JPH08327044A - Cooling construction of tap hole in fusion furnace - Google Patents

Cooling construction of tap hole in fusion furnace

Info

Publication number
JPH08327044A
JPH08327044A JP13515495A JP13515495A JPH08327044A JP H08327044 A JPH08327044 A JP H08327044A JP 13515495 A JP13515495 A JP 13515495A JP 13515495 A JP13515495 A JP 13515495A JP H08327044 A JPH08327044 A JP H08327044A
Authority
JP
Japan
Prior art keywords
cooling
block
passage
tap hole
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13515495A
Other languages
Japanese (ja)
Other versions
JP3066289B2 (en
Inventor
Ryoji Samejima
良二 鮫島
Yoshihisa Kawai
美久 川井
Koutarou Katou
考太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15145085&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08327044(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP7135154A priority Critical patent/JP3066289B2/en
Publication of JPH08327044A publication Critical patent/JPH08327044A/en
Application granted granted Critical
Publication of JP3066289B2 publication Critical patent/JP3066289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE: To stably and continuously tap a fused substance from a tap hole irrespective of an amount tapped and extend a service life of a refractory at the tap hole. CONSTITUTION: An overflow tap type fusion furnace fuses and treats a substance being fused, such as incineration ash, smoke dust and the like, to make the fused substance 5 overflow from a tap hole 2. Provided in a refractory at the tap hole 2 is a cooling block 7, in which a plurality of cooling passages 7a are formed and compartmented, and a cooling medium is suitably supplied to the respective cooling passages 7a in the cooling block 7 to enable adjusting a cooling capacity of the cooling block 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被溶融物例えばごみ焼
却炉からの焼却灰や煤塵、或いは一般廃棄物や産業廃棄
物等の溶融処理に利用されるオーバーフロー出湯方式の
溶融炉の出湯口冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outlet tap of a melting furnace of an overflow tapping method, which is used for melting objects to be melted, such as incineration ash and soot from a refuse incinerator, or general waste and industrial waste. Regarding cooling structure.

【0002】[0002]

【従来の技術】一般に、ごみ焼却炉で発生するの焼却灰
や煤塵は、その多くが埋立て処理されている。しかし、
前記焼却灰や煤塵には、重金属やダイオキシン等の有害
物質が含まれている為、埋立て処理後に環境汚染を生じ
る虞れがあるうえ、埋立て地の確保も年々困難になりつ
つあり、実務上様々な問題を生じている。
2. Description of the Related Art Generally, most of incinerated ash and dust generated in a refuse incinerator are landfilled. But,
Since the incinerated ash and dust contain harmful substances such as heavy metals and dioxins, there is a risk that environmental pollution will occur after landfill treatment, and securing landfill sites is becoming difficult year by year. There are various problems.

【0003】ところで、焼却灰や煤塵を溶融処理して固
化すると、容積が大幅に減少するばかりでなく、重金属
等の溶出もなくなり、骨材や路盤材等への有効利用が可
能となる。従って、最近では焼却灰や煤塵の溶融処理が
行われるようになりつつある。又、焼却灰や煤塵のみな
らず、廃棄物や下水汚泥の溶融処理も行われつつある。
By the way, when the incinerated ash and the soot and dust are melted and solidified, not only the volume is greatly reduced, but also the elution of heavy metals and the like is eliminated, and it is possible to effectively use the aggregate and the roadbed material. Therefore, recently, incineration ash and soot dust are being melted. Further, not only incinerated ash and dust, but also waste and sewage sludge are being melted.

【0004】従来、焼却灰や煤塵等の被溶融物の溶融処
理には、アーク炉,プラズマ炉,電気抵抗炉等の電気溶
融炉や油,ガス等の燃料を用いる燃焼式溶融炉が用いら
れて居り、発電設備を備えている焼却炉ではオーバーフ
ロー出湯方式の電気溶融炉が利用されることが多い。
Conventionally, an electric melting furnace such as an arc furnace, a plasma furnace, an electric resistance furnace or a combustion type melting furnace using a fuel such as oil or gas is used for melting a material to be melted such as incineration ash or dust. In an incinerator equipped with a power generation facility, an overflow tap type electric melting furnace is often used.

【0005】図5は従前のオーバフロー出湯方式の溶融
炉の一例を示し、当該溶融炉は、炉本体21内に投入し
た焼却灰等の被溶融物22を電極23からのアーク熱等
で溶融し、炉内に溜った溶融物22aを順次出湯口24
のオーバーフロー部21aから外部へ出湯するように構
成されている。又、被溶融物22の溶融により発生した
ガス25は、ガス排出口26からバグフィルター(図示
省略)等を経て炉外へ排出されている。尚、図5に於い
て、27は被溶融物供給装置、28はスタート電極、は
29炉底電極である。
FIG. 5 shows an example of a conventional overflow hot-melting type melting furnace, which melts a material 22 to be melted, such as incinerated ash, charged into a furnace body 21 by arc heat from an electrode 23 or the like. , The melt 22a accumulated in the furnace is sequentially tapped from the tap 24
The hot water is discharged to the outside from the overflow portion 21a. Further, the gas 25 generated by melting the melted material 22 is discharged from the gas discharge port 26 to the outside of the furnace through a bag filter (not shown) and the like. In FIG. 5, reference numeral 27 is a molten material supply device, 28 is a start electrode, and 29 is a furnace bottom electrode.

【0006】[0006]

【発明が解決しようとする課題】ところで、オーバフロ
ー出湯方式の溶融炉に於いては、出湯口24の炉材(耐
火物)の消耗を抑制する為に出湯口24を水冷構造(図
示省略)とし、炉材の保護を行っている。しかし、溶融
炉の運転開始直後(炉材の蓄熱が不十分な状態になって
いるとき)や、溶融物22aの出湯量(オーバーフロー
量)が計画よりも少ないときには、出湯口24内で溶融
物22aが冷却されて固化し易く、容易にオーバーフロ
ーしないと云う現象が生じる。その為、従来の溶融炉に
於いては、溶融炉の出湯口24に補助バーナや補助電極
等の加熱装置(図示省略)を設け、該加熱装置により出
湯口24内の溶融物22aを加熱して出湯口24での溶
融物22aの冷却固化を防止するようにしている。又、
反対に溶融物22aの出湯量が計画よりも多いときに
は、冷却が不十分となって出湯口24付近の炉材が高温
に晒されるうえ、溶融物22aの流速も速く、炉材の消
耗が激しくなる。
By the way, in the overflow hot-melting type melting furnace, the hot water outlet 24 has a water cooling structure (not shown) in order to suppress the consumption of the furnace material (refractory) of the hot water outlet 24. , Protects the furnace material. However, immediately after the start of the operation of the melting furnace (when the heat storage of the furnace material is insufficient), or when the amount of molten metal 22a discharged (the amount of overflow) is smaller than planned, the molten material in the tap hole 24 The phenomenon that 22a is easily cooled and solidified and does not easily overflow occurs. Therefore, in a conventional melting furnace, a heating device (not shown) such as an auxiliary burner or an auxiliary electrode is provided at the tap hole 24 of the melting furnace, and the molten material 22a in the tap hole 24 is heated by the heating device. The molten material 22a is prevented from solidifying by cooling at the tap hole 24. or,
On the contrary, when the amount of molten metal 22a discharged is larger than planned, the cooling is insufficient and the furnace material near the outlet 24 is exposed to high temperature, and the flow velocity of the melt 22a is high, and the consumption of the furnace material is severe. Become.

【0007】このように、従来のオーバーフロー出湯方
式の溶融炉に於いては、出湯口24の炉材(耐火物)を
過冷却にするうえ、補助バーナや補助電極等の加熱装置
で溶融物22aを加熱して冷却固化を防止するようにし
ている為、熱損失が大きくて極めて不経済である。
As described above, in the conventional overflow hot-melting type melting furnace, the furnace material (refractory) of the tap hole 24 is supercooled, and the melt 22a is heated by a heating device such as an auxiliary burner or an auxiliary electrode. Since it is heated to prevent solidification by cooling, heat loss is large and it is extremely uneconomical.

【0008】本発明は、上記の問題点を解消する為に創
作されたものであり、その目的は出湯口付近の熱損失を
最低限に抑え、出湯口の炉材の温度を出湯量が変化して
も溶融物が固化しない温度に保って溶融物を安定して連
続的に出湯することができ、且つ出湯口の炉材の急激な
消耗も抑制できるようにした溶融炉の出湯口冷却構造を
提供するにある。
The present invention was created in order to solve the above problems, and its purpose is to minimize the heat loss in the vicinity of the outlet and to change the temperature of the furnace material at the outlet to change the amount of tapping. Even if the temperature of the molten material does not solidify, the molten material can be stably and continuously discharged, and the rapid exhaustion of the furnace material at the outlet can be suppressed. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する為
に、本発明の溶融炉の出湯口冷却構造は、出湯口の耐火
物中に、複数の冷却通路を区画形成した冷却ブロックを
配設し、該冷却ブロックの各冷却通路内へ冷却媒体供給
機構により夫々冷却媒体を適宜に供給して冷却ブロック
の冷却能力を調整できるようにしたものである。又、冷
却媒体供給機構は、冷却ブロックの各冷却通路に夫々接
続され、各冷却通路へ冷却水を供給する冷却水供給管
と、冷却ブロックの各冷却通路に夫々接続され、各冷却
通路へ冷却空気を供給する冷却空気供給管と、各冷却水
供給管に介設され、各冷却通路への冷却水の出入りを調
節する複数の冷却水用バルブと、冷却空気供給管に介設
され、各冷却通路への冷却空気の出入りを調節する複数
の冷却空気用バルブとを備えて居り、冷却ブロック近傍
の耐火物の温度検出に基づいて前記冷却水用バルブ及び
冷却空気用バルブを夫々制御し、冷却ブロックの各冷却
通路へ供給される冷却媒体を切り換え制御できるように
構成することが好ましい。
In order to achieve the above-mentioned object, the structure for cooling the outlet of the melting furnace of the present invention is provided with a cooling block in which a plurality of cooling passages are formed in the refractory at the outlet. The cooling medium supply mechanism appropriately supplies the cooling medium into the respective cooling passages of the cooling block so that the cooling capacity of the cooling block can be adjusted. Further, the cooling medium supply mechanism is connected to each cooling passage of the cooling block, connected to each of the cooling water supply pipes for supplying cooling water to each cooling passage, and each cooling passage of the cooling block to cool each cooling passage. A cooling air supply pipe that supplies air, and a plurality of cooling water valves that are provided in each cooling water supply pipe to control the flow of cooling water into and out of each cooling passage, and a cooling air supply pipe that is provided in each cooling air supply pipe. There is provided a plurality of cooling air valves for adjusting the flow of cooling air into and out of the cooling passage, and the cooling water valve and the cooling air valve are respectively controlled based on the temperature detection of the refractory near the cooling block, It is preferable that the cooling medium supplied to each cooling passage of the cooling block can be switched and controlled.

【0010】[0010]

【作用】オーバーフロー出湯方式の出湯口を有する溶融
炉に於いて、炉内へ供給された焼却灰や煤塵等の被溶融
物は、電極のアーク熱、プラズマ熱或いは被溶融物自身
のジュール熱等により溶融されて流動性の溶融物とな
り、出湯口からオーバーフローし、水冷若しくは空冷に
よって冷却された後、外部へ排出される。
[Operation] In a melting furnace having an overflow tap, a melted material such as incineration ash or dust supplied to the furnace is the arc heat of the electrode, the plasma heat, or the Joule heat of the melted material itself. Is melted into a fluid melt, overflows from the tap hole, is cooled by water cooling or air cooling, and is then discharged to the outside.

【0011】前記溶融炉の出湯口に於いては、出湯口の
耐火物中に埋設された冷却ブロック近傍の耐火物の温度
が検出され、この検出温度に基づいて冷却ブロックの各
冷却通路へ供給される冷却媒体が制御され、出湯口の耐
火物が適宜に冷却されて適正な温度に保たれている。そ
の結果、出湯口を流れる溶融物は、出湯量が変化しても
固化せず、安定して連続的に流れる。又、冷却ブロック
近傍の耐火物は、消耗速度の遅い温度に保たれて急激に
消耗すると云うこともなく、耐火物の寿命が大幅に延び
ることになる。
At the tap of the melting furnace, the temperature of the refractory near the cooling block embedded in the refractory at the tap is detected and supplied to each cooling passage of the cooling block based on the detected temperature. The refrigerating material at the tap hole is appropriately cooled and maintained at an appropriate temperature by controlling the cooling medium. As a result, the melt flowing through the tap hole does not solidify even when the tap amount changes, and flows stably and continuously. Further, the refractory in the vicinity of the cooling block will not be abruptly consumed by being kept at the temperature at which the consumption rate is slow, and the life of the refractory will be greatly extended.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。図1は本発明の実施例に係るオーバーフロ
ー出湯方式の電気溶融炉の要部を示し、1は炉本体、2
は出湯口、3は湯排出口、4はガス排出口、5は溶融
物、6は排ガス、7は冷却ブロック、8は冷却媒体供給
機構である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows a main part of an overflow melting type electric melting furnace according to an embodiment of the present invention, in which 1 is a furnace body and 2 is a furnace body.
Is a hot water outlet, 3 is a hot water outlet, 4 is a gas outlet, 5 is a melt, 6 is an exhaust gas, 7 is a cooling block, and 8 is a cooling medium supply mechanism.

【0013】前記炉本体1は、キャスタブル耐火物及び
耐火煉瓦等の耐火物で形成された側壁、天井壁及び炉底
により略箱状に形成されて居り、側壁若しくは天井壁に
は炉内へ焼却灰や煤塵等の被溶融物を投入する為の被溶
融物供給口(図示省略)が、又、側壁には炉内の溶融物
5を出湯する為の出湯口2が夫々形成されてる。尚、出
湯口2の下流側には、出湯口2から出湯された溶融物5
を冷却用水槽(図示省略)へ導く湯排出口3と、排ガス
6を外部へ排出するガス排出口4とが夫々連通状態で形
成されている。
The furnace body 1 is formed in a substantially box shape by a side wall, a ceiling wall and a furnace bottom made of refractory such as castable refractory and refractory brick, and the side wall or ceiling wall is incinerated into the furnace. A melted material supply port (not shown) for introducing a melted material such as ash or soot and a tap hole 2 for discharging the melted material 5 in the furnace are formed on the side wall. In addition, on the downstream side of the tap hole 2, the melt 5 discharged from the tap port 2
A hot water discharge port 3 for guiding the cooling water to a cooling water tank (not shown) and a gas discharge port 4 for discharging the exhaust gas 6 to the outside are formed in communication with each other.

【0014】前記冷却ブロック7は、図2に示す如く、
銅等の熱伝導率の大きい金属材料等により略直方体状に
形成されて居り、内部には複数の冷却通路7aが区画形
成されている。本実施例では、各冷却通路7aは、冷却
ブロック7の長手方向で且つ冷却ブロック7の幅方向及
び上下方向に所定の間隔を置いて形成されている。そし
て、この冷却ブロック7は、図1に示す如く、出湯口2
の耐火物を冷却できるように出湯口2のオーバーフロー
部1aに埋設されている。尚、冷却ブロック7の長さ及
び幅は、オーバーフロー部1aの略全域の耐火物を冷却
できる大きさに設定されている。
The cooling block 7 is, as shown in FIG.
It is formed in a substantially rectangular parallelepiped shape by a metal material having a high thermal conductivity such as copper, and a plurality of cooling passages 7a are formed inside. In this embodiment, the cooling passages 7a are formed at predetermined intervals in the longitudinal direction of the cooling block 7 and in the width direction and the vertical direction of the cooling block 7. And, this cooling block 7 is, as shown in FIG.
Is buried in the overflow portion 1a of the tap hole 2 so that the refractory can be cooled. The length and width of the cooling block 7 are set to a size capable of cooling the refractory material in substantially the entire area of the overflow portion 1a.

【0015】前記冷却媒体供給機構8は、図3に示す如
く、冷却ブロック7の各冷却通路7aの一端部に夫々接
続された分岐状の冷却水供給管9と、冷却水供給管9の
分岐部分9a,9b,9c,…に夫々接続された分岐状
の冷却空気供給管10と、冷却水供給管9に接続された
冷却塔11と、冷却水供給管9に介設された冷却水ポン
プ12と、冷却空気供給管10に接続されたコンプレッ
サー13と、冷却水供給管9の分岐部分9a,9b,9
c,…に夫々介設された冷却水用バルブ14(電磁弁)
と、冷却空気供給管10の分岐部分10a,10b,1
0c,…に夫々介設された冷却空気用バルブ15(電磁
弁)と、冷却ブロック7の各冷却通路7aの他端部と冷
却塔11とを接続する冷却媒体排出管16と、冷却媒体
排出管16に介設された気水分離器17と、冷却ブロッ
ク7上の耐火物の温度を検出する温度センサー18と、
温度センサー18による検出温度に基づいて各冷却水用
バルブ14及び冷却空気用バルブ15を夫々制御する制
御器19等から成り、冷却ブロック7上の耐火物の温度
検出に基づいて前記各バルブ(14),(15)を開閉
制御し、冷却ブロック7の各冷却通路7aへ供給される
冷却媒体(冷却水W、冷却空気A)を切り換え制御でき
るように構成されている。即ち、冷却媒体供給機構は8
は、冷却ブロック7の冷却能力を任意に調整できるよう
に構成されている。
As shown in FIG. 3, the cooling medium supply mechanism 8 has a branched cooling water supply pipe 9 connected to one end of each cooling passage 7a of the cooling block 7, and a branch of the cooling water supply pipe 9. A branched cooling air supply pipe 10 connected to the portions 9a, 9b, 9c, ..., A cooling tower 11 connected to the cooling water supply pipe 9, and a cooling water pump provided in the cooling water supply pipe 9. 12, a compressor 13 connected to the cooling air supply pipe 10, and branch parts 9a, 9b, 9 of the cooling water supply pipe 9.
Cooling water valve 14 (solenoid valve) provided in each of c, ...
And the branched portions 10a, 10b, 1 of the cooling air supply pipe 10.
0c, ..., A cooling air valve 15 (solenoid valve), a cooling medium discharge pipe 16 connecting the other end of each cooling passage 7a of the cooling block 7 and the cooling tower 11, and a cooling medium discharge. A steam separator 17 provided in the pipe 16, a temperature sensor 18 for detecting the temperature of the refractory on the cooling block 7,
A controller 19 for controlling each of the cooling water valve 14 and the cooling air valve 15 based on the temperature detected by the temperature sensor 18, and the like. Based on the temperature detection of the refractory on the cooling block 7, each valve (14 ), (15) are controlled to be opened and closed, and the cooling medium (cooling water W, cooling air A) supplied to each cooling passage 7a of the cooling block 7 can be switched and controlled. That is, the cooling medium supply mechanism is 8
Is configured so that the cooling capacity of the cooling block 7 can be arbitrarily adjusted.

【0016】尚、前記冷却媒体供給機構8により冷却ブ
ロック7の冷却能力を調整する場合には、 冷却ブロック7の各冷却通路7aに冷却水Wのみを
流し、各冷却水用バルブ14を適宜に開閉操作して冷却
水Wの流量を制御することにより、冷却ブロック7の冷
却能力を調整する。 各冷却水用バルブ14及び冷却空気用バルブ15を
開閉操作して冷却ブロック7の各冷却通路7a内を流れ
ている冷却媒体(冷却水W)の一部を冷却水Wから冷却
空気Aに切り換え、冷却空気Aが流れる冷却通路7aを
断熱層として作用させることにより、冷却ブロック7の
冷却能力を調整する。 冷却ブロック7の各冷却通路7a内を流れている冷
却媒体(冷却水W)の全てを冷却水Wから冷却空気Aに
切り換えて空冷とすることにより、冷却ブロック7の冷
却能力を調整する。 冷却ブロック7の各冷却通路7aに冷却空気Aのみ
を流し、各冷却空気用バルブ15を適宜に開閉操作して
冷却空気Aの流量を制御することにより、冷却ブロック
7の冷却能力を調整する。 冷却ブロック7の各冷却通路7a内を流れている冷
却媒体(冷却空気A)の一部を冷却空気Aから冷却水W
に切り換えることにより、冷却ブロック7の冷却能力を
調整する。 冷却ブロック7の各冷却通路7a内を流れている冷
却媒体(冷却空気A)の全てを冷却空気Aから冷却水W
に切り換えて水冷とすることにより、冷却ブロック7の
冷却能力を調整する。 等の方法がある。
When the cooling capacity of the cooling block 7 is adjusted by the cooling medium supply mechanism 8, only the cooling water W is caused to flow through each cooling passage 7a of the cooling block 7 and each cooling water valve 14 is appropriately opened. The cooling capacity of the cooling block 7 is adjusted by controlling the flow rate of the cooling water W by opening and closing. By opening / closing each cooling water valve 14 and cooling air valve 15, a part of the cooling medium (cooling water W) flowing in each cooling passage 7a of the cooling block 7 is switched from the cooling water W to the cooling air A. The cooling capacity of the cooling block 7 is adjusted by causing the cooling passage 7a through which the cooling air A flows to act as a heat insulating layer. The cooling capacity of the cooling block 7 is adjusted by switching all the cooling medium (cooling water W) flowing in the cooling passages 7a of the cooling block 7 from the cooling water W to the cooling air A for air cooling. The cooling capacity of the cooling block 7 is adjusted by flowing only the cooling air A into each cooling passage 7a of the cooling block 7 and controlling the flow rate of the cooling air A by opening / closing each cooling air valve 15 as appropriate. A part of the cooling medium (cooling air A) flowing in each cooling passage 7a of the cooling block 7 is cooled from the cooling air A to the cooling water W.
The cooling capacity of the cooling block 7 is adjusted by switching to. All of the cooling medium (cooling air A) flowing in each cooling passage 7a of the cooling block 7 is cooled from the cooling air A to the cooling water W.
The cooling capacity of the cooling block 7 is adjusted by switching to and cooling with water. There is a method such as.

【0017】以上のように構成された電気溶融炉に於い
ては、炉内へ供給された焼却灰や煤塵等の被溶融物は、
電極(図示省略)のアーク熱や被溶融物自身のジュール
熱により溶融されて流動性の溶融物5となり、出湯口2
のオーバーフロー部1aから湯排出口3側へオーバフロ
ーし、冷却用水槽(図示省略)で冷却された後、外部へ
排出される。又、炉内で発生したガス6は、出湯口2を
経てを経てガス排出口4から外部へ排出される。
In the electric melting furnace configured as described above, the materials to be melted such as incineration ash and soot dust supplied into the furnace are
It is melted by the arc heat of an electrode (not shown) or the Joule heat of the material to be melted to become a fluid melt 5 and the tap hole 2
From the overflow portion 1a to the hot water discharge port 3 side, is cooled in a cooling water tank (not shown), and is then discharged to the outside. Further, the gas 6 generated in the furnace passes through the tap hole 2 and is discharged to the outside from the gas discharge port 4.

【0018】出湯口2のオーバーフロー部1aに於いて
は、温度センサー18により冷却ブロック7上の耐火物
の温度が検出され、この検出温度に基づいて制御器19
により各冷却水用バルブ14及び冷却空気用バルブ15
が適宜に開閉操作されて冷却ブロック7の各冷却通路7
aへ供給される冷却水や冷却空気が制御され、冷却ブロ
ック7によりオーバーフロー部1aの耐火物が適正な温
度に冷却される。即ち、上記〜の方法により、冷却
ブロック7の冷却能力が調整され、オーバーフロー部1
aの耐火物が適宜な温度に保たれる。尚、オーバーフロ
ー部1aの耐火物は、出湯量が変化してもオーバーフロ
ー部1aを流れる溶融物5が固化せず、安定して連続的
に流れ、且つ冷却ブロック7上の耐火物の急激な消耗を
抑制できるように、冷却ブロック7により冷却されてい
る。その結果、出湯口2を流れる溶融物5は、出湯量が
変化しても固化せず、安定して連続的に流れる。又、冷
却ブロック7近傍の耐火物は、消耗速度の遅い温度に保
たれて急激に消耗すると云うこともなく、耐火物の寿命
が大幅に延びることになる。
At the overflow portion 1a of the tap hole 2, the temperature sensor 18 detects the temperature of the refractory material on the cooling block 7, and the controller 19 is based on this detected temperature.
The respective cooling water valve 14 and cooling air valve 15
Are appropriately opened and closed to operate each cooling passage 7 of the cooling block 7.
The cooling water and cooling air supplied to a are controlled, and the refractory in the overflow section 1a is cooled to an appropriate temperature by the cooling block 7. That is, the cooling capacity of the cooling block 7 is adjusted by the above methods (1) to (3) and the overflow portion 1
The refractory a is kept at an appropriate temperature. The refractory material in the overflow portion 1a does not solidify the melt 5 flowing in the overflow portion 1a even if the amount of tapped water changes, and flows stably and continuously, and the refractory material on the cooling block 7 is rapidly consumed. Is cooled by the cooling block 7 so that the above can be suppressed. As a result, the melt 5 flowing through the tap hole 2 does not solidify even if the amount of tapped water changes, and flows stably and continuously. Further, the refractory material in the vicinity of the cooling block 7 will not be abruptly consumed by being kept at the temperature at which the consumption speed is slow, and the life of the refractory material will be greatly extended.

【0019】尚、冷却ブロック7の冷却通路7aを流れ
る冷却媒体が冷却水Wから冷却空気Aに又は冷却空気A
から冷却水Wに切り換えられた場合、冷却媒体の流路に
は冷却水Wと冷却空気Aとが混在するが、冷却媒体排出
管16に気水分離器17を介設している為、冷却空気A
は大気側へ放出され、又、冷却水Wは冷却塔11で冷却
された後、再循環して使用されるので、何ら問題はな
い。
The cooling medium flowing through the cooling passage 7a of the cooling block 7 is either the cooling water W to the cooling air A or the cooling air A.
When the water is switched from the cooling water W to the cooling water W, the cooling water W and the cooling air A are mixed in the flow path of the cooling medium, but since the steam / water separator 17 is provided in the cooling medium discharge pipe 16, cooling is performed. Air A
Is discharged to the atmosphere side, and the cooling water W is cooled in the cooling tower 11 and then recirculated for use, so that there is no problem.

【0020】上記実施例に於いては、冷却媒体を冷却水
W若しくは冷却空気Aとし、これらを冷却ブロック7の
各冷却通路7aへ流すようにしたが、他の実施例に於い
ては、冷却媒体を冷却空気Aと冷却水Wの混合物とし、
これを各冷却通路7aへ流して冷却ブロック7の冷却能
力を調整するようにしても良い。即ち、図4に示す如
く、冷却空気Aと冷却水Wを混合する混合器20を冷却
ブロック7の各冷却通路7aに接続し、冷却ブロック7
上の耐火物の温度を御センサー18により検出し、この
検出温度に基づいて冷却水用バルブ14を制御し、耐火
物が適正な温度に保たれるように冷却水量を調節するよ
うにしても良い。この実施例のものも、上記実施例のも
のと同様の作用効果を奏することができる。
In the above embodiment, the cooling water W or the cooling air A is used as the cooling medium, and these are flowed to the respective cooling passages 7a of the cooling block 7. However, in other embodiments, the cooling water W or the cooling air A is used. The medium is a mixture of cooling air A and cooling water W,
The cooling capacity of the cooling block 7 may be adjusted by flowing this into each cooling passage 7a. That is, as shown in FIG. 4, the mixer 20 for mixing the cooling air A and the cooling water W is connected to each cooling passage 7 a of the cooling block 7,
Even if the temperature of the upper refractory is detected by the control sensor 18, the cooling water valve 14 is controlled based on the detected temperature, and the amount of cooling water is adjusted so that the refractory is kept at an appropriate temperature. good. This embodiment can also achieve the same effects as those of the above embodiment.

【0021】上記実施例に於いては、冷却ブロック7に
上下2段に冷却通路7aを形成するようにしたが、他の
実施例に於いては、冷却通路7aを上下3段以上に形成
するようにしても良い。
In the above embodiment, the cooling passages 7a are formed in the cooling block 7 in the upper and lower two stages, but in other embodiments, the cooling passages 7a are formed in the upper and lower three stages. You may do it.

【0022】上記実施例に於いては、出湯口2のオーバ
ーフロー部1aに冷却ブロック7を一つだけ埋設した
が、他の実施例に於いては、オーバーフロー部1aに複
数の冷却ブロック7を埋設するようにしても良い。
In the above embodiment, only one cooling block 7 is buried in the overflow portion 1a of the tap hole 2. In other embodiments, a plurality of cooling blocks 7 are buried in the overflow portion 1a. It may be done.

【0023】[0023]

【発明の効果】上述の通り、本発明の出湯口冷却構造
は、出湯口の耐火物中に、複数の冷却通路を区画形成し
た冷却ブロックを配設し、該冷却ブロックの各冷却通路
内へ冷却媒体供給機構により夫々冷却媒体を適宜に供給
して冷却ブロックの冷却能力を調整できるようにしてい
る。即ち、出湯口の耐火物中に、冷却媒体の流量、冷却
媒体の種類、冷却範囲等を調節できる冷却ブロックを配
設している為、溶融物の出湯量に拘わらず、出湯口の耐
火物を適正な温度に保つことができる。その結果、出湯
口付近の熱損失を最低限に抑えることができると共に、
出湯口の炉材の温度を出湯量が変化しても溶融物が固化
しない温度に保つことができ、溶融物を安定して連続的
に出湯することができる。又、冷却ブロック近傍の耐火
物は、消耗速度の遅い温度に保たれて急激に消耗すると
云うこともなく、耐火物の寿命が大幅に延びることにな
る。
As described above, in the tap hole cooling structure of the present invention, a refrigerating material at the tap hole is provided with a cooling block having a plurality of cooling passages defined therein, and the cooling blocks are introduced into the respective cooling passages of the cooling block. The cooling medium supply mechanism appropriately supplies the cooling medium so that the cooling capacity of the cooling block can be adjusted. That is, since the refractory at the tap hole is provided with a cooling block capable of adjusting the flow rate of the cooling medium, the type of cooling medium, the cooling range, etc. Can be maintained at an appropriate temperature. As a result, it is possible to minimize the heat loss near the outlet,
The temperature of the furnace material at the tap hole can be maintained at a temperature at which the melt does not solidify even if the tap amount changes, and the melt can be stably and continuously tapped. Further, the refractory in the vicinity of the cooling block will not be abruptly consumed by being kept at the temperature at which the consumption rate is slow, and the life of the refractory will be greatly extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の出湯口冷却構造を採用したオーバーフ
ロー出湯方式の電気溶融炉の要部の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a main part of an overflow melting type electric melting furnace adopting a discharge hole cooling structure of the present invention.

【図2】冷却ブロックの斜視図である。FIG. 2 is a perspective view of a cooling block.

【図3】冷却ブロックへ冷却媒体を供給する冷却媒体供
給機構の一例を示す概略系統図である。
FIG. 3 is a schematic system diagram showing an example of a cooling medium supply mechanism that supplies a cooling medium to a cooling block.

【図4】冷却媒体供給機構の他の例を示す概略系統図で
ある。
FIG. 4 is a schematic system diagram showing another example of a cooling medium supply mechanism.

【図5】従前のオーバフロー出湯方式の電気溶融炉の概
略断面図である。
FIG. 5 is a schematic cross-sectional view of a conventional overflow melting type electric melting furnace.

【符号の説明】[Explanation of symbols]

2は出湯口、5は溶融物、7は冷却ブロック、7aは冷
却通路、8は冷却媒体供給機構、9は冷却水供給管、1
0は冷却空気供給管、14は冷却水用バルブ、15は冷
却空気用バルブ、Wは冷却水、Aは冷却空気。
2 is a tap hole, 5 is a melt, 7 is a cooling block, 7a is a cooling passage, 8 is a cooling medium supply mechanism, 9 is a cooling water supply pipe, and 1 is a cooling water supply pipe.
Reference numeral 0 is a cooling air supply pipe, 14 is a cooling water valve, 15 is a cooling air valve, W is cooling water, and A is cooling air.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼却灰や煤塵等の被溶融物を溶融処理
し、この溶融物(5)を出湯口(2)からオーバーフロ
ーさせるようにしたオーバーフロー出湯方式の溶融炉に
於いて、前記出湯口(2)の耐火物中に、複数の冷却通
路(7a)を区画形成した冷却ブロック(7)を配設
し、該冷却ブロック(7)の各冷却通路(7a)内へ冷
却媒体供給機構(8)により夫々冷却媒体を適宜に供給
して冷却ブロック(7)の冷却能力を調整できるように
したことを特徴とする溶融炉の出湯口冷却構造。
1. An overflow tap type melting furnace in which a melted material such as incinerated ash or dust is melted and the melt (5) is allowed to overflow from the tap hole (2). A refrigerating material (2) is provided with a cooling block (7) having a plurality of cooling passages (7a) defined therein, and a cooling medium supply mechanism () into each cooling passage (7a) of the cooling block (7). 8) A cooling structure for a tap of a melting furnace, characterized in that the cooling capacity of the cooling block (7) can be adjusted by appropriately supplying a cooling medium respectively.
【請求項2】 冷却媒体供給機構(8)が、冷却ブロッ
ク(7)の各冷却通路(7a)に夫々接続され、各冷却
通路(7a)へ冷却水(W)を供給する冷却水供給管
(9)と、冷却ブロック(7)の各冷却通路(7a)に
夫々接続され、各冷却通路(7a)へ冷却空気(A)を
供給する冷却空気供給管(10)と、各冷却水供給管
(9)に介設され、各冷却通路(7a)への冷却水
(W)の出入りを調節する複数の冷却水用バルブ(1
4)と、冷却空気供給管(10)に介設され、各冷却通
路(7a)への冷却空気(A)の出入りを調節する複数
の冷却空気用バルブ(15)とを備えて居り、冷却ブロ
ック(7)近傍の耐火物の温度検出に基づいて前記冷却
水用バルブ(14)及び冷却空気用バルブ(15)を夫
々制御し、冷却ブロック(7)の各冷却通路(7a)へ
供給される冷却媒体を切り換え制御できるように構成さ
れていることを特徴とする請求項1に記載の溶融炉の出
湯口冷却構造。
2. A cooling water supply pipe for connecting a cooling medium supply mechanism (8) to each cooling passage (7a) of the cooling block (7) and supplying cooling water (W) to each cooling passage (7a). (9) and a cooling air supply pipe (10) connected to each cooling passage (7a) of the cooling block (7) and supplying cooling air (A) to each cooling passage (7a), and each cooling water supply A plurality of cooling water valves (1) provided in the pipe (9) for controlling the flow of cooling water (W) into and out of each cooling passage (7a).
4) and a plurality of cooling air valves (15) that are provided in the cooling air supply pipe (10) and that regulate the flow of cooling air (A) into and out of each cooling passage (7a). The cooling water valve (14) and the cooling air valve (15) are respectively controlled based on the temperature detection of the refractory near the block (7) and supplied to each cooling passage (7a) of the cooling block (7). The taphole cooling structure for a melting furnace according to claim 1, wherein the cooling medium is configured to be switched and controlled.
JP7135154A 1995-06-01 1995-06-01 Outlet cooling structure of melting furnace Expired - Fee Related JP3066289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7135154A JP3066289B2 (en) 1995-06-01 1995-06-01 Outlet cooling structure of melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7135154A JP3066289B2 (en) 1995-06-01 1995-06-01 Outlet cooling structure of melting furnace

Publications (2)

Publication Number Publication Date
JPH08327044A true JPH08327044A (en) 1996-12-10
JP3066289B2 JP3066289B2 (en) 2000-07-17

Family

ID=15145085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7135154A Expired - Fee Related JP3066289B2 (en) 1995-06-01 1995-06-01 Outlet cooling structure of melting furnace

Country Status (1)

Country Link
JP (1) JP3066289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098088A (en) * 2018-12-13 2020-06-25 日鉄エンジニアリング株式会社 Cooling structure of tapping port section of melting furnace and manufacturing method of metallic plate block used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098088A (en) * 2018-12-13 2020-06-25 日鉄エンジニアリング株式会社 Cooling structure of tapping port section of melting furnace and manufacturing method of metallic plate block used therefor

Also Published As

Publication number Publication date
JP3066289B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
CN102774869A (en) Apparatus and method for treating incineration ash using plasma arc
JP3066289B2 (en) Outlet cooling structure of melting furnace
KR20120043391A (en) The melting furnace which comprises a cooling equipment for slag discharging hole
JP3746921B2 (en) Operation method of electric melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP4446429B2 (en) Operating method of plasma melting treatment equipment for waste treatment
JPH067007B2 (en) Waste melting furnace slag facility
JP3611348B2 (en) Electric melting furnace
JPH0355411A (en) Melting disposing device for incinerated ash
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
JPH102539A (en) Ash melting furnace
JPH10267235A (en) Melt treatment apparatus for incineration residue and fly ash and method thereof
JP3714384B2 (en) Ash melting furnace
JP3921784B2 (en) Ash melting furnace
JP2503380Y2 (en) Scattering slag removal device in melting furnace
JP3764641B2 (en) Electric melting furnace operation control method
JPS5918317Y2 (en) Melting furnace with water-cooled spout
JP3744668B2 (en) Ash melting furnace
JPH04251107A (en) Ash melting furnace
KR200289043Y1 (en) Melting system using electric resistance
JP3799582B2 (en) Ash melting furnace
JP2005076930A (en) Device for automatic discharge of molten slag
JP3743473B2 (en) Ash melting furnace tapping apparatus and tapping method
JPH0755119A (en) Electric resistance melting furnace and its operation
JPH11148632A (en) Ash melting furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees