JP3324341B2 - Spectroscopic analyzer - Google Patents

Spectroscopic analyzer

Info

Publication number
JP3324341B2
JP3324341B2 JP15708495A JP15708495A JP3324341B2 JP 3324341 B2 JP3324341 B2 JP 3324341B2 JP 15708495 A JP15708495 A JP 15708495A JP 15708495 A JP15708495 A JP 15708495A JP 3324341 B2 JP3324341 B2 JP 3324341B2
Authority
JP
Japan
Prior art keywords
light
conical
measured
amount
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15708495A
Other languages
Japanese (ja)
Other versions
JPH08327538A (en
Inventor
覺 佐竹
信彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP15708495A priority Critical patent/JP3324341B2/en
Publication of JPH08327538A publication Critical patent/JPH08327538A/en
Application granted granted Critical
Publication of JP3324341B2 publication Critical patent/JP3324341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は分光分析測定装置に関
し、特に植物の葉の成分量を測定するための分光分析
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic analyzer and, more particularly , to a spectroscopic analyzer for measuring the amount of components in plant leaves.

【0002】[0002]

【従来の技術】従来、葉に含まれる生育に関わる成分
、例えば窒素量を直接測定できる簡便な装置はなかっ
た。これに代わるものとして、従来から葉の葉色を色票
(カラースケール)と比較して窒素量を推定したり、対
象の葉に光を照射してその透過光から赤色光量と赤外光
量とを測定したりすることにより葉に含まれる葉緑素量
(クロロフィル)を測定この葉緑素量から窒素量を
推定していた。そして、ここで推定された窒素量により
生育時期見合う施肥量を判断していた。特に稲作に
見られるように、推定された窒素量により判断されるそ
の後の施肥時期及び施肥量は、穀物の収量を確保しなが
ら稲が倒伏しないようにするための重要なポイントとな
っている。
Conventionally, contained in the leaves, component amount involved in growth, there was no simple device capable of measuring for example nitrogen amount directly. As an alternative to this, the amount of nitrogen can be estimated by comparing the leaf color with the color chart (color scale), or by irradiating the target leaf with light and determining the amount of red light and infrared light from the transmitted light. chlorophyll content in the leaves by or measured (chlorophyll) were measured, was estimated nitrogen content from the chlorophyll amount. Then, a week to determine fertilization commensurate with <br/> growing season with nitrogen amount estimated here. In particular , as seen in rice cultivation, the time and amount of fertilization determined based on the estimated amount of nitrogen are important points for ensuring the yield of cereals and preventing the rice from falling down. .

【0003】一方、稲の葉色を色票と比較する方法は経
験を要するだけでなく、目に見える葉色が天候や太陽光
の位置によって左右されることや、植物の一部を見るか
あるいは全体を見るかの違いによって、また観察角度
によっても判断される結果が異なることが多い。しか
し、測定方法が簡便なことや、使用される色票が安価な
ことなどから利用率が高いのも事実である。
On the other hand, the method of comparing the leaf color of rice with the color chart requires not only experience, but also that the visible leaf color is affected by the weather and the position of sunlight, or that a part of the plant In many cases, the result of the judgment differs depending on whether the user looks at the image, and also depending on the observation angle. However, it is also a fact that the utilization rate is high because the measurement method is simple and the color chart used is inexpensive.

【0004】この色票に代わるものとして葉緑素測定装
置が開発されている。代表的な葉緑素計の測定原理は、
図3に示すように、測定しようとする葉50に光源51
から光を照射してその透過光を測定するもので、透過光
はダイクロイックミラー52によって葉緑素に関連する
クロロフィル成分に影響される赤色光域(受光素子5
3)の透過光量影響されない赤外光域(受光素子5
4)の透過光量とを測定してその光量差を求めることに
よって、非破壊で単位面積当たりのクロロフィル濃度を
推定している。ただし実際にはこのクロロフィル濃度
と窒素濃度とが比例関係にあることを前提として窒素濃
度を推定し、植物への施肥量を決定することに利用され
ている。
A chlorophyll measuring device has been developed as an alternative to this color chart. The measurement principle of a typical chlorophyll meter is
As shown in FIG. 3, a light source 51 is attached to a leaf 50 to be measured.
The transmitted light is measured by a dichroic mirror 52, and the transmitted light is affected by a chlorophyll component related to chlorophyll (light receiving element 5).
Infrared region which is not affected by the quantity of transmitted light 3) (light receiving element 5
4) the amount of transmitted light was measured for by determining the light amount difference is estimated chlorophyll concentration per unit area in a non-destructive. However , in practice, the nitrogen concentration is estimated on the assumption that the chlorophyll concentration and the nitrogen concentration are in a proportional relationship, and is used to determine the amount of fertilization to a plant.

【0005】ところで、本出願人は、植物の窒素量を簡
便に測定する葉の成分量測定装置を、特願平6−165
871号により既に案している。これについて、図4
を参照しながら詳細に説明する。図4は葉の成分量測
定装置の主要構成である光学測定部60であり、被測定
葉61に任意波長の近赤外光を照射するための発光手段
62を設ける。この発光手段62は、発光ダイオード等
からなる近赤外発光素子63と任意波長の近赤外光のみ
が通過する狭帯域フィルター64とから構成している。
そして、被測定葉61の葉面に均一に近赤外光が照射さ
れるよう被測定葉61を平面的に挟持するとともに、挟
持した被測定葉61からの透過光と反射光とを測定する
ための測定窓65A,65Bを開設した葉保持手段66
A,66Bを設けてある。この葉保持手段66Bの測定
窓65Bと前記発光手段62とは積分球67によって光
学的に連絡してある。つまり、発光手段62は照射光を
積分球67内部に照射して散乱するよう積分球67に固
設してあり、さらに積分球67には前記測定窓65B
に連通する開口部68と、他方にシリコンフォトダイオ
ードからなる反射受光手段69を固設する開口部70を
開設してある。
The applicant of the present invention has proposed a leaf component amount measuring apparatus for simply measuring the nitrogen content of a plant, as disclosed in Japanese Patent Application No. Hei 6-165.
Already proposed by No. 871. In this regard, FIG.
This will be described in detail with reference to FIG. FIG. 4 shows an optical measuring unit 60 which is a main component of a leaf component amount measuring apparatus, and is provided with a light emitting means 62 for irradiating a measured leaf 61 with near-infrared light having an arbitrary wavelength . The light emitting means 62 includes a near-infrared light emitting element 63 composed of a light emitting diode or the like and a narrow band filter 64 through which only near infrared light of an arbitrary wavelength passes.
Then, the leaf 61 to be measured is sandwiched two-dimensionally so that near-infrared light is uniformly irradiated on the leaf surface of the leaf 61 to be measured, and transmitted light and reflected light from the sandwiched leaf 61 to be measured are measured. Holding means 66 having measurement windows 65A and 65B for opening
A, 66B are provided. The measuring window 65B of the leaf holding means 66B and the light emitting means 62 are optically connected by an integrating sphere 67. In other words, the light-emitting unit 62 is Yes and fixed to the integrating sphere 67 to scattered by irradiating illumination light inside the integrating sphere 67, further wherein the measuring window 65B in the integrating sphere 67
And an opening 70 on the other side of which a reflection light receiving means 69 made of a silicon photodiode is fixed.

【0006】上記葉の成分量測定装置の作用を述べる
と、発光手段62から照射された近赤外光は積分球6
7内で散乱し測定窓65Bから被測定葉61面に照射
される。一方、被測定葉61による反射光は積分球6
7内で散乱し反射受光手段69に受光される。さら
に、被測定葉61に照射された近赤外光のうち透過した
ものは、葉保持手段66の測定窓65A側に固設してあ
シリコンフォトダイオードからなる透過受光手段71
により透過光として受光される。
[0006]the aboveDescribes the operation of the leaf component measurement device
And the near-infrared light emitted from the light emitting means 62,Integrating sphere 6
Scattered within 7handIrradiation from the measurement window 65B to the surface of the leaf 61 to be measured
Is done.on the other hand, The light reflected by the measured leaf 61 is,Integrating sphere 6
Scattered within 7handThe light is received by the reflection light receiving means 69.Further
Of the near-infrared light applied to the leaf 61 to be measured
The object is fixed to the leaf holding means 66 on the measurement window 65A side.
TosiliconTransmitted light receiving means 71 composed of a photodiode
ByIt is received as transmitted light.

【0007】[0007]

【発明が解決しようとする課題】上記構成における積分
球67の使用においては、光源の光量を大きくすること
と、測定精度を確保するため、測定に使用する波長数が
多くなった場合に、どの波長の光も発光位置に関係なく
被測定葉に均一に照射できる利点がある。しかしなが
ら、この積分球67は内部に球面加工を施し、その球面
を梨地加工後、金メッキして仕上げる工程があり、部品
を製作するコストが高くなっていた。
In the use of the integrating sphere 67 in the above configuration, in order to increase the light amount of the light source and to increase the number of wavelengths to be used for measurement in order to secure the measurement accuracy, it is necessary to use the following method. There is an advantage that the light of the wavelength can be evenly applied to the leaf to be measured regardless of the light emission position. However, the integrating sphere 67 has a process in which a spherical surface is formed inside, and the spherical surface is matte-finished and then plated with gold to finish the process.

【0008】本発明は上記問題点にかんがみ、積分球を
不要としてその分低コストとなし、しかも光量のバラ
ツキは積分球と比較して測定精度に影響がでることの
い分光分析測定装置を提供することを技術的課題とす
る。
[0008] In view of the above problems, the present invention provides an integrating sphere.
Correspondingly low cost and without a required, moreover, the variation of light quantity and technical problem of providing a <br/> had spectroscopic measuring device Do things be affected the measurement accuracy as compared to the integrating sphere.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
本発明は、被測定物に任意波長の近赤外光を照射する光
源部と、被測定物からの透過光又は反射光を受光する光
量検出手段と、該光量検出手段から得られる透過光量又
は反射光量から被測定物の吸光度を算出するとともに、
あらかじめ成分量が既知の被測定物に前記近赤外光を照
射したときに得られる吸光度と前記既知の成分量とによ
って成分量推定式を定め、該成分量推定式と前記被測定
物の吸光度とにより被測定物の成分量を演算する演算手
段とからなる分光分析測定装置であって、前記光源部
は、複数の発光素子からなる光源と、内部に円錐状の中
空部を有し該円錐状中空部の底部を開放し頂点に外
部と連通する開口部を設けるとともに該円錐状中空部の
円錐底部には光が拡散しながら透過する散乱板を設けた
円錐拡散胴と、前記発光素子を適宜発光させる発光装置
からなり、前記円錐拡散胴は前記発光素子が発生す
る光を円錐底部の散乱板を透過して円錐拡散胴の頂点の
開口部から被測定物を照射するように位置させる、とい
う技術的手段を講じた。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a light source section for irradiating near-infrared light of an arbitrary wavelength to an object to be measured, and receiving transmitted light or reflected light from the object to be measured. Light amount detection means, and while calculating the absorbance of the measured object from the transmitted light amount or reflected light amount obtained from the light amount detection means,
A component amount estimation formula is determined by the absorbance obtained when the object to be measured whose component amount is known is irradiated with the near-infrared light and the known component amount, and the component amount estimation formula and the absorbance of the object to be measured are determined. an arithmetic means and spectroscopic measurement apparatus comprising a for calculating a component quantity of the object to be measured by the, the light source unit may include a light source comprising a plurality of light emitting elements, a hollow portion conical inside A cone-diffusion cylinder provided with a scattering plate through which the bottom of the conical hollow portion is opened , an opening communicating with the outside at the apex is provided, and a light-diffusing and transmitting plate is provided on the conical bottom of the conical hollow portion; a light emitting device for a light-emitting element appropriate emission is made, said conical dispersion drum irradiates the measurement object from the opening of the apex of the cone dispersion drum is transmitted through the scattering plate of the conical bottom portion of the light which the light emitting element is generated makes position so, Toi
Take technical measures.

【0010】そして、前記複数の発光素子は、前記円錐
拡散胴の円錐軸を中心とする円周上に設けるとよい。
Preferably, the plurality of light emitting elements are provided on a circumference centered on a conical axis of the conical diffusion cylinder.

【0011】[0011]

【作用】本発明の分光分析測定装置によれば、被測定物
の成分に関した任意波長の近赤外光を被測定物に照射
し、該被測定物の透過光又は反射光を受光してそれぞれ
の光量を求め、該それぞれの光量から当該波長による被
測定物の吸光度を求めるようにしてある。そして、得ら
れた吸光度は、あらかじめ定めた被測定物の成分量推定
式に代入して、直接的に非破壊で成分量が演算される。
前記成分量推定式は成分量が既知の被測定物に特定波長
の近赤外光を照射したときの吸光度と、成分量が既知の
被測定物の実際の成分量とによって重回帰分析により算
出したものである。
According to the spectroscopic measurement apparatus of the present invention, near-infrared light having an arbitrary wavelength relating to the components of the object is irradiated on the object, and the transmitted or reflected light of the object is received. The respective light amounts are obtained, and the absorbance of the measured object at the wavelength is obtained from the respective light amounts. Then, the obtained absorbance is substituted into a component amount estimating equation of a predetermined object to be measured, and the component amount is directly nondestructively calculated.
The component amount estimation formula is calculated by multiple regression analysis based on the absorbance when irradiating near-infrared light of a specific wavelength to the DUT whose component amount is known, and the actual component amount of the DUT whose component amount is known. It was done.

【0012】前記被測定物に近赤外光を照射する光源部
は、該光源部内の複数の発光素子から被測定物に向けて
光を照射する。この複数の発光素子から発光する光は、
狭帯域フィルター等により近赤外域の特定の波長となっ
て散乱板に入射される。該散乱板の板厚内では光が拡散
・透過を繰り返し、光が拡散して指向性を失ってしま
う。そして、散乱板から出た指向性を失った光は、次
円錐拡散胴内部に入射し、該円錐拡散胴内部では、
該円錐拡散胴と前記散乱板で囲まれた空間を光がさら
に反射・拡散を繰り返し、頂点の開口部から光量検出手
段に入射する。このとき、光は、円錐状に傾斜した円錐
拡散胴により1回又は複数回反射・拡散されて開口部か
ら光量検出手段に到達するので、光源の光量を減少させ
ず、積分球と同じ程度に被測定物に均一に照射すること
ができる。
The light source unit for irradiating the object to be measured with near-infrared light emits light from a plurality of light emitting elements in the light source unit toward the object to be measured. Light emitted from the plurality of light emitting elements is:
The light having a specific wavelength in the near infrared region is incident on the scattering plate by a narrow band filter or the like. Within the thickness of the scattering plate, light is repeatedly diffused and transmitted, and the light is diffused and loses directivity. The light lost directivity emitted from the scattering plate is then incident on the internal conical dispersion drum, inside the conical dispersion drum,
Light is further reflected and diffused in the space surrounded by the conical diffusion cylinder and the scattering plate, and is incident on the light quantity detection means from the opening at the vertex. At this time, the light is reflected and diffused one or more times by the conical diffuser which is inclined in a conical manner and reaches the light amount detecting means from the opening. The object to be measured can be uniformly irradiated.

【0013】また、前記複数の発光素子は、前記円錐拡
散胴の円錐軸を中心とする円周上に設けてあるので、測
定精度を確保するため測定に使用する発光素子を複数個
設けた場合に、波長が異なる各発光素子と円錐拡散胴の
円錐軸との距離が等しくなり、どの発光素子の光も被測
定物に均一に照射できる。
[0013] Further, since the plurality of light emitting elements are provided on a circumference centered on the conical axis of the conical diffusion cylinder, a plurality of light emitting elements used for measurement are provided in order to secure measurement accuracy. In addition, the distance between each light-emitting element having a different wavelength and the conical axis of the conical diffusion cylinder becomes equal, so that the light from any light-emitting element can be evenly applied to the measured object.

【0014】[0014]

【実施例】本発明に好適な実施例として、葉に近赤外光
を照射して、その吸光度と吸光度から求められる成分
である窒素等を測定演算するような分光分析測定装置を
例として説明する。図1に示すものは、携帯型分光分
析測定装置1主要部分の側断面図である。図1では、
2内に光源部3を設けるとともにその上方に光量検
出手段4としてのフォトダイオード5とを設けた構成と
なっている。光源部3は、同一円周上に異なる波長ピー
クを持つ複数の発光素子であるLED6を配設して、該
LED6にはそれぞれ波長帯域の異なる狭帯域フィルタ
ー7を設けてある。波長帯域は600nm〜1100n
mで、この波長帯域から、求める成分に関係する任意の
特定波長の狭帯域フィルター7を選択してある。各LE
D6の発光する光は、狭帯域フィルター7によって特定
波長の光となって、光が透過可能な散乱板8に入射す
る。この散乱板8は、各LED6の光線がほぼ垂直に入
射するように光軸と垂直に設けられ、円形の磨りガラス
状に形成されている。該散乱板8は、LED6側は被
測定物9側のどちらかに磨り面が形成されている。ま
た、LED6側と被測定物9側との両面に磨り面を形成
してもよい。この散乱板8に光が入射すると、拡散板8
の板厚内では光が拡散して指向性を失ってしまう。散乱
板8から出る光は、次に、円錐拡散胴10に入射する。
該円錐拡散胴10は、中空円錐状であって、前記拡散板
8を底部に固設し、該散乱板8から出た光が被測定物9
に向けて集光するように頂部に開口12を穿設し
内壁を散乱壁11に形成している。該散乱壁11
例えばアルミニウムの無垢で形成するのがよく、ま
た、アルミニウムに梨地加工を施してもよい。該円錐拡
散胴10内では、散乱壁11と散乱板8とで囲まれた空
間を光が反射・拡散を繰り返しながら開口部12から出
て、透明ガラス板13を経て光量検出手段4に入射す
る。光量検出手段4は、光源部3と任意間隔をおいて、
より詳しくは前記光源部3の透明ガラス板13との間
に、被測定物となる葉9が挿入できる間隔をおいて固設
してある。
Suitable examples EXAMPLES The present invention, by irradiating near infrared light to the leaves, as an example spectroscopic measurement apparatus to measure calculating nitrogen or the like is a component obtained from the absorbance and the absorbance explain. Those shown in FIG. 1 is a side sectional view of a spectroscopic measurement apparatus 1 main portion of the portable. In FIG. 1, the book
The light source unit 3 is provided in the body 2, and a photodiode 5 as a light amount detection unit 4 is provided above the light source unit 3. The light source unit 3 includes a plurality of LEDs 6 which are light-emitting elements having different wavelength peaks on the same circumference, and the LEDs 6 are provided with narrow-band filters 7 having different wavelength bands. Wavelength band is 600nm ~ 1100n
At m, a narrow-band filter 7 of an arbitrary specific wavelength related to a component to be obtained is selected from this wavelength band. Each LE
Emitting light of D6 is a light of a specific wavelength by the narrow band filter 7, light enters the permeable scattering plate 8. The scattering plate 8 is provided perpendicular to the optical axis so that the light beam of each LED 6 is incident substantially perpendicularly, and is formed in a circular ground glass shape. The scattering plate 8, LED 6 side or are formed frosted surface to either the object to be measured 9 side. Also, polished surfaces may be formed on both the LED 6 side and the DUT 9 side. When light enters the scattering plate 8, the diffusion plate 8
Within this thickness, light diffuses and loses directivity. The light emerging from the scattering plate 8 then enters the conical diffusion cylinder 10.
The conical diffusion cylinder 10 has a hollow conical shape, and the diffusion plate 8 is fixed to the bottom, and light emitted from the scattering plate 8
In toward bored an opening 12 at the top so as to collect light, one <br/> or to form an inner wall the scattering wall 11. The scattering wall 11
Is preferably formed of , for example, pure aluminum, or aluminum may be subjected to a satin finish. In the conical diffusion cylinder 10, the light exits from the opening 12 while repeatedly reflecting and diffusing light in the space surrounded by the scattering wall 11 and the scattering plate 8, and enters the light quantity detection means 4 via the transparent glass plate 13. . The light amount detection means 4 is arranged at an arbitrary interval from the light source unit 3,
More specifically , the light source unit 3 is fixed to the transparent glass plate 13 with an interval at which the leaf 9 to be measured can be inserted.

【0015】光量検出手段4の上部外周に上蓋14を
、該上蓋14から延長した腕15は支点16によっ
て軸支されている。さらに、本体2に遊嵌して上蓋14
の腕15を押し上げる押しボタン17を設けるととも
に、押しボタン17とは逆方向に付勢するコイルばね
8を設けてある。また、腕15を挟んで前記押しボタン
17と対向する本体2には、押しボタン17を押し下げ
たことを検知するスイッチ19を設けてある。
An upper cover 14 is provided on the outer periphery of the upper part of the light quantity detecting means 4.
The arm 15 extending from the upper lid 14 is pivotally supported by a fulcrum 16. Furthermore, the upper cover 14
A push button 17 for pushing up the arm 15 is provided, and the coil spring 1 is urged in a direction opposite to the push button 17.
8 is provided. A switch 19 for detecting that the push button 17 has been pressed down is provided on the main body 2 facing the push button 17 with the arm 15 interposed therebetween .

【0016】次に、図2に基づいて分光分析測定装置1
のブロック図説明する。光源部3光量検出手段4と
からなる測定部で検出される被測定サンプル葉9の透過
光量は、フォトダイオード5によってアナログの信号に
変換されアナログボード20に連絡されている。光源
部3にはLED6の発光装置21を設けてある。アナロ
グボード20ではアナログからデジタル信号へのA/D
変換をするか、あるいは電圧から周波数へのV/F変換
を行う。変換された信号はI/Oボード22を経由し
演算制御装置の作用を含むCPUボード23に入力
される。前記I/Oボード22には、測定結果、演算結
は操作指示を表示する液晶表示器LCD24、初期
データの入力や操作を行うキーボード25、外部装置と
データを入出力するRS232Cの接続ポート26及び
スイッチ等を設けてある。これらCPUボード23とI
/Oボード22には電源ボード27から電源を供給する
ように接続してある。また、プリンタ29はプリンタ
I/Fボード28を介してCPUボード23に接続して
ある。
Next, based on FIG.
Will be described. The transmitted light amount of the sample leaf 9 to be measured detected by the measuring unit including the light source unit 3 and the light amount detecting means 4 is converted into an analog signal by the photodiode 5 and communicated to the analog board 20. The light source unit 3 is provided with a light emitting device 21 of the LED 6. A / D from analog to digital signal in analog board 20
Conversion or V / F conversion from voltage to frequency. Converted signal, via the I / O board 22, is input to the CPU board 23 including the operation of the arithmetic and control unit. The I / O board 22, measurement results, calculation results or the liquid crystal display device for displaying an operation instruction LCD 24, a keyboard 25 for inputting and operation of the initial data, RS232C connection port 26 for inputting and outputting external device and data And a switch. These CPU board 23 and I
The / O board 22 is connected to supply power from a power supply board 27. The printer 29 is connected to the CPU board 23 via the printer I / F board 28.

【0017】このように構成された分光分析測定装置1
の作用について以下に説明する。まず最初に分光分析
測定装置1にあらかじめ成分量が既知の基準サンプルを
挿入し測定すると、CPUボード23では近赤外光を照
射したときの基準サンプルの吸光度と基準サンプルの実
際の成分量とから成分量推定式が算出される。そして、
これを記憶装置の作用を持つCPUボード23内に記憶
させておく。
The spectroscopic analyzer 1 thus constructed
The operation of will be described below. First, when a reference sample having a known component amount is inserted into the spectroscopic measurement apparatus 1 and measured, the CPU board 23 determines the absorbance of the reference sample when irradiating near-infrared light and the actual component amount of the reference sample. Is used to calculate a component amount estimation formula. And
This is stored in the CPU board 23 having the function of a storage device.

【0018】次に、分光分析測定装置1から基準サンプ
ルを取り出し、被測定サンプル葉9を挿入して電源を投
入すると、CPUボード23からは発光装置21を経
て、光源部3へ発光信号が送られ、光源部3内の複数の
LED6からは被測定サンプル葉9に向けて光が照射さ
れる。この各LED6から発光する光は、狭帯域フィル
ター7によって近赤外域の特定波長の光となって、光が
透過する散乱板8に入射される。該散乱板8の板厚内で
は光が拡散・透過を繰り返し、光が拡散して指向性を失
ってしまう。散乱板4から出る指向性を失った光は、次
に円錐拡散胴10に入射する。該円錐拡散胴10内で
は、散乱壁11と散乱板8とで囲まれた空間を光が
反射・拡散を繰り返しながら透明ガラス板13から光量
検出手段4に入射する。このとき、円錐拡散胴10内に
入射した光は、円錐状に傾斜した拡散壁11により1回
は複数回反射・拡散して開口部12から光量検出手段
4に到達するので、光源の光量を減少させず、積分球と
同じ程度に被測定サンプル葉9に均一に照射される。
Next, when a reference sample is taken out from the spectroscopic analyzer 1 and the sample leaf 9 is inserted and the power is turned on, a light emission signal is sent from the CPU board 23 to the light source unit 3 via the light emitting device 21. Then, light is emitted from the plurality of LEDs 6 in the light source unit 3 toward the sample leaf 9 to be measured. The light emitted from each LED 6 is converted into light having a specific wavelength in the near-infrared region by the narrow band filter 7 and is incident on the scattering plate 8 through which the light is transmitted. Within the thickness of the scattering plate 8, light is repeatedly diffused and transmitted, and the light is diffused and loses directivity. The light that has lost the directivity from the scattering plate 4 then enters the conical diffusion cylinder 10. The in conical dispersion drum 10, a space surrounded by the scattering wall 11 and a scattering plate 8 is the light incident from the transparent glass plate 13 while repeating reflection and diffuse further in the light quantity detecting section 4. At this time, the light incident into the conical diffusion cylinder 10 is transmitted once by the conical-inclined diffusion wall 11.
Since or arrives from the opening 12 a plurality of times reflected and diffused by the light quantity detecting section 4, without reducing the quantity of light of the light source is uniformly irradiated to the measured sample leaves 9 to the same extent as the integrating sphere.

【0019】被測定サンプル葉9に光が照射されると、
その透過光は反射光がフォトダイオード5により受光
され、該受光信号はA/D変換のためにアナログボード
20に連絡される。アナログボード20では、A/D変
換を行い、次にI/Oボード22を経由して演算制御
装置の作用を含むCPUボード23に入力される。CP
Uボード23においては、被測定サンプル葉9の透過光
又は反射光から光の透過率は吸光度を算出するように
してある。
When light is applied to the sample leaf 9 to be measured,
The transmitted light or the reflected light is received by the photodiode 5, photodetection signals are communicated to the analog board 20 for A / D conversion. The analog board 20 performs A / D conversion, and then inputs the signal to the CPU board 23 including the operation of the arithmetic and control unit via the I / O board 22. CP
In U board 23, it is as is also the transmittance of light from the transmitted light or reflected light of the measurement sample leaves 9 to calculate the absorbance.

【0020】このように被測定サンプル葉9の吸光度
が算出されると、該吸光度はあらかじめ記憶された前
記成分量推定式に代入され、最終的に作業者の求めてい
る成分量が算出される。
[0020] In this manner, the calculated absorbance of the measured sample leaves 9, absorbance is substituted into previously stored the component amount estimation formula, component amounts are finally workers seeking of calculation Is done.

【0021】前記CPUボード23には、各LED6の
一定時間点灯を一定間隔で繰り返す光源点灯ルーチンを
設ける場合もある。この光源点灯ルーチンは、異なる波
長ピークを持つ各LED6がそれぞれ点灯して、それぞ
れの波長別に被測定サンプル葉9の透過光量が測定され
る。これにより、被測定サンプル葉9の透過光量の測定
精度が良くなり、には被測定サンプル葉の吸光度の測
定精度が良くなる。
In some cases, the CPU board 23 is provided with a light source lighting routine in which the LEDs 6 are turned on for a certain period of time at regular intervals. In this light source lighting routine, each LED 6 having a different wavelength peak is turned on, and the amount of transmitted light of the sample leaf 9 to be measured is measured for each wavelength. Thus, the better the accuracy of measurement of the transmitted light amount of the measurement sample leaves 9, the measurement accuracy of the absorbance of the sample leaves the measurement is improved to further.

【0022】[0022]

【発明の効果】以上のように本発明における分光分析測
定装置によれば、前記光源部は、複数の発光素子からな
る光源と、内部に円錐状の中空部を有し該円錐状中空
部の底部を開放し頂点に外部と連通する開口部を設け
るとともに該円錐状中空部の円錐底部には光が拡散し
ながら透過する散乱板を設けた円錐拡散胴と、前記発光
素子を適宜発光させる発光装置とからなり、前記円錐拡
散胴は前記発光素子からの光を円錐底部の散乱板を透過
して円錐拡散胴の頂点の開口部から被測定物を照射する
ように位置させたので、散乱板に光が入射すると、散乱
板の板厚内では光が拡散して指向性を失うとともに、さ
らに、光が円錐拡散胴内に入射すると、円錐状に傾斜し
た円錐拡散胴により光が1回は複数回反射・拡散して
開口部から光量検出手段に到達するので、光源の光量を
減少させず、積分球と同じ程度で被測定物に均一に光を
照射させることが可能となる。そして、積分球を製造す
る場合の球面の機械加工が簡略化され、積分球を使用す
るよりも低コストで製作できるようになった。
As described above, according to the spectroscopic measurement apparatus of the present invention, the light source section has a light source including a plurality of light emitting elements and a conical hollow portion inside , and the conical hollow portion. A conical diffusion cylinder provided with an opening communicating with the outside at the apex by opening the bottom of the cone , and a scattering plate through which light is transmitted while diffusing at the conical bottom of the conical hollow portion, and the light emitting element is appropriately disposed. Since the light-emitting device emits light, the conical diffusion cylinder is positioned so that light from the light-emitting element is transmitted through the scattering plate at the bottom of the cone and illuminates the device under test from the opening at the top of the conical diffusion cylinder. When light is incident on the scattering plate, the light is diffused within the thickness of the scattering plate and loses directivity. Further, when light is incident on the conical diffusion cylinder, the light is diffused by the conical diffusion cylinder that is inclined in a conical shape. once or multiple times reflected and diffused by the light amount detection from the opening Since reaching the unit, without reducing the quantity of light of the light source, uniformly and it is possible to irradiate light to the object to be measured to the same degree as the integrating sphere. Then, machining of the spherical surface in the case of manufacturing the integrating sphere is simplified, and it can be manufactured at lower cost than using the integrating sphere.

【0023】また、前記複数の発光素子は、前記円錐拡
散胴の円錐軸を中心とする円周上に設けてあるので、測
定精度を確保するため測定に使用する発光素子を複数
個設けた場合に、波長が異なる各発光素子と円錐拡散胴
の円錐軸との距離が等しくなり、どの発光素子の光も被
測定物に均一に照射できるようになった。
Further, the plurality of light emitting elements, so is provided on a circumference around the cone axis of said conical dispersion drum, to ensure measurement accuracy, provided a plurality of light emitting elements used in the measurement In this case, the distance between each light-emitting element having a different wavelength and the conical axis of the conical diffusion cylinder became equal, so that the light of any light-emitting element could be evenly applied to the object to be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分光分析測定装置の側断面図である。FIG. 1 is a side sectional view of a spectroscopic analyzer of the present invention.

【図2】分光分析測定装置のブロック図である。FIG. 2 is a block diagram of a spectroscopic analyzer.

【図3】従来の代表的な葉緑素計を示す概略図である。FIG. 3 is a schematic view showing a conventional representative chlorophyll meter.

【図4】従来の成分量測定装置の光学測定部である。FIG. 4 is an optical measuring section of a conventional component amount measuring device.

【符号の説明】[Explanation of symbols]

1 分光分析測定装置 2 本体 3 光源部 4 光量検出手段 5 フォトダイオード 6 LED 7 狭帯域フィルター 8 散乱板 9 被測定物 10 円錐拡散胴 11 散乱壁 12 開口部 13 透明ガラス板 14 上蓋 15 腕 16 支点 17 押しボタン 18 コイルばね 19 スイッチ 20 アナログボード 21 発光装置 22 I/Oボード 23 CPUボード 24 液晶表示器LCD 25 キーボード 26 接続ポート 27 電源ボード 28 I/Fボード 29 プリンタ DESCRIPTION OF SYMBOLS 1 Spectroscopic analysis measuring device 2 Main body 3 Light source part 4 Light quantity detection means 5 Photodiode 6 LED 7 Narrow band filter 8 Scattering plate 9 DUT 10 Conical diffusion cylinder 11 Scattering wall 12 Opening 13 Transparent glass plate 14 Upper lid 15 Arm 16 Support point 17 push button 18 coilSpring  19 Switch 20 Analog Board 21 Light Emitting Device 22 I / O Board 23 CPU Board 24 Liquid Crystal Display LCD 25 Keyboard 26 Connection Port 27 Power Board 28 I / F Board 29 Printer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01J 3/00 - 3/52 実用ファイル(PATOLIS) 特許ファイル(PATOLIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01J 3/00-3/52 Practical file ( (PATOLIS) Patent file (PATOLIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定物に任意波長の近赤外光を照射す
る光源部と、被測定物からの透過光又は反射光を受光す
る光量検出手段と、該光量検出手段から得られる透過光
量又は反射光量から被測定物の吸光度を算出するととも
に、あらかじめ成分量が既知の被測定物に前記近赤外光
を照射したときに得られる吸光度と前記既知の成分量と
によって成分量推定式を定め、該成分量推定式と前記被
測定物の吸光度とにより被測定物の成分量を演算する演
算手段とからなる分光分析測定装置であって、前記光
源部は、複数の発光素子からなる光源と、内部に円錐状
の中空部を有し該円錐状中空部の底部を開放し頂点
に外部と連通する開口部を設けるとともに該円錐状中空
部の円錐底部には光が拡散しながら透過する散乱板を設
けた円錐拡散胴と、前記発光素子を適宜発光させる発光
装置とからなり、前記円錐拡散胴は前記発光素子が発生
する光を円錐底部の散乱板を透過して円錐拡散胴の頂点
の開口部から被測定物を照射するように位置させたこと
を特徴とする分光分析測定装置。
1. A light source unit for irradiating an object with near-infrared light of an arbitrary wavelength, a light amount detecting unit for receiving transmitted light or reflected light from the object, and a transmitted light amount obtained from the light amount detecting unit Or while calculating the absorbance of the measured object from the reflected light amount, the component amount estimation formula by the absorbance and the known component amount obtained when irradiating the near-infrared light to the object whose component amount is known in advance determined, a molded amount estimation formula and said calculating means for calculating a component of the object to be measured by the absorbance of the measured object, spectroscopic measurement apparatus consisting of, said light source unit includes a plurality of light emitting elements A light source, having a conical hollow portion inside, opening the bottom of the conical hollow portion, providing an opening at the apex communicating with the outside, and diffusing light to the conical bottom portion of the conical hollow portion. A conical diffusion cylinder provided with a scattering plate that transmits while A light emitting device that appropriately emits light from the light emitting element, wherein the conical diffusion cylinder irradiates the object to be measured from the opening at the apex of the conical diffusion cylinder by transmitting light generated by the light emitting element through a scattering plate at the bottom of the cone. Spectroscopic analysis measuring device characterized by being positioned as follows.
【請求項2】 前記複数の発光素子は、前記円錐拡散胴
の円錐軸を中心とする円周上に設けてなる請求項1記載
の分光分析測定装置。
2. The spectroscopic analyzer according to claim 1, wherein the plurality of light emitting elements are provided on a circumference centered on a conical axis of the conical diffusion cylinder.
JP15708495A 1995-05-30 1995-05-30 Spectroscopic analyzer Expired - Lifetime JP3324341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15708495A JP3324341B2 (en) 1995-05-30 1995-05-30 Spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15708495A JP3324341B2 (en) 1995-05-30 1995-05-30 Spectroscopic analyzer

Publications (2)

Publication Number Publication Date
JPH08327538A JPH08327538A (en) 1996-12-13
JP3324341B2 true JP3324341B2 (en) 2002-09-17

Family

ID=15641902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15708495A Expired - Lifetime JP3324341B2 (en) 1995-05-30 1995-05-30 Spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP3324341B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605890B2 (en) * 2000-10-31 2011-01-05 株式会社ケット科学研究所 Grain quality discrimination device
EP1615017A1 (en) 2004-07-08 2006-01-11 Yokohama Electronic Communications & Solutions Co., Ltd. Colorimetry device
CN102809540A (en) * 2012-08-15 2012-12-05 北京雪迪龙科技股份有限公司 Leaf biochemical parameter detecting system and method
CN106954385B (en) 2015-01-09 2020-07-28 麦克赛尔控股株式会社 Plant information acquisition system, plant information acquisition device, and plant information acquisition method
US20230221254A1 (en) * 2020-06-29 2023-07-13 Spekciton Biosciences Llc DUVF-MSI Biophotonic Analyzer Device and Methods for Detecting Pathogens on Plants and Measuring Stress Response
JP2021006819A (en) * 2020-10-01 2021-01-21 マクセルホールディングス株式会社 Plant information acquisition system, plant information acquisition device, plant information acquisition method, crop management system, and crop management method

Also Published As

Publication number Publication date
JPH08327538A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JP3436093B2 (en) Leaf component measuring device
JP3790827B2 (en) System, apparatus and method for measuring and analyzing diamond color
KR100219252B1 (en) Analytical system with means for detecting too small sample volumes
US7414724B2 (en) Light diffuser used in a testing apparatus
US5319200A (en) Rapid near-infrared measurement of nonhomogeneous samples
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
US3638640A (en) Oximeter and method for in vivo determination of oxygen saturation in blood using three or more different wavelengths
US5035508A (en) Light absorption analyser
US5164586A (en) Arrangement for measuring the absorption of transparent specimens mounted within an integrating sphere
AU769396B2 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
RU2007126679A (en) SYSTEM FOR SPECTROSCOPY OF PASSING FOR USE IN DETERMINING ANALYZED SUBSTANCES IN THE LIQUID OF THE ORGANISM
US20020183600A1 (en) Method and apparatus for detecting mastitis by using visual light and/or near infrared lights
US20090103085A1 (en) Method and Apparatus for Spectrophotometric Characterization of Turbid Materials
JPH058975B2 (en)
JP3324341B2 (en) Spectroscopic analyzer
JP2004527753A (en) Portable automatic refractometer
CA1249138A (en) Simultaneous multiple wavelength photometer
EP0903571A2 (en) Apparatus and method for determining the concentration of specific substances
JPH0933435A (en) Device for measuring optical characteristic value of transparent material
CN210894119U (en) Device for detecting concentration of substance in body fluid
JPH10137194A (en) Surface color measuring apparatus, luster measuring apparatus and spectral colorimetric apparatus
JPH11248622A (en) Urinalysis device
JPH08320287A (en) Spectral analyzing and measuring device
RU2138042C1 (en) Process determining content of gluten in wheat and device for its implementation
CN214408685U (en) Food analyzer based on total reflection refraction method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070705

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term