measured object whose component amount is known in advance. A spectrometric measuring device comprising a component amount estimation formula based on the absorbance and the known component amount, and a computing means for computing the component amount of the measured substance by the component amount estimation formula and the absorbance of the measured substance. The light source unit includes a light source composed of a plurality of light emitting elements, a conical hollow portion inside, a bottom portion of the conical hollow portion opened, and an opening communicating with the outside at the apex. The light spreads at the bottom of the conical hollow part. While comprising a conical diffuser cylinder provided with a scattering plate that transmits the light, and a light emitting device for appropriately causing the light emitting element to emit light, the conical diffuser cylinder transmits the light emitted by the light emitting element through the scattering plate at the cone bottom. The conical diffusion cylinder was positioned so as to irradiate the object to be measured through the opening at the apex.
【0010】そして、前記複数の発光素子は、前記円錐
拡散胴の円錐軸を中心とする円周上に設けるとよい。The plurality of light emitting elements may be provided on a circumference centered on the conical axis of the conical diffusion cylinder.
【0011】[0011]
【作用】本発明の分光分析測定装置によれば、被測定物
の成分に関した任意波長の近赤外光を被測定物に照射
し、該被測定物の透過光又は反射光を受光してそれぞれ
の光量を求め、該それぞれの光量から当該波長による被
測定物の吸光度を求めるようにしてある。そして、得ら
れた吸光度は、あらかじめ定めた被測定物の成分量推定
式に代入して、直接的に非破壊で成分量が演算される。
前記成分量推定式は成分量が既知の被測定物に特定波長
の近赤外光を照射したときの吸光度と、成分量が既知の
被測定物の実際の成分量とによって重回帰分析により算
出したものである。According to the spectroscopic analysis measuring device of the present invention, the near-infrared light having an arbitrary wavelength relating to the component of the measured object is irradiated to the measured object, and the transmitted light or the reflected light of the measured object is received. Each light quantity is obtained, and the absorbance of the object to be measured at the wavelength is obtained from each light quantity. Then, the obtained absorbance is substituted into a predetermined component amount estimation formula of the measured object, and the component amount is directly calculated nondestructively.
The component amount estimation formula is calculated by multiple regression analysis by the absorbance when the measured amount of the component to be measured is irradiated with near-infrared light of a specific wavelength, and the actual component amount of the measured amount of the component to be measured. It was done.
【0012】前記被測定物に近赤外光を照射する光源部
は、該光源部内の複数の発光素子から被測定物に向けて
光を照射する。この複数の発光素子から発光する光は、
狭帯域フィルター等により近赤外域の特定の波長となっ
て散乱板に入射される。該散乱板の板厚内では光が拡散
・透過を繰り返し、光が拡散して指向性を失ってしま
う。そして、散乱板から出た指向性を失った光は、次に
円錐拡散胴内部に入射し、該円錐拡散胴内部では、該円
錐拡散胴と前記散乱板で囲まれた空間を光がさらに反射
・拡散を繰り返し、頂点の開口部から光量検出手段に入
射する。このとき、光は、円錐状に傾斜した円錐拡散胴
により1回又は複数回反射・拡散されて開口部から光量
検出手段に到達するので、光源の光量を減少させず、積
分球と同じ程度に被測定物に均一に照射することができ
る。The light source unit for irradiating the object to be measured with near infrared light irradiates the object to be measured with light from a plurality of light emitting elements in the light source unit. The light emitted from the plurality of light emitting elements is
A specific wavelength in the near infrared region is converted by a narrow band filter or the like and is incident on the scattering plate. Within the thickness of the scattering plate, light repeatedly diffuses and transmits, and the light diffuses and loses directivity. Then, the light having lost the directivity emitted from the scattering plate is next incident on the inside of the conical diffusion cylinder, and inside the conical diffusion cylinder, the light is further reflected in the space surrounded by the conical diffusion cylinder and the scattering plate. -Repeated diffusion, and the light is incident on the light amount detecting means through the opening portion at the top. At this time, the light is reflected / diffused once or plural times by the conical diffusion cylinder inclined in a conical shape and reaches the light amount detecting means through the opening portion, so that the light amount of the light source is not reduced, and the light intensity is almost the same as that of the integrating sphere. The object to be measured can be uniformly irradiated.
【0013】また、前記複数の発光素子は、前記円錐拡
散胴の円錐軸を中心とする円周上に設けてあるので、測
定精度を確保するため測定に使用する発光素子を複数個
設けた場合に、波長が異なる各発光素子と円錐拡散胴の
円錐軸との距離が等しくなり、どの発光素子の光も被測
定物に均一に照射できる。Further, since the plurality of light emitting elements are provided on the circumference centered on the conical axis of the conical diffusion cylinder, when a plurality of light emitting elements used for measurement are provided to ensure measurement accuracy. In addition, the distances between the light emitting elements having different wavelengths and the cone axis of the conical diffusion cylinder are equal, and the light from any of the light emitting elements can be uniformly applied to the measured object.
【0014】[0014]
【実施例】本発明に好適な実施例として、葉に近赤外光
を照射して、その吸光度と吸光度から求められる成分で
ある窒素等を測定演算するような分光分析測定装置を例
として説明する。図1に示すものは、携帯型分光分析測
定装置1の主要部分の側断面図である。図1では、下方
の本体2内に光源部3と、上部に光量検出手段4として
のフォトダイオード5とを設けた構成となっている。光
源部3は、同一円周上に異なる波長ピークを持つ複数の
発光素子であるLED6を配設して、該LED6にはそ
れぞれ波長帯域の異なる狭帯域フィルター7を設けてあ
る。波長帯域は600nm〜1100nmで、この波長
帯域から、求める成分に関係する任意の特定波長の狭帯
域フィルター7を選択してある。各LED6の発光する
光は、狭帯域フィルター7によって特定波長の光となっ
て、光が透過する散乱板8に入射する。この散乱板8
は、各LED6の光線がほぼ垂直に入射するように光軸
と垂直に設けられ、円形の磨りガラス状に形成されてい
る。該散乱板8は、LED6側または被測定物9側のど
ちらかに磨り面が形成されている。また、LED6側と
被測定物9側との両面に磨り面を形成してもよい。この
散乱板8に光が入射すると、拡散板8の板厚内では光が
拡散して指向性を失ってしまう。散乱板8から出る指向
性を失った光は、次に、円錐拡散胴10に入射する。該
円錐拡散胴10は、中空円錐状であって、前記拡散板8
を底部に固設し該散乱板8から出た光が被測定物9に向
けて集光するように頂部に開口12を穿設しかつ内壁を
散乱壁11に形成している。該散乱壁11は例えばアル
ミニウムの無垢で形成するのがよく、また、アルミニウ
ムに梨地加工を施してもよい。該円錐拡散胴10内で
は、散乱壁11と散乱板8とで囲まれた空間を光が反射
・拡散を繰り返しながら開口部12から出て、透明ガラ
ス板13を経て光量検出手段4に入射する。光量検出手
段4は、光源部3と任意間隔をおいて、より詳しくは前
記光源部3の透明ガラス板13との間に、被測定物とな
る葉9が挿入できる間隔をおいて固設してある。[Examples] As a preferred example of the present invention, a description will be given by taking as an example a spectroscopic analysis measuring device that irradiates a leaf with near-infrared light and measures and absorbs the absorbance and nitrogen, which is a component obtained from the absorbance. To do. FIG. 1 is a side sectional view of a main part of the portable spectroscopic analysis measurement device 1. In FIG. 1, a light source unit 3 is provided in the lower main body 2, and a photodiode 5 as a light amount detecting means 4 is provided in the upper portion. The light source unit 3 is provided with LEDs 6 which are a plurality of light emitting elements having different wavelength peaks on the same circumference, and each LED 6 is provided with a narrow band filter 7 having a different wavelength band. The wavelength band is 600 nm to 1100 nm, and from this wavelength band, the narrow band filter 7 having an arbitrary specific wavelength related to the component to be obtained is selected. The light emitted from each LED 6 becomes a light of a specific wavelength by the narrow band filter 7, and enters the scattering plate 8 through which the light passes. This scattering plate 8
Is provided perpendicularly to the optical axis so that the light rays of each LED 6 enter substantially vertically, and is formed in the shape of a circular frosted glass. The scattering plate 8 has a polished surface on either the LED 6 side or the DUT 9 side. Further, polished surfaces may be formed on both sides of the LED 6 side and the DUT 9 side. When light enters the scattering plate 8, the light diffuses within the plate thickness of the diffusion plate 8 and loses directivity. The light emitted from the scattering plate 8 and having lost its directivity then enters the conical diffusion cylinder 10. The conical diffusion cylinder 10 has a hollow conical shape,
Is fixed to the bottom, and an opening 12 is formed at the top and an inner wall is formed on the scattering wall 11 so that the light emitted from the scattering plate 8 is condensed toward the DUT 9. The scattering wall 11 is preferably made of, for example, pure aluminum, or the aluminum may be subjected to a satin finish. In the conical diffusion cylinder 10, the light is repeatedly reflected and diffused in the space surrounded by the scattering wall 11 and the scattering plate 8 and exits from the opening 12 and enters the light amount detecting means 4 through the transparent glass plate 13. . The light amount detecting means 4 is fixed to the light source section 3 at an arbitrary interval, and more specifically, is fixedly provided between the light source section 3 and the transparent glass plate 13 of the light source section 3 with an interval into which a leaf 9 to be measured can be inserted. There is.
【0015】さらに、光量検出手段4の上部外周に上蓋
14を繞設して、該上蓋14から延長した腕15は支点
16によって軸支されている。さらに、本体2に遊嵌し
て上蓋14の腕15を押し上げる押しボタン17を設け
るとともに、押しボタン17とは逆方向に付勢するコイ
ルバネ18を設けてある。また、腕15を間において前
記押しボタン17と対向する本体2には、押しボタン1
7を押し下げたことを検知するスイッチ19を設けてあ
る。Further, an upper lid 14 is provided on the outer periphery of the upper portion of the light quantity detecting means 4, and an arm 15 extending from the upper lid 14 is pivotally supported by a fulcrum 16. Further, a push button 17 that is loosely fitted to the main body 2 and pushes up the arm 15 of the upper lid 14 is provided, and a coil spring 18 that biases the push button 17 in the opposite direction is provided. The push button 1 is attached to the main body 2 facing the push button 17 with the arm 15 in between.
A switch 19 is provided for detecting that the 7 has been pushed down.
【0016】次に、図2によって分光分析測定装置1の
ブロック図を示し説明する。光源部3と、光量検出手段
4とからなる測定部で検出される被測定サンプル葉9の
透過光量は、フォトダイオード5によってアナログの信
号に変換されアナログボード20に連絡されている。光
源部3にはLED6の発光装置21を設けてある。アナ
ログボード20ではアナログからデジタル信号へのA/
D変換をするか、あるいは電圧から周波数へのV/F変
換を行う。変換された信号はI/Oボード22を経由し
て演算制御装置の作用を含むCPUボード23に入力さ
れる。前記I/Oボード22には、測定結果、演算結果
あるいは操作指示を表示する液晶表示器LCD24、初
期データを入力したり操作を行うキーボード25、外部
装置とデータを入出力するRS232Cの接続ポート2
6及びスイッチ等を設けてある。これらCPUボード2
3とI/Oボード22には電源ボード27から電源を供
給するように接続してある。また、プリンタ29はプリ
ンタI/Fボード28を介してCPUボード23に接続
してある。Next, a block diagram of the spectroscopic analysis measurement device 1 will be shown and described with reference to FIG. The transmitted light amount of the sample leaf 9 to be measured detected by the measurement unit including the light source unit 3 and the light amount detection means 4 is converted into an analog signal by the photodiode 5 and is transmitted to the analog board 20. The light source unit 3 is provided with a light emitting device 21 for the LED 6. On the analog board 20, A / from analog to digital signal
D conversion or V / F conversion from voltage to frequency is performed. The converted signal is input to the CPU board 23 including the operation of the arithmetic and control unit via the I / O board 22. On the I / O board 22, a liquid crystal display LCD 24 for displaying measurement results, calculation results or operation instructions, a keyboard 25 for inputting and operating initial data, and a RS232C connection port 2 for inputting / outputting data to / from an external device.
6 and switches are provided. These CPU boards 2
3 and the I / O board 22 are connected so that power is supplied from the power board 27. Further, the printer 29 is connected to the CPU board 23 via the printer I / F board 28.
【0017】このように構成された分光分析測定装置1
の作用について以下に説明する。まず最初に分光分析測
定装置1にあらかじめ成分量が既知の基準サンプルを挿
入し測定すると、CPUボード23では近赤外光を照射
したときの基準サンプルの吸光度と基準サンプルの実際
の成分量とから成分量推定式が算出される。そして、こ
れを記憶装置の作用を持つCPUボード23内に記憶さ
せておく。The spectroscopic analysis measurement device 1 configured as described above
The action of will be described below. First, a reference sample having a known component amount is inserted into the spectroscopic analysis measurement device 1 in advance, and the measurement is performed. In the CPU board 23, the absorbance of the reference sample and the actual component amount of the reference sample when irradiating near infrared light are calculated. A component amount estimation formula is calculated. Then, this is stored in the CPU board 23 having the function of the storage device.
【0018】次に、分光分析測定装置1から基準サンプ
ルを取り出し、被測定サンプル葉9を挿入して電源を投
入すると、CPUボード23からは発光装置21を経
て、光源部3へ発光信号が送られ、光源部3内の複数の
LED6からは被測定サンプル葉9に向けて光が照射さ
れる。この各LED6から発光する光は、狭帯域フィル
ター7によって近赤外域の特定波長の光となって、光が
透過する散乱板8に入射される。該散乱板8の板厚内で
は光が拡散・透過を繰り返し、光が拡散して指向性を失
ってしまう。散乱板4から出る指向性を失った光は、次
に円錐拡散胴10に入射する。該円錐拡散胴10内で
は、散乱壁11と散乱板8とで囲まれた空間を光がさら
に反射・拡散を繰り返しながら透明ガラス板13から光
量検出手段4に入射する。このとき、円錐拡散胴10内
に入射した光は、円錐状に傾斜した拡散壁11により1
回または複数回反射・拡散して開口部12から光量検出
手段4に到達するので、光源の光量を減少させず、積分
球と同じ程度に被測定サンプル葉9に均一に照射され
る。Next, when the reference sample is taken out from the spectroscopic analysis measurement device 1, the sample leaf 9 to be measured is inserted and the power is turned on, a light emission signal is sent from the CPU board 23 to the light source section 3 via the light emission device 21. Then, the plurality of LEDs 6 in the light source unit 3 irradiate light toward the sample leaf 9 to be measured. The light emitted from each LED 6 becomes a light of a specific wavelength in the near-infrared region by the narrow band filter 7, and enters the scattering plate 8 through which the light passes. Within the thickness of the scattering plate 8, light is repeatedly diffused and transmitted, and the light diffuses and loses directivity. The light emitted from the scattering plate 4 and having lost its directivity then enters the conical diffusion cylinder 10. In the conical diffusion cylinder 10, the light is further reflected and diffused in the space surrounded by the scattering wall 11 and the scattering plate 8 and enters the light amount detecting means 4 from the transparent glass plate 13. At this time, the light that has entered the conical diffusion cylinder 10 is diffused by the diffusion wall 11 that is inclined in a conical shape.
Since the light reaches the light amount detecting means 4 through the opening 12 after being reflected and diffused once or a plurality of times, the light amount of the light source is not reduced and the sample leaf 9 to be measured is uniformly irradiated to the same extent as the integrating sphere.
【0019】被測定サンプル葉9に光が照射されると、
その透過光または反射光がフォトダイオード5により受
光され、該受光信号はA/D変換のためにアナログボー
ド20に連絡される。アナログボード20では、A/D
変換を行い、次にI/Oボード22を経由して演算制御
装置の作用を含むCPUボード23に入力される。CP
Uボード23においては、被測定サンプル葉9の透過光
又は反射光から光の透過率あるいは吸光度を算出するよ
うにしてある。When the sample leaf 9 to be measured is irradiated with light,
The transmitted light or the reflected light is received by the photodiode 5, and the received light signal is transmitted to the analog board 20 for A / D conversion. On the analog board 20, A / D
It is converted and then input to the CPU board 23 including the operation of the arithmetic and control unit via the I / O board 22. CP
In the U board 23, the light transmittance or absorbance is calculated from the transmitted light or reflected light of the sample leaf 9 to be measured.
【0020】このように被測定サンプル葉9の吸光度が
算出されると、該吸光度はあらかじめ記憶された前記成
分量推定式に代入され、最終的に作業者の求めている成
分量が算出される。When the absorbance of the sample leaf 9 to be measured is calculated in this manner, the absorbance is substituted into the component quantity estimation formula stored in advance, and finally the ingredient quantity required by the operator is calculated. .
【0021】前記CPUボード23には、各LED6の
一定時間点灯を一定間隔で繰り返す光源点灯ルーチンを
設ける場合もある。この光源点灯ルーチンは、異なる波
長ピークを持つ各LED6がそれぞれ点灯して、それぞ
れの波長別に被測定サンプル葉9の透過光量が測定され
る。これにより、被測定サンプル葉9の透過光量の測定
精度が良くなり、さらには被測定サンプル葉の吸光度の
測定精度が良くなる。The CPU board 23 may be provided with a light source lighting routine for repeating lighting of each LED 6 for a certain time at a certain interval. In this light source lighting routine, the LEDs 6 having different wavelength peaks are respectively lit, and the amount of transmitted light of the measured sample leaf 9 is measured for each wavelength. As a result, the measurement accuracy of the amount of transmitted light of the sample leaf 9 to be measured is improved, and further the measurement accuracy of the absorbance of the sample leaf to be measured is improved.
【0022】[0022]
【発明の効果】以上のように本発明における分光分析測
定装置によれば、前記光源部は、複数の発光素子からな
る光源と、内部に円錐状の中空部を有し該円錐状中空部
の底部を開放し頂点に外部と連通する開口部を設けると
ともに該円錐状中空部の円錐底部には光が拡散しながら
透過する散乱板を設けた円錐拡散胴と、前記発光素子を
適宜発光させる発光装置とからなり、前記円錐拡散胴は
前記発光素子からの光を円錐底部の散乱板を透過して円
錐拡散胴の頂点の開口部から被測定物を照射するように
位置させたので、散乱板に光が入射すると、散乱板の板
厚内では光が拡散して指向性を失うとともに、さらに、
光が円錐拡散胴内に入射すると、円錐状に傾斜した円錐
拡散胴により光が1回または複数回反射・拡散して開口
部から光量検出手段に到達するので、光源の光量を減少
させず、積分球と同じ程度で被測定物に均一に光を照射
させることが可能となる。そして、積分球を製造する場
合の球面の機械加工が簡略化され、積分球を使用するよ
りも低コストで製作できるようになった。As described above, according to the spectroscopic analysis measuring device of the present invention, the light source section includes a light source composed of a plurality of light emitting elements and a conical hollow portion inside thereof. A conical diffusion cylinder provided with an opening for opening the bottom and communicating with the outside at the apex, and a conical diffuser for transmitting light while diffusing light at the conical bottom of the conical hollow portion, and light emission for appropriately emitting the light emitting element Since the conical diffuser is positioned so that the light from the light emitting element passes through the scatter plate at the bottom of the cone and irradiates the DUT from the opening at the apex of the conical diffuser, the scatter plate When light is incident on, the light diffuses within the thickness of the scattering plate and loses directivity.
When the light enters the conical diffusion cylinder, the light is reflected / diffused once or plural times by the conical diffusion cylinder inclined in a conical shape and reaches the light amount detection means from the opening, so that the light amount of the light source is not reduced, It is possible to uniformly irradiate the object to be measured with light at the same level as the integrating sphere. Further, the machining of the spherical surface in the case of manufacturing the integrating sphere has been simplified, and it has become possible to manufacture it at a lower cost than using the integrating sphere.
【0023】また、前記複数の発光素子は、前記円錐拡
散胴の円錐軸を中心とする円周上に設けてあるので、測
定精度を確保するため測定に使用する発光素子を複数個
設けた場合に、波長が異なる各発光素子と円錐拡散胴の
円錐軸との距離が等しくなり、どの発光素子の光も被測
定物に均一に照射できるようになった。Further, since the plurality of light emitting elements are provided on the circumference centered on the conical axis of the conical diffusion cylinder, when a plurality of light emitting elements used for measurement are provided in order to ensure measurement accuracy. In addition, the distances between the light emitting elements having different wavelengths and the cone axis of the conical diffusion cylinder are equalized, and the light from any of the light emitting elements can be uniformly applied to the object to be measured.
【図1】本発明の分光分析測定装置の側断面図である。FIG. 1 is a side sectional view of a spectroscopic analysis measurement device of the present invention.
【図2】分光分析測定装置のブロック図である。FIG. 2 is a block diagram of a spectroscopic analysis measurement device.
【図3】従来の代表的な葉緑素計を示す概略図である。FIG. 3 is a schematic diagram showing a conventional representative chlorophyll meter.
【図4】従来の成分量測定装置の光学測定部である。FIG. 4 is an optical measuring unit of a conventional component amount measuring device.
1 分光分析測定装置 2 本体 3 光源部 4 光量検出手段 5 フォトダイオード 6 LED 7 狭帯域フィルター 8 散乱板 9 被測定物 10 円錐拡散胴 11 散乱壁 12 開口部 13 透明ガラス板 14 上蓋 15 腕 16 支点 17 押しボタン 18 コイルバネ 19 スイッチ 20 アナログボード 21 発光装置 22 I/Oボード 23 CPUボード 24 液晶表示器LCD 25 キーボード 26 接続ポート 27 電源ボード 28 I/Fボード 29 プリンタ 1 spectroscopic analysis measuring device 2 main body 3 light source section 4 light amount detecting means 5 photodiode 6 LED 7 narrow band filter 8 scattering plate 9 DUT 10 conical diffusion barrel 11 scattering wall 12 opening 13 transparent glass plate 14 upper lid 15 arm 16 fulcrum 17 Push Button 18 Coil Spring 19 Switch 20 Analog Board 21 Light Emitting Device 22 I / O Board 23 CPU Board 24 Liquid Crystal Display LCD 25 Keyboard 26 Connection Port 27 Power Board 28 I / F Board 29 Printer
Claims (2)
る光源部と、前記被測定物からの透過光又は反射光を受
光する光量検出手段と、該光量検出手段から得られる透
過光量又は反射光量から被測定物の吸光度を算出すると
ともに、あらかじめ成分量が既知の被測定物に前記近赤
外光を照射したときに得られる吸光度と前記既知の成分
量とによって成分量推定式を定め、該成分量推定式と前
記被測定物の吸光度とにより被測定物の成分量を演算す
る演算手段とからなる分光分析測定装置であって、前記
光源部は、複数の発光素子からなる光源と、内部に円錐
状の中空部を有し該円錐状中空部の底部を開放し頂点に
外部と連通する開口部を設けるとともに該円錐状中空部
の円錐底部には光が拡散しながら透過する散乱板を設け
た円錐拡散胴と、前記発光素子を適宜発光させる発光装
置とからなり、前記円錐拡散胴は前記発光素子が発生す
る光を円錐底部の散乱板を透過して円錐拡散胴の頂点の
開口部から被測定物を照射するように位置させたことを
特徴とする分光分析測定装置。1. A light source unit for irradiating an object to be measured with near-infrared light of an arbitrary wavelength, a light amount detecting means for receiving transmitted light or reflected light from the object to be measured, and a transmission obtained from the light amount detecting means. While calculating the absorbance of the object to be measured from the amount of light or the amount of reflected light, the component amount estimation formula by the absorbance and the known amount of the component obtained when the object to be measured whose component amount is known in advance is irradiated with the near infrared light Which is a spectroscopic analysis measuring device comprising a calculation means for calculating the component amount of the object to be measured based on the component amount estimation formula and the absorbance of the object to be measured, wherein the light source section comprises a plurality of light emitting elements. A light source and a conical hollow part inside are opened, and the bottom part of the conical hollow part is opened and an opening communicating with the outside is provided at the apex, and the conical hollow part of the conical hollow part transmits light while diffusing. A conical diffusion cylinder with a scattering plate The conical diffusion cylinder irradiates the object to be measured from the apex opening of the conical diffusion cylinder by transmitting the light generated by the light emitting element through the scattering plate at the bottom of the conical diffusion cylinder. A spectroscopic analysis measuring device characterized by being positioned as described above.
の円錐軸を中心とする円周上に設けてなる請求項1記載
の分光分析測定装置。2. The spectroscopic analysis measurement device according to claim 1, wherein the plurality of light emitting elements are provided on a circumference centered on a conical axis of the conical diffusion cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15708495A JP3324341B2 (en) | 1995-05-30 | 1995-05-30 | Spectroscopic analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15708495A JP3324341B2 (en) | 1995-05-30 | 1995-05-30 | Spectroscopic analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08327538A true JPH08327538A (en) | 1996-12-13 |
JP3324341B2 JP3324341B2 (en) | 2002-09-17 |
Family
ID=15641902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15708495A Expired - Lifetime JP3324341B2 (en) | 1995-05-30 | 1995-05-30 | Spectroscopic analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3324341B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002139443A (en) * | 2000-10-31 | 2002-05-17 | Kett Electric Laboratory | Quality discrimination apparatus for grain, etc. |
KR100643816B1 (en) * | 2004-07-08 | 2006-11-13 | 가부시끼가이샤 와이이씨 솔루션즈 | Colorimetry device |
CN102809540A (en) * | 2012-08-15 | 2012-12-05 | 北京雪迪龙科技股份有限公司 | Leaf biochemical parameter detecting system and method |
US10586353B2 (en) | 2015-01-09 | 2020-03-10 | Maxell Holdings, Ltd. | Plant information acquisition system, plant information acquisition device, plant information acquisition method, crop management system and crop management method |
JP2021006819A (en) * | 2020-10-01 | 2021-01-21 | マクセルホールディングス株式会社 | Plant information acquisition system, plant information acquisition device, plant information acquisition method, crop management system, and crop management method |
WO2022005812A1 (en) * | 2020-06-29 | 2022-01-06 | Spekciton Biosciences Llc | Duvf-msi biophotonic analyzer device and methods for detecting pathogens on plants and measuring stress response |
-
1995
- 1995-05-30 JP JP15708495A patent/JP3324341B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002139443A (en) * | 2000-10-31 | 2002-05-17 | Kett Electric Laboratory | Quality discrimination apparatus for grain, etc. |
JP4605890B2 (en) * | 2000-10-31 | 2011-01-05 | 株式会社ケット科学研究所 | Grain quality discrimination device |
KR100643816B1 (en) * | 2004-07-08 | 2006-11-13 | 가부시끼가이샤 와이이씨 솔루션즈 | Colorimetry device |
US7245377B2 (en) | 2004-07-08 | 2007-07-17 | Yokohama Electric Communications & Solutions Co., Ltd. | Colorimetry device |
CN102809540A (en) * | 2012-08-15 | 2012-12-05 | 北京雪迪龙科技股份有限公司 | Leaf biochemical parameter detecting system and method |
US10586353B2 (en) | 2015-01-09 | 2020-03-10 | Maxell Holdings, Ltd. | Plant information acquisition system, plant information acquisition device, plant information acquisition method, crop management system and crop management method |
WO2022005812A1 (en) * | 2020-06-29 | 2022-01-06 | Spekciton Biosciences Llc | Duvf-msi biophotonic analyzer device and methods for detecting pathogens on plants and measuring stress response |
JP2021006819A (en) * | 2020-10-01 | 2021-01-21 | マクセルホールディングス株式会社 | Plant information acquisition system, plant information acquisition device, plant information acquisition method, crop management system, and crop management method |
Also Published As
Publication number | Publication date |
---|---|
JP3324341B2 (en) | 2002-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3436093B2 (en) | Leaf component measuring device | |
US5258825A (en) | Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products | |
US5319200A (en) | Rapid near-infrared measurement of nonhomogeneous samples | |
CA1247397A (en) | Spectrophotometric method and apparatus for the non- invasive determination of glucose in body tissues | |
KR100219252B1 (en) | Analytical system with means for detecting too small sample volumes | |
JP4551421B2 (en) | Method and apparatus for measuring reflected light | |
US6836332B2 (en) | Instrument and method for testing fluid characteristics | |
AU769362B2 (en) | Method and apparatus for detecting mastitis by using visible light and/or near infrared light | |
US6445451B1 (en) | Colorimeter and assay device | |
US7920252B2 (en) | Method and apparatus for spectrophotometric characterization of turbid materials | |
US5035508A (en) | Light absorption analyser | |
RU2007126679A (en) | SYSTEM FOR SPECTROSCOPY OF PASSING FOR USE IN DETERMINING ANALYZED SUBSTANCES IN THE LIQUID OF THE ORGANISM | |
EP0729571A1 (en) | Low cost means for increasing measurement sensitivity in led/ired near-infrared instruments | |
JP2007519004A (en) | Handheld device with a disposable element for chemical analysis of multiple specimens | |
JPH08304272A (en) | Method and instrument for optical measurement | |
JP2012530255A (en) | Valveless spectrometer | |
JPH06186159A (en) | Non-destructive measurement method for fruits sugar degree with near-infrared transmission spectrum | |
EP2344862B1 (en) | An arrangement adapted for spectral analysis of high concentrations of gas | |
JPH08327538A (en) | Spectral analysis measuring device | |
JPH1189799A (en) | Concentration measuring device for specified ingredient | |
JP2898489B2 (en) | Equipment for spectrophotometric analysis | |
JPH0933435A (en) | Device for measuring optical characteristic value of transparent material | |
JPH08320287A (en) | Spectral analyzing and measuring device | |
KR100414186B1 (en) | the automatic calibration system and for measuring internal qualities of fruits on both side | |
RU2138042C1 (en) | Process determining content of gluten in wheat and device for its implementation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070705 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090705 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090705 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090705 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100705 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100705 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110705 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110705 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110705 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120705 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120705 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120705 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130705 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130705 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |