JPH08325634A - Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production - Google Patents

Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production

Info

Publication number
JPH08325634A
JPH08325634A JP16319095A JP16319095A JPH08325634A JP H08325634 A JPH08325634 A JP H08325634A JP 16319095 A JP16319095 A JP 16319095A JP 16319095 A JP16319095 A JP 16319095A JP H08325634 A JPH08325634 A JP H08325634A
Authority
JP
Japan
Prior art keywords
steel sheet
cold
fatigue
rolled
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16319095A
Other languages
Japanese (ja)
Inventor
Kosaku Shioda
浩作 潮田
Tatsuo Yokoi
龍雄 横井
Atsushi Itami
淳 伊丹
Makoto Tefun
誠 手墳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16319095A priority Critical patent/JPH08325634A/en
Publication of JPH08325634A publication Critical patent/JPH08325634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To produce a dead soft cold rolled steel sheet for deep drawing excellent in base metal fatigue and fatigue characteristics in the spot weld zone by preparing a steel having a specified componental compsn. in which the contents of P and B are specified. CONSTITUTION: A steel having a compsn. contg., by weight, 0.0005 to 0.0026% C, <=1.2% Sr, 0.03 to 3.0% Mn, 0.015 to 0.15% P, 0.0010 to 0.020% S, 0.005 to 0.1% Al, 0.0005 to 0.0080% N and 0.0003 to 0.0030% B, contg., if necessary, one or more kinds of 0.0002 to 0.0015% Ti and 0.0002 to 0.0015% Nb, and the balance Fe with inevitable impurities is prepd. Thus, the objective dead soft cold rolled steel sheet for deep drawing excellent in base metal fatigue and fatigue characteristics in the spot weld zone can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、母材およびスポット溶
接部の疲労特性に優れた深絞り用極低炭素冷延鋼板とそ
の製造方法に関する。本発明が係わる冷延鋼板とは、自
動車、家庭電気製品、建物などの用途にプレス成形をし
て使用されるものであり、表面処理をしない狭義の冷延
鋼板と、防錆のために例えばZnメッキや合金化Znメ
ッキなどの表面処理、さらにはその上に有機皮膜処理な
どを施した冷延鋼板の両方を含む。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra low carbon cold rolled steel sheet for deep drawing which is excellent in fatigue properties of a base material and spot welds, and a method for producing the same. The cold-rolled steel sheet according to the present invention is used by press forming in applications such as automobiles, household electric appliances, and buildings, and cold-rolled steel sheet in a narrow sense without surface treatment and for rust prevention, for example. It includes both surface treatment such as Zn plating and alloyed Zn plating, and further cold-rolled steel sheet having an organic film treatment thereon.

【0002】[0002]

【従来の技術】溶鋼の真空脱ガス処理の最近の進歩によ
り、極低炭素鋼の溶製が容易になった現在、良好な加工
性を有する極低炭素鋼板の需要は益々増加しつつある。
このような極低炭素鋼板は、一般的にTiおよびNbの
うち少なくとも1種を含有することはよく知られてい
る。すなわち、TiおよびNbは、鋼中の侵入型固溶元
素(C,N)と強い引力の相互作用を持ち、炭窒化物を
容易に形成する。したがって、侵入型固溶元素の存在し
ない鋼(IF鋼:Interstitial Free
Steel)が容易に得られる。IF鋼は、歪時効性
や加工性を劣化させる原因となる侵入型固溶元素を含ま
ないので、非時効で極めて良好な加工性を有する特徴が
ある。さらに、TiやNbの添加は粗大化しやすい極低
炭素鋼の熱間圧延板の結晶粒径を細粒化し、冷延焼鈍板
の深絞り性を改善する重要な役割も持つ。しかし、Ti
やNbを添加した極低炭素鋼は次のような問題を有す
る。第一に、製造コストが高くつく点である。
2. Description of the Related Art With the recent progress in vacuum degassing of molten steel, it is now easy to produce ultra-low carbon steel, and the demand for ultra-low carbon steel sheet having good workability is increasing more and more.
It is well known that such an ultra-low carbon steel sheet generally contains at least one of Ti and Nb. That is, Ti and Nb have a strong attractive interaction with the interstitial solid solution elements (C, N) in steel, and easily form carbonitrides. Therefore, steel without interstitial solid solution elements (IF steel: Interstitial Free)
Steel) is easily obtained. Since the IF steel does not contain an interstitial solid solution element that causes deterioration of strain aging and workability, it has a characteristic of being non-aging and having very good workability. Furthermore, the addition of Ti or Nb also has an important role of improving the deep drawability of the cold-rolled annealed sheet by reducing the grain size of the hot-rolled sheet of ultra-low carbon steel that tends to coarsen. However, Ti
The ultra low carbon steel containing Nb and Nb has the following problems. First, the manufacturing cost is high.

【0003】すなわち、極低炭素化のための真空処理コ
ストに加え高価なTiやNbの添加を必要とするからで
ある。第二に製品板に固溶CやNが残存しないので、二
次加工脆化が発生したり塗装焼き付け硬化特性(BH
性)が消失したりする。第三に、母材およびスポット溶
接部の疲労特性に劣る点である。これは、極低炭素鋼で
あるがゆえに素材の強度が低く、さらにスポット溶接し
た熱影響部の組織が容易に粗大化し脆弱部が形成される
ためである。第四に、TiやNbは強い酸化物形成元素
であり、これらの酸化物が表面品質を劣化させたりす
る。
That is, it is necessary to add expensive Ti and Nb in addition to the vacuum treatment cost for extremely low carbonization. Second, since solid solution C and N do not remain on the product plate, secondary processing embrittlement occurs and paint bake hardening characteristics (BH
Sex) disappears. Thirdly, the fatigue properties of the base material and spot welds are inferior. This is because the strength of the material is low because it is an extremely low carbon steel, and the structure of the heat-affected zone subjected to spot welding is easily coarsened to form a fragile portion. Fourthly, Ti and Nb are strong oxide forming elements, and these oxides deteriorate the surface quality.

【0004】IF鋼のこのような問題を解決する目的
で、数多くの研究開発が行われてきた。これらの課題を
解決する一つの考え方は、TiやNbを添加しない極低
炭素鋼をベースとすることである。なぜならば、Tiや
Nbを添加しない鋼をベースとすると、上に述べた第
一、第二、さらに第四の課題が自ずと解決されるからで
ある。例えば特開昭63−83230号公報、特開昭6
3−72830号公報、特開昭59−80724号公
報、特開昭60−103129号公報、特開平1−18
4251号公報、特開昭58−141355号公報、特
開平6−93376号公報、などはその例であり、これ
らはすべて、TiやNbを含まない極低炭素鋼板のプレ
ス成形性と関わるr値や伸びなどの特性、およびBH特
性、耐二次脆化特性に注目したものである。
A lot of research and development has been conducted for the purpose of solving such problems of IF steel. One idea to solve these problems is to base ultra low carbon steel to which Ti and Nb are not added. This is because the first, second, and fourth problems described above are naturally solved by using a steel containing no Ti or Nb as a base. For example, JP-A 63-83230 and JP-A 6-83230
3-72830, JP 59-80724, JP 60-103129, JP 1-18.
No. 4251, JP-A-58-141355, JP-A-6-93376, etc. are examples thereof, and all of them have r-values related to press formability of ultra-low carbon steel sheet containing no Ti or Nb. It focuses on characteristics such as elongation and elongation, BH characteristics, and secondary embrittlement resistance.

【0005】しかし、第三の課題である疲労特性に関し
ては、その検討例は少ない。特開昭63−317625
号公報は、極低炭素鋼へのTi,Nb、Bの複合添加と
調質圧延率を最適化することにより、スポット溶接部の
疲労特性に優れた極低炭素冷延鋼板の製造方法を開示し
ている。しかし、TiやNbを含まない極低炭素鋼にお
ける疲労特性の改善方案については、全く記述されてい
ない。特開平6−81043号公報、特開平6−810
44号公報、特開平6−81080号公報においては、
疲労特性および深絞り性に優れたTi、Nbのうち少な
くとも1種を含有する極低炭素鋼板およびその製造方法
が開示されている。
However, there are few studies on the third problem, fatigue characteristics. JP-A-63-317625
Japanese Patent Publication discloses a method for producing an ultra low carbon cold rolled steel sheet having excellent fatigue characteristics of a spot weld by optimizing the composite addition of Ti, Nb and B to the ultra low carbon steel and the temper rolling ratio. are doing. However, there is no description about a method for improving the fatigue properties of ultra-low carbon steel that does not contain Ti or Nb. JP-A-6-81043 and JP-A-6-810
No. 44 and Japanese Patent Laid-Open No. 6-81080,
An ultra low carbon steel sheet containing at least one of Ti and Nb, which has excellent fatigue properties and deep drawability, and a method for producing the same are disclosed.

【0006】しかし、これらの公開特許は、降伏強度を
上昇し母材疲労特性を改善する方法については開示して
いるが、スポット溶接部の継ぎ手疲労特性については全
く検討されていない。また、TiやNbを添加した極低
炭素鋼のみを対象としており、本発明が狙いとするTi
やNbを実質的に添加しない極低炭素鋼については、全
く検討されていない。一般的に、TiやNbを添加しな
い極低炭素鋼板は、低降伏強度のため母材疲労特性が劣
り、さらにスポット溶接時に加えられた熱による異常粒
成長が生じ易く、スポット溶接部の継ぎ手疲労特性が不
十分となる問題が懸念される。しかし、これらを防止す
る技術については、既に述べたように従来においては全
く知見がない。
However, although these publications disclose a method of increasing the yield strength and improving the base material fatigue characteristics, none of the joint fatigue characteristics of the spot welded portion is examined. Moreover, only the ultra-low carbon steel to which Ti or Nb is added is targeted, and the Ti targeted by the present invention is
No ultra low carbon steel to which Nb or Nb is not substantially added has been studied. In general, ultra-low carbon steel sheet without addition of Ti or Nb is inferior in base material fatigue property due to low yield strength, and moreover abnormal grain growth is likely to occur due to heat applied during spot welding, resulting in fatigue of joints of spot welds. There is concern about the problem of insufficient characteristics. However, as described above, there is no knowledge of the technology for preventing them.

【0007】[0007]

【発明が解決しようとする課題】TiやNbなどの高価
な添加元素を使用しない極低炭素鋼をベースに、優れた
深絞り性を維持しつつ、良好な母材疲労とスポット溶接
部の疲労特性を兼ね備えた冷延鋼板およびその製造方法
を確立することが、本発明が解決しようとする課題であ
る。
Based on an ultra-low carbon steel that does not use expensive additive elements such as Ti and Nb, while maintaining excellent deep drawability, good base metal fatigue and spot weld fatigue. Establishing a cold-rolled steel sheet having both properties and a method for manufacturing the same is an object to be solved by the present invention.

【0008】[0008]

【課題を解決するための手段】TiやNbなどの高価な
炭窒化物形成元素を使用しない単純な極低炭素鋼板にお
いては、軟質化しすぎるためスポット溶接時に電極から
の加圧により鋼板が容易に変形し電極と鋼板あるいは鋼
板間の接触抵抗が低下しすぎ、適正溶接電流範囲が狭く
かつ高電流側にシフトすることが判明した。これは溶接
機を大型にする欠点がある。また、母材の降伏強度と相
関の強い母材疲労特性が劣化する問題がある。これらの
問題を解決する手段として、PとBを添加する方法を見
い出した。なぜならば、PとBの添加により安価かつ効
率的に鋼板を高強度化しかつ電気抵抗率を増大すること
が可能となるからである。その結果、溶接電流を低電流
側に維持することが可能となる。また、母材疲労も改善
できる。
[Means for Solving the Problems] In a simple ultra-low carbon steel sheet that does not use expensive carbonitride forming elements such as Ti and Nb, the steel sheet is easily softened by the pressure from the electrode during spot welding because it is too soft. It was found that the contact resistance between the electrode and the steel plate or the steel plate was excessively reduced due to deformation, and the proper welding current range was narrowed and shifted to the high current side. This has the drawback of increasing the size of the welder. In addition, there is a problem that the base material fatigue property, which has a strong correlation with the yield strength of the base material, deteriorates. As a means for solving these problems, a method of adding P and B was found. This is because the addition of P and B makes it possible to inexpensively and efficiently increase the strength of a steel sheet and increase the electrical resistivity. As a result, the welding current can be maintained on the low current side. Also, fatigue of the base material can be improved.

【0009】一方、TiやNbを添加しない極低炭素鋼
板では、スポット溶接時にHAZ部に異常粒成長が生じ
易く、溶接部継ぎ手強度や疲労特性が低下する問題が発
生する。この問題を解決すべく鋭意研究を重ねた結果、
PとBを一定以上複合添加することに著効のある新知見
を見い出した。また、その効果を十分に発揮するために
は、1)B/N>1に調整し、固溶Bを存在させるこ
と、2)極微量のTiと/あるいはNbを存在させるこ
と、3)調質圧延率をC量との関係で制御すること、
4)BH性を有する鋼板では、BH処理するとスポット
溶接部の継ぎ手強度や疲労特性が向上するので、BH性
を付与することが望ましいことが判明した。
On the other hand, in an ultra-low carbon steel sheet to which Ti or Nb is not added, abnormal grain growth is likely to occur in the HAZ portion during spot welding, which causes a problem that the joint strength and fatigue properties of the welded portion are deteriorated. As a result of earnest research to solve this problem,
We have found new findings that are extremely effective in the combined addition of P and B above a certain level. Further, in order to sufficiently exert the effect, 1) adjusting B / N> 1 so that solid solution B is present, 2) allowing a very small amount of Ti and / or Nb to be present, and 3) adjusting. Controlling the rolling rate in relation to the C content,
4) In a steel sheet having BH property, BH treatment improves joint strength and fatigue properties of spot welds, so it has been found desirable to impart BH property.

【0010】本発明は、このような思想と新知見に基づ
いて構築されたものであり、その要旨とするところは以
下のとおりである。 (1)重量%で、 C :0.0005〜0.0026% Si:1.2%以下 Mn:0.03〜3.0% P :0.015〜0.15% S :0.0010〜0.020% Al:0.005〜0.1% N :0.0005〜0.0080% B :0.0003〜0.0030% および残部Feおよび不可避的不純物からなる母材およ
びスポット溶接部の疲労特性に優れた深絞り用極低炭素
冷延鋼板。 (2)(1)に記載の化学成分にTi:0.0002〜
0.0015%、Nb:0.0002〜0.0015%
のうちの少なくとも1種以上を含むことを特徴とする母
材およびスポット溶接部の疲労特性に優れた深絞り用極
低炭素冷延鋼板。
The present invention is constructed on the basis of such an idea and new knowledge, and the gist thereof is as follows. (1) By weight%, C: 0.0005 to 0.0026% Si: 1.2% or less Mn: 0.03 to 3.0% P: 0.015 to 0.15% S: 0.0010 0.020% Al: 0.005 to 0.1% N: 0.0005 to 0.0080% B: 0.0003 to 0.0030% of the base material and spot welds composed of the balance Fe and inevitable impurities Ultra low carbon cold rolled steel sheet for deep drawing with excellent fatigue properties. (2) Ti: 0.0002 to the chemical component described in (1)
0.0015%, Nb: 0.0002 to 0.0015%
An ultra low carbon cold-rolled steel sheet for deep drawing, which is excellent in fatigue properties of a base material and a spot weld, characterized by containing at least one of the above.

【0011】(3)(1)および(2)に記載の化学成
分よりなるスラブをAr3 以上の温度で熱間圧延を仕上
げ、常温〜750℃で巻取り、70%以上の圧延率で冷
間圧延を行い、焼鈍温度が600〜900℃の連続焼鈍
を行い、調質圧延圧下率をCを炭素量(重量%)とした
場合に1.5×(1−400×C)%以上かつ2080
×(C−0.0015)%以上とすることを特徴とする
母材およびスポット溶接部の疲労特性に優れた冷延鋼板
の製造方法。
(3) A slab comprising the chemical components described in (1) and (2) is hot-rolled at a temperature of Ar 3 or higher, wound at room temperature to 750 ° C., and cooled at a rolling ratio of 70% or higher. Hot rolling is performed, continuous annealing is performed at an annealing temperature of 600 to 900 ° C., and the temper rolling reduction rate is 1.5 × (1-400 × C)% or more when C is the carbon amount (wt%). 2080
X (C-0.0015)% or more, The manufacturing method of the cold-rolled steel sheet which was excellent in the fatigue characteristics of a base material and a spot welded part characterized by the above-mentioned.

【0012】(4)(1)および(2)に記載の化学成
分よりなるスラブをAr3 以上の温度で熱間圧延を仕上
げ、その直後1.5s以内に50℃/s以上の冷却速度
で750℃以下まで冷却し常温〜750℃で巻取り、7
0%以上の圧延率で冷間圧延を行い、焼鈍温度が600
〜900℃の連続焼鈍を行い、調質圧延圧下率をCを炭
素量(重量%)とした場合に1.5×(1−400×
C)%以上かつ2080×(C−0.0015)%以上
とすることを特徴とする母材およびスポット溶接部の疲
労特性に優れた深絞り性用極低炭素冷延鋼板の製造方
法。 (5)(3)および(4)の製造方法において、冷延圧
下率を84%以上とすることを特徴とする母材およびス
ポット溶接部の強度特性に優れた深絞り用極低炭素冷延
鋼板の製造方法。
(4) A slab composed of the chemical components described in (1) and (2) is hot-rolled at a temperature of Ar 3 or higher, and immediately thereafter, within 1.5 s at a cooling rate of 50 ° C./s or higher. Cool to 750 ° C or below and wind at room temperature to 750 ° C.
Cold rolling is performed at a rolling rate of 0% or more, and the annealing temperature is 600
Continuous annealing at ˜900 ° C. and 1.5 × (1-400 × when the temper rolling reduction rate is C is the carbon amount (wt%).
C)% or more and 2080 x (C-0.0015)% or more. A method for producing an ultra low carbon cold rolled steel sheet for deep drawability, which is excellent in fatigue properties of a base material and a spot weld. (5) In the manufacturing methods of (3) and (4), the cold rolling reduction is 84% or more, and the ultra-low carbon cold rolling for deep drawing is excellent in the strength characteristics of the base material and spot welds. Steel plate manufacturing method.

【0013】[0013]

【作用】まず本発明の基礎となった実験結果について説
明する。図1、図2および図3は、本発明においてとく
に重要なPとBの添加が、スポット溶接性ならびに疲労
特性に及ぼす影響について調べた結果を示す。本実験に
おいては、C:約0.0013%、Si:0.01%、
Mn:0.15%、P:0.003〜0.18%、S:
0.008%、Al:0.075%、N:0.0018
%、B:<0.0001〜0.0040%を添加した単
純な極低炭素鋼板を用いた。熱延加熱温度は1150
℃、仕上げ温度は920℃であり、1.2s以内に50
℃/sで急冷し、500℃で巻取った。板厚5.0mm
の熱延板を酸洗後0.8mmまで冷間圧延(圧下率=8
4%)し、加熱速度=10℃/s、保定=740℃×5
0s、冷却=10℃/sの連続焼鈍を行い、圧下率1.
0%の調質圧延を施した。
First, the experimental results which are the basis of the present invention will be described. FIG. 1, FIG. 2 and FIG. 3 show the results of examining the effect of addition of P and B, which is particularly important in the present invention, on spot weldability and fatigue properties. In this experiment, C: about 0.0013%, Si: 0.01%,
Mn: 0.15%, P: 0.003 to 0.18%, S:
0.008%, Al: 0.075%, N: 0.0018
%, B: <0.0001 to 0.0040% of a simple extra low carbon steel plate was used. Hot rolling heating temperature is 1150
℃, finishing temperature is 920 ℃, 50 within 1.2s
It was quenched at ℃ / s and wound at 500 ℃. Plate thickness 5.0 mm
After pickling, the hot-rolled sheet was cold-rolled to 0.8 mm (reduction ratio = 8
4%), heating rate = 10 ° C./s, retention = 740 ° C. × 5
0 s, cooling = 10 ° C / s continuous annealing was performed, and the rolling reduction was 1.
0% temper rolling was performed.

【0014】母材疲労は、冷延・焼鈍・調質圧延した材
料を、25Hzの片振り平面曲げ疲労に供して評価し
た。スポット溶接性は、RWMA(Rcsistanc
e welder Manufacutures′As
sociation)推奨値を参考にして、4.5mm
φのCF型の電極を使用し、200kgfの加圧力で行
い、通電時間は12Hzである。適正溶接電流範囲は、
ナゲット径が4×t1/2(t:板厚(mm))以上とな
る電流(適正溶接電流下限値)からチリが発生する電流
(適正溶接電流上限値)までの範囲である。継ぎ手疲労
強度の評価は、上記溶接条件のうちチリ発生溶接電流値
の95%の溶接電流でスポット溶接した材料のせん断お
よび十字引張疲労強度について調べたものである。
The base material fatigue was evaluated by subjecting a cold-rolled, annealed and temper-rolled material to a unilateral plane bending fatigue of 25 Hz. Spot weldability is RWMA (Rcsistanc)
e welder Manufacturers' As
4.5 mm with reference to the recommended value
A φ CF type electrode is used, the pressure is 200 kgf, and the energization time is 12 Hz. The proper welding current range is
It is a range from a current (appropriate welding current lower limit value) at which the nugget diameter is 4 × t 1/2 (t: plate thickness (mm)) or more to a current (appropriate welding current upper limit value) at which dust occurs. The joint fatigue strength was evaluated by examining the shear and cross tensile fatigue strengths of the material spot-welded at a welding current of 95% of the dust-generated welding current value among the above welding conditions.

【0015】図1から明らかなように、上記成分におい
てPを0.015%以上、Bを0.0003%以上添加
した材料の繰り返し数が2×106 回の母材疲労限は、
比較として用いた従来のTi添加極低炭素冷延鋼板(重
量%で、C:0.0035%、Si:0.01%、M
n:0.15%、P:0.01%、S:0.01%、A
l:0.03%、Ti:0.045%、B:0.000
1%、N:0.0020%)の180MPaより優れて
おり、バッチ式に箱型焼鈍した低炭素Al−キルド冷延
鋼板(重量%で、C:0.035%、Si:0.01
%、Mn:0.15%、P:0.01%、S:0.01
%、Al:0.045%、N:0.0040%)の20
8MPaと同等レベルまで達することも可能である。
As is apparent from FIG. 1, the base material fatigue limit of the material containing P in an amount of 0.015% or more and B in an amount of 0.0003% or more and having a repetition number of 2 × 10 6 is:
Conventional Ti-added ultra-low carbon cold-rolled steel sheet used for comparison (% by weight, C: 0.0035%, Si: 0.01%, M
n: 0.15%, P: 0.01%, S: 0.01%, A
1: 0.03%, Ti: 0.045%, B: 0.000
1%, N: 0.0020%) 180 MPa, batch type box annealed low carbon Al-killed cold rolled steel sheet (% by weight, C: 0.035%, Si: 0.01).
%, Mn: 0.15%, P: 0.01%, S: 0.01
%, Al: 0.045%, N: 0.0040%) 20
It is possible to reach the same level as 8 MPa.

【0016】また、図2の結果から明らかなように、B
を0.0008%添加した極低炭素鋼をベースに、Pの
添加量を増加すると適正溶接電流範囲は広くなり、低電
流側へシフトする。Pの添加量が0.015%以上であ
れば、適正溶接電流範囲が従来材と同等レベルとなる新
知見を得た。また、図3、図4および図5から明らかな
ように、PとBを適正な組み合わせ以上に添加するとH
AZ部の硬度が従来材以上のレベルに達するので、スポ
ット溶接部の継ぎ手強度のみならず、本発明が重要視す
るスポット溶接部の疲労特性も確保されBH処理すると
さらに改善されるという、TiやNbを添加しない極低
炭素鋼板の工業化にとって極めて重要な新知見を得た。
Further, as is clear from the result of FIG.
Based on an ultra-low carbon steel with 0.0008% added, if the amount of P added is increased, the proper welding current range widens and shifts to the low current side. If the amount of P added is 0.015% or more, the new knowledge that the proper welding current range is at the same level as the conventional material was obtained. Further, as is clear from FIGS. 3, 4 and 5, when P and B are added in a proper combination or more, H
Since the hardness of the AZ part reaches a level higher than that of the conventional material, not only the joint strength of the spot welded part but also the fatigue property of the spot welded part, which is important in the present invention, is secured and further improved by BH treatment. We have gained new knowledge that is extremely important for the industrialization of ultra-low carbon steel sheets that do not contain Nb.

【0017】図4、図5において、2P−3B、2P−
18B、8P−3B、8P−18Bは、本発明鋼であ
り、上記成分の内、2P、8PはP量がそれぞれ0.0
2%P、0.08%Pであり、3B、18BはB量が
0.0003%、0.0018%である。また、比較鋼
のTi−IFは、上に述べた成分のものであり、現在多
用されている一般的なTiとBを添加した極低炭素冷延
鋼板である。このように、PとBの複合添加が母材疲労
やスポット溶接性(適正溶接電流範囲や継ぎ手強度およ
び溶接部の疲労特性を含む)を改善する金属学的理由は
次のように考えられる。
4 and 5, 2P-3B and 2P-
18B, 8P-3B and 8P-18B are steels of the present invention, and of the above components, 2P and 8P each have a P content of 0.0.
2% P and 0.08% P, and 3B and 18B have B amounts of 0.0003% and 0.0018%. Further, Ti-IF of the comparative steel is an ultra low carbon cold-rolled steel sheet containing the above-mentioned components and containing general Ti and B which are commonly used at present. As described above, the metallurgical reason why the combined addition of P and B improves the base metal fatigue and the spot weldability (including the proper welding current range, joint strength, and fatigue characteristics of the weld) is considered as follows.

【0018】TiやNbを添加しない極低炭素鋼におい
ては、Cは固溶状態にあり、強度上昇に寄与する。P
は、置換型固溶元素のなかでは原子半径がFeより著し
く小さい元素であり、Bも侵入型固溶元素であるので、
これらは効果的に降伏強度を上昇させる。さらに、同時
に電気抵抗を上昇させる。その結果、優れた母材疲労特
性を有する。また、適正溶接電流範囲が低電流側にシフ
トする。また、Pは、粒界偏析元素としてよく知られて
おり、粒界との相互作用が大きいため、粒界移動を抑制
し、組織を微細化する効果がある。さらに、BはCとの
引力の相互作用を有するためスポット溶接後の冷却過程
におけるγ→α変態を抑制し、HAZ部の組織微細化と
硬度上昇に寄与する。
In the ultra low carbon steel to which Ti or Nb is not added, C is in a solid solution state and contributes to the strength increase. P
Is an element whose atomic radius is significantly smaller than that of Fe among substitutional solid solution elements, and B is also an interstitial solid solution element.
These effectively increase the yield strength. Further, at the same time, the electric resistance is increased. As a result, it has excellent base material fatigue characteristics. Further, the proper welding current range shifts to the low current side. Further, P is well known as a grain boundary segregation element and has a large interaction with the grain boundary, so that it has an effect of suppressing grain boundary movement and refining the structure. Furthermore, since B has an attractive interaction with C, it suppresses the γ → α transformation in the cooling process after spot welding, and contributes to the refinement of the structure of the HAZ part and the increase in hardness.

【0019】TiやNbを添加しない極低炭素鋼板にお
いては、このようなPとBのHAZ部組織微細化効果
は、両者が共存すると相乗的に出現する。理由は必ずし
も明かでないが、スポット溶接後の冷却過程におけるγ
→α変態界面にPとBが偏析し、Pは既に述べたように
界面の移動速度の低下を、またBはCとの相互作用によ
りCの拡散を抑制し、γ→α変態を低温側まで抑制させ
たものと考えられる。その結果、HAZ部の焼き入れ性
が向上し硬度が著しく上昇し、スポット溶接性や継ぎ手
強度および疲労特性が向上したものと推察した。加え
て、C量と調質圧延の圧下率を適正範囲に制御すること
が、TiやNbを添加しない極低炭素鋼板の課題である
非時効化とスポット溶接時の適正溶接電流下限値を低く
抑える点において極めて有効であるという新知見を得
た。
In the ultra-low carbon steel sheet to which Ti or Nb is not added, such a PZ and B HAZ part structure refining effect appears synergistically when both coexist. Although the reason is not always clear, γ in the cooling process after spot welding
→ P and B are segregated at the α transformation interface, P reduces the moving speed of the interface as described above, and B suppresses the diffusion of C due to the interaction with C. It is thought that it was suppressed to. As a result, it was speculated that the hardenability of the HAZ part was improved, the hardness was significantly increased, and the spot weldability, joint strength, and fatigue properties were improved. In addition, controlling the amount of C and the rolling reduction of temper rolling within an appropriate range is a problem of ultra-low carbon steel sheet that does not add Ti or Nb, and lowers the appropriate welding current lower limit value during non-aging and spot welding. We gained new knowledge that it is extremely effective in suppressing.

【0020】まず、本発明の基礎となった実験結果につ
いて説明する。図6は、時効性とスポット溶接適正電流
下限値におよぼすC量と調質圧延条件との関係を示す。
本実験においては、C量を0.0003〜0.0030
%の範囲で変化させ、Si:0.01%、Mn:0.1
5%、P:0.03%、S:0.008%、Al:0.
075%、N:0.0018%、B:0.0010%を
含有する単純な極低炭素鋼板を用いた。実験室的に溶製
した上記試料を熱間圧延した。熱延加熱温度は1150
℃、仕上げ温度は920℃であり、500℃で巻取っ
た。板厚6.0mmの熱延板を酸洗後0.8mmまで冷
間圧延(圧下率=87%)し、加熱速度10℃/s、保
定=740℃×50s、冷却=10℃/sの連続焼鈍を
行い、圧下率を変化させて調質圧延を施した。
First, the experimental results that form the basis of the present invention will be described. FIG. 6 shows the relationship between the amount of C and the temper rolling conditions that affect the aging property and the lower limit of the appropriate spot welding current.
In this experiment, the amount of C was 0.0003 to 0.0030.
%, Si: 0.01%, Mn: 0.1
5%, P: 0.03%, S: 0.008%, Al: 0.
A simple ultra low carbon steel sheet containing 075%, N: 0.0018%, B: 0.0010% was used. The above sample melted in the laboratory was hot rolled. Hot rolling heating temperature is 1150
The finishing temperature was 920 ° C, and the film was wound at 500 ° C. A hot-rolled sheet having a sheet thickness of 6.0 mm was pickled and cold-rolled to 0.8 mm (reduction rate = 87%), heating rate 10 ° C / s, retention = 740 ° C x 50 s, cooling = 10 ° C / s. Continuous annealing was performed and temper rolling was performed while changing the rolling reduction.

【0021】図6には、時効性の指標として100℃×
1hの促進時効後の引張試験における降伏点伸び(YP
−El))を用いた。また、スポット溶接性の指標とし
て、スポット溶接適正電流下限値を用いた。溶接条件
は、既に述べた条件と同一である。図から明らかなよう
に、非時効性を確保するためには圧下率を0.3%以上
とし、C量は0.0026%以下でかつC量との関係で
2080×(C−0.0015)%以上の領域で囲まれ
た範囲に制御する必要がある。またスポット溶接適正電
流下限値は、圧下率とC量とを1.5×(1−400×
C)%以上に制御することにより、低く抑えることがで
きる。全C量が増加すると固溶C量も増加するため、非
時効化に必要な圧下率は増加するものと考えられる。ま
た、スポット溶接適正電流下限値は、材料の降伏強度
(YP)と関係し、YPの上昇とともに低電流側にシフ
トするので、このためにはC量の増加と調質圧延の圧下
率を増加させることが好ましいと考えられる。
FIG. 6 shows 100 ° C. as an index of aging.
Yield point elongation in a tensile test after accelerated aging for 1 h (YP
-El)) was used. Further, the lower limit value of the appropriate spot welding current was used as an index of spot weldability. The welding conditions are the same as those already described. As is clear from the figure, in order to secure the non-aging property, the rolling reduction is set to 0.3% or more, the C content is 0.0026% or less, and the relationship with the C content is 2080 × (C-0.0015). ) It is necessary to control to the range surrounded by the area of% or more. Further, the lower limit value of the spot welding proper current is 1.5 × (1-400 ×
It can be kept low by controlling C)% or more. Since the amount of solid solution C also increases as the total amount of C increases, the reduction rate required for non-aging is considered to increase. Further, the lower limit value of the proper current for spot welding is related to the yield strength (YP) of the material and shifts to the low current side as YP increases. It is thought that it is preferable to allow it.

【0022】ここに本発明において鋼組成および製造条
件を上述のように限定する理由についてさらに説明す
る。 (1)C:Cは、製品の材質特性を決定する極めて重要
な元素である。C量が上限の0.0026%超となる
と、調質圧延の圧下率を制御してももはや常温非時効で
なくなり、延性の時効劣化も著しいので、上限を0.0
026%とする。一方、C量が0.0005%未満とな
ると、母材の疲労特性やスポット溶接部の疲労特性が劣
化する。さらに二次加工脆化が発生する。また、製鋼技
術上極めて到達困難な領域であり、コストも著しく上昇
する。したがって、下限は0.0005%とする。
Here, the reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be further explained. (1) C: C is an extremely important element that determines the material properties of the product. If the amount of C exceeds the upper limit of 0.0026%, even if the rolling reduction of the temper rolling is controlled, it is no longer non-aged at room temperature, and the aging deterioration of ductility is remarkable, so the upper limit of 0.0
It is set to 026%. On the other hand, if the C content is less than 0.0005%, the fatigue properties of the base material and the spot welds deteriorate. Further, secondary working embrittlement occurs. In addition, it is an extremely difficult area to reach in terms of steelmaking technology, and the cost increases significantly. Therefore, the lower limit is made 0.0005%.

【0023】(2)Si:Siは安価に強度を上昇する
元素であるが、1.2%超となると化成処理性の低下
や、メッキ性の低下などの問題が生じるので、その上限
を1.2%とする。 (3)Mn:MnはSiと同様に強度を上昇させるに有
効な元素である。またTiなどを添加しない本願発明鋼
では、MnがSを固定するので、Mnは熱間圧延時の割
れを防止する役割をもつ。低Mn化は従来からr値の向
上に好ましいと言われているが、Mn量が0.03%未
満では、熱間圧延時に割れが生じる。したがって、Mn
量の下限を0.03%とする。一方、Mnは、本願発明
のようにPを添加した極低炭素鋼の熱間圧延板結晶粒の
細粒化に効果的である知見を得た。これは、両元素が熱
力学的にはAr3 温度に対して相殺する方向に働き、か
つ両元素ともγからαへの変態を速度論的に遅らせるた
めと思われる。また、スポット溶接HAZ部の組織微細
化にも効果がある。しかし、3%超添加するとr値、す
なわち深絞り性が劣化する。以上の理由から、Mn量の
上限は3%とする。
(2) Si: Si is an element that increases strength at a low cost, but if it exceeds 1.2%, problems such as deterioration of chemical conversion treatment property and deterioration of plating property occur, so the upper limit is 1 0.2%. (3) Mn: Mn is an element effective for increasing the strength like Si. Further, in the steel of the present invention to which Ti or the like is not added, Mn fixes S, so Mn has a role of preventing cracking during hot rolling. It has been conventionally said that lowering Mn is preferable for improving the r value, but if the Mn content is less than 0.03%, cracking occurs during hot rolling. Therefore, Mn
The lower limit of the amount is 0.03%. On the other hand, it was found that Mn is effective for refining the crystal grains of the hot-rolled plate of the ultra-low carbon steel containing P as in the present invention. This is because both elements act thermodynamically in the direction of canceling the Ar 3 temperature, and both elements delay the transformation from γ to α kinetically. It is also effective for making the structure of the spot-welded HAZ portion finer. However, if the content exceeds 3%, the r value, that is, the deep drawability deteriorates. For the above reasons, the upper limit of the amount of Mn is 3%.

【0024】(4)P:PもSi、Mnと同様に強度を
上昇する元素として知られており、その添加量は狙いと
する強度レベルに応じて変化する。さらに、TiやNb
を添加しない極低炭素鋼の熱間圧延板の結晶粒径は一般
的に粗粒化するが、0.015%以上のPの添加により
顕著に細粒化し、冷延・焼鈍後の製品板の深絞り性を改
善する効果を持つ。さらに、既に述べたようにスポット
溶接性の確保にPの添加は有効であり、必要な添加量
は、図2に示したように0.015%以上とする。一
方、添加量が0.15%超となると、冷間圧延性の劣
化、二次加工脆化などが発生するので、P量の上限は
0.15%とする。
(4) P: P is also known as an element that increases strength like Si and Mn, and the amount of addition thereof changes depending on the target strength level. In addition, Ti and Nb
The grain size of the ultra-low carbon steel hot-rolled sheet without addition of Cr generally becomes coarse, but the addition of 0.015% or more of P makes it significantly finer, and the product sheet after cold rolling / annealing Has the effect of improving the deep drawability of. Further, as described above, the addition of P is effective for securing the spot weldability, and the necessary addition amount is 0.015% or more as shown in FIG. On the other hand, if the addition amount exceeds 0.15%, deterioration of cold rollability and secondary work embrittlement occur, so the upper limit of the P amount is made 0.15%.

【0025】(5)S:S量は低いほうが好ましいが、
0.001%未満になると製造コストが著しく上昇する
ので、これを下限値とする。一方、0.020%超にな
るとMnSが数多く析出しすぎ加工性が劣化するので、
これを上限値とする。 (6)Al:Alは脱酸調整に使用するが、0.005
%未満では安定して脱酸することが困難となる。一方、
0.1%超になるとコスト上昇を招く。したがって、こ
れらの値を下限値および上限値とする。 (7)N:Nは低い方が好ましい。しかし、0.000
5%未満にするには著しいコスト上昇を招くので、これ
を下限値にする。一方、0.0080%以上になると加
工性が著しく劣化するので、0.0080%をN量の上
限値とする。
(5) S: The lower the S content, the better,
If it is less than 0.001%, the manufacturing cost increases significantly, so this is made the lower limit. On the other hand, if it exceeds 0.020%, a large amount of MnS is excessively precipitated and the workability deteriorates.
This is the upper limit. (6) Al: Al is used for deoxidation adjustment, but 0.005
If it is less than%, stable deoxidation becomes difficult. on the other hand,
If it exceeds 0.1%, the cost increases. Therefore, these values are set as the lower limit and the upper limit. (7) N: N is preferably low. But 0.000
If it is less than 5%, the cost is significantly increased, so this is made the lower limit. On the other hand, if it is 0.0080% or more, the workability is significantly deteriorated, so 0.0080% is made the upper limit of the N content.

【0026】(8)B:Bはスポット溶接部の継ぎ手強
度および疲労特性を確保するために必須の元素である。
その効果を発揮するためには、0.0003%以上の添
加が必要である。0.0003%未満ではHAZ部の組
織微細化には不十分である。また、0.0030%超に
なると添加コストの上昇やスラブ割れの原因となるの
で、これを上限とする。さらに、Bの添加量はB/N>
1が好ましい。これは、HAZ部の組織微細化には、B
Nを形成しない固溶状態のBが効果的であるからであ
る。
(8) B: B is an essential element for ensuring the joint strength and fatigue characteristics of the spot welded portion.
In order to exert its effect, addition of 0.0003% or more is necessary. If it is less than 0.0003%, it is not sufficient for the refinement of the structure of the HAZ part. Further, if it exceeds 0.0030%, the addition cost increases and slab cracking is caused, so this is made the upper limit. Furthermore, the addition amount of B is B / N>
1 is preferred. This is due to B
This is because B in a solid solution state that does not form N is effective.

【0027】(9)Ti,Nb:本発明においては、基
本的には高価なこれらの元素は添加しないが、本発明者
らが鋭意検討を加えた結果、Ti,Nbの少なくとも1
種の元素が極微量の0.0002〜0.0015%存在
すると、r値で代表される製品板の材質特性やスポット
溶接部の強度や疲労特性が改善されることも判明した。
改善効果は0.0002%未満では見られず、一方、添
加量を安定的に0.0015%超とするためには、工業
的実生産においては添加コストが上昇するのでこれを上
限とする。
(9) Ti, Nb: In the present invention, basically, these expensive elements are not added, but as a result of intensive studies by the present inventors, at least 1 of Ti and Nb
It was also found that the presence of a very small amount of 0.0002 to 0.0015% of each kind of element improves the material properties of the product plate represented by the r value and the strength and fatigue properties of the spot welds.
The improvement effect is not seen at less than 0.0002%, while on the other hand, in order to stably add more than 0.0015%, the addition cost increases in industrial production, so this is the upper limit.

【0028】次に、製造条件の限定理由を述べる。 (9)熱間圧延条件:製品板の加工性を確保するため
に、Ar3 以上の温度で仕上げる。Ar3 未満の温度で
仕上げると熱延板の結晶粒径が著しく粗大化し、製品板
の深絞り性が劣化する。また、リジングと言われる表面
凹凸が発生する。TiやNbを添加しない極低炭素鋼に
おいては、仕上げ後1.5s以内に50℃/s以上の冷
却速度で750℃以下の温度まで急冷すると熱間圧延板
の結晶粒径が細粒化し、最終製品板の深絞り性が向上す
るので、好ましい。特に、0.5s以内の急冷が好まし
い。巻き取り温度は、750℃超となると、酸洗性が劣
化したりコイルの長手方向で材質が不均一となり、さら
に巻取り中に異常粒成長を生じるので、750℃を上限
とする。また、巻取り温度を常温まで低下させても製品
板の加工性は劣化しないので、これを下限値とする。
Next, the reasons for limiting the manufacturing conditions will be described. (9) Hot rolling conditions: Finishing is performed at a temperature of Ar 3 or higher in order to secure the workability of the product sheet. If the temperature is less than Ar 3, the grain size of the hot-rolled sheet will be significantly coarsened, and the deep drawability of the product sheet will be deteriorated. In addition, surface irregularities called ridging occur. In the ultra-low carbon steel to which Ti and Nb are not added, the crystal grain size of the hot-rolled sheet becomes fine when it is rapidly cooled to a temperature of 750 ° C or less at a cooling rate of 50 ° C / s or more within 1.5s after finishing, This is preferable because the deep drawability of the final product plate is improved. Particularly, rapid cooling within 0.5 s is preferable. If the winding temperature exceeds 750 ° C., the pickling property deteriorates and the material becomes non-uniform in the longitudinal direction of the coil, and abnormal grain growth occurs during winding, so 750 ° C. is the upper limit. Further, since the workability of the product plate does not deteriorate even if the winding temperature is lowered to room temperature, this is set as the lower limit value.

【0029】(10)冷間圧延条件:製品板のr値を確
保する目的から、圧下率は70%以上とする。本発明が
対象とする極低炭素鋼板の場合には、圧下率を84%以
上にするとr45が著しく向上し、r値の面内異方性が低
減する。さらに、組織が微細化しスポット溶接性が向上
するので、この条件は特に好ましい。 (11)連続焼鈍条件:焼鈍温度が600〜900℃の
連続焼鈍とする。焼鈍温度が600℃未満では、再結晶
は不十分であり、製品板の加工性が問題となる。焼鈍温
度の上昇とともに加工性は向上するが、900℃超では
高温すぎて板破断や板の平坦度が悪化する。また、加工
性や疲労特性も劣化する。
(10) Cold rolling condition: The rolling reduction is 70% or more for the purpose of securing the r value of the product sheet. In the case of the ultra-low carbon steel sheet targeted by the present invention, r 45 is remarkably improved and the in-plane anisotropy of r value is reduced when the rolling reduction is 84% or more. Further, this condition is particularly preferable because the structure becomes finer and the spot weldability is improved. (11) Continuous annealing conditions: An annealing temperature of 600 to 900 ° C. is used for continuous annealing. If the annealing temperature is less than 600 ° C, recrystallization is insufficient and the workability of the product sheet becomes a problem. Although the workability improves as the annealing temperature rises, if it exceeds 900 ° C, the temperature will be too high and the plate fracture and the flatness of the plate will deteriorate. In addition, workability and fatigue characteristics are also deteriorated.

【0030】(12)調質圧延条件:TiやNbを添加
しない極低炭素鋼板の非時効性とスポット溶接性を同時
に確保するためには、調質圧延の圧下率とC量を適正範
囲に制御することがポイントである。非時効性は、圧下
率を0.3%以上と2080×(C−0.0015)%
以上とC量が0.0026%以下の領域で囲まれた範囲
に制御することにより確保できる。また、スポット溶接
適正電流下限値は、圧下率を1.5×(1−400×
C)%以上に制御し、YPを上昇させることにより、低
く抑えることができる。かくして、本発明は新思想と新
知見に基づいて構築されたものであり、本発明によれば
TiやNbなどの高価な元素を添加せずとも、母材疲労
およびスポット溶接部の疲労特性に優れた常温非時効で
BH性を兼備した深絞り用冷延鋼板が得られる。
(12) Temper rolling conditions: In order to simultaneously secure the non-aging property and spot weldability of an ultra-low carbon steel sheet to which Ti or Nb is not added, the reduction ratio and the C content of the temper rolling should be within proper ranges. The point is to control. The non-aging property has a reduction rate of 0.3% or more and 2080 x (C-0.0015)%.
This can be ensured by controlling the above to a range surrounded by a region where the C content is 0.0026% or less. In addition, the lower limit of the appropriate spot welding current is the reduction ratio of 1.5 × (1-400 ×
It can be kept low by controlling C)% or more and increasing YP. Thus, the present invention is constructed on the basis of a new idea and a new finding, and according to the present invention, it is possible to improve the base material fatigue and the fatigue characteristics of spot welds without adding expensive elements such as Ti and Nb. It is possible to obtain a cold-rolled steel sheet for deep drawing which has excellent BH property at room temperature and is not aged.

【0031】[0031]

【実施例】【Example】

実施例1 表1に示す組成からなる連鋳スラブを、1150℃に加
熱し、920℃で熱間圧延を仕上げ、5.5mmの熱延
板としたのち1.0s以内に50℃/sで冷却し、60
0℃で巻取った。ついで、85%の圧下率の冷間圧延を
施し0.8mm厚としたのち、740℃で連続焼鈍し、
圧下率が1.2%の調質圧延を行った。このようにして
得られた各鋼板の機械的諸特性、母材疲労強度、最小溶
接電流およびスポット溶接部のせん断と十字疲労強度に
ついて調べた結果を表2に示す。スポット溶接条件は既
に述べた条件で行い、スポット溶接部の強度は溶接電流
がチリが発生する電流値の95%の値で評価した。表1
及び2から明かなように、本発明鋼は母材疲労およびス
ポット溶接部の疲労強度に優れた非時効深絞り性用冷延
鋼板となる。さらに、C量を制御することによりBH性
も付与できる。BH性を有する鋼板をBH処理すると、
母材疲労強度ならびにスポット溶接部継ぎ手疲労強度が
さらに向上する。これに反し、本発明の範囲を逸脱した
鋼においては、母材疲労強度やスポット溶接部の疲労強
度(鋼G,H)やr45(鋼F,G)、さらに100℃−
1h後のYP−El(鋼F)に問題がある。
Example 1 A continuous cast slab having the composition shown in Table 1 was heated to 1150 ° C., hot rolling was finished at 920 ° C. to form a 5.5 mm hot rolled sheet, and then 50 ° C./s within 1.0 s. Cool, 60
Winded at 0 ° C. Then, after cold rolling with a reduction rate of 85% to a thickness of 0.8 mm, continuous annealing was performed at 740 ° C.,
The temper rolling was performed with a rolling reduction of 1.2%. Table 2 shows the results obtained by examining the mechanical properties, the base metal fatigue strength, the minimum welding current, and the shear and cross fatigue strength of the spot welds of the steel sheets thus obtained. The spot welding conditions were the same as those described above, and the strength of the spot welded portion was evaluated at a value of 95% of the current value at which the welding current caused dust. Table 1
As is clear from 2 and 2, the steel of the present invention is a cold-rolled steel sheet for non-aging deep drawability which is excellent in base material fatigue and fatigue strength of spot welds. Further, BH property can be imparted by controlling the C content. When a steel plate having BH property is subjected to BH treatment,
The base material fatigue strength and the spot weld joint fatigue strength are further improved. Contrary to this, in the steel which deviates from the scope of the present invention, the base material fatigue strength, the fatigue strength of the spot welds (steel G, H) and r 45 (steel F, G), and 100 ° C-
There is a problem with YP-El (steel F) after 1 h.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】実施例2 表1の鋼Aを用いて実施例1と全く同じプロセスで連続
焼鈍まで行い、続いて調質圧延の圧下率を0.5〜3.
0%まで種々変化させた後、各鋼板の100℃×1hの
人工時効後の降伏点伸び、スポット溶接適正溶接電流下
限値および母材疲労強度について調べた。その結果を表
3に示す。スポット溶接条件は既に述べた条件で行い、
溶接強度は溶接電流がチリが発生する電流値の95%の
値で評価した。表3から明らかなように、調質圧延の圧
下率を本発明の適正範囲に制御することにより、非時効
性とスポット溶接性および疲労特性の両立が可能であ
る。
Example 2 Using Steel A in Table 1, the same process as in Example 1 was performed until continuous annealing, and then the rolling reduction of temper rolling was 0.5 to 3.
After various changes to 0%, the yield point elongation after artificial aging of each steel sheet at 100 ° C. × 1 h, the lower limit of the appropriate welding current for spot welding and the base material fatigue strength were examined. Table 3 shows the results. The spot welding conditions are the same as those already mentioned.
The welding strength was evaluated by the value of 95% of the current value at which the welding current generated dust. As is clear from Table 3, by controlling the rolling reduction of the temper rolling within the appropriate range of the present invention, both non-aging property and spot weldability and fatigue properties can be achieved.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】以上詳述したように、本発明によればT
iやNbなどの高価な元素を添加せずとも、母材疲労お
よびスポット溶接部の疲労特性に優れた深絞り性用冷延
鋼板が得られる。さらに、非時効性やBH性も付与でき
る。BH処理後には、これらの疲労特性は、さらに向上
する。また、本発明は、電気メッキおよび溶融メッキな
どを施す表面処理鋼板、およびその製造にも適用が可能
である。このように、本発明は、従来技術と比較して安
価でかつユーザーでの利用特性に優れた鋼板およびその
製造を提供する。高価なTiやNbを使用しないので、
地球資源の節減に寄与する。また、本発明により高強度
鋼板の提供も可能であるので、軽量化による地球環境保
全にも寄与するものと考えられ、本発明の効果は著し
い。
As described above in detail, according to the present invention, T
Even if an expensive element such as i or Nb is not added, a cold-rolled steel sheet for deep drawability excellent in base material fatigue and fatigue characteristics of spot welds can be obtained. Further, non-aging property and BH property can be imparted. These fatigue properties are further improved after BH treatment. Further, the present invention can be applied to a surface-treated steel sheet subjected to electroplating, hot dip plating, etc., and its production. As described above, the present invention provides a steel sheet that is cheaper than the prior art and has excellent utilization characteristics for the user, and the production thereof. Since expensive Ti and Nb are not used,
Contribute to the saving of global resources. Further, since the present invention can also provide a high-strength steel sheet, it is considered that it contributes to global environment conservation by weight reduction, and the effect of the present invention is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】母材疲労限(2×106 回)とP,B量との関
係を示す図、
FIG. 1 is a diagram showing a relationship between a base material fatigue limit (2 × 10 6 times) and P and B contents,

【図2】スポット溶接の適正電流範囲とP量との関係を
示す図、
FIG. 2 is a diagram showing a relationship between an appropriate current range for spot welding and a P amount;

【図3】スポット溶接後のHAZ部近傍の硬度分布にお
よぼすPとBの影響を示す図、
FIG. 3 is a diagram showing the effect of P and B on the hardness distribution near the HAZ portion after spot welding,

【図4】スポット溶接部継ぎ手せん断および十字引張強
度とP,B量との関係を示す図
FIG. 4 is a diagram showing the relationship between shear strength and cross tensile strength of spot welded joints and P and B contents.

【図5】スポット溶接部の継ぎ手疲労特性とBH性およ
びP,B量との関係を示す図、
FIG. 5 is a diagram showing a relationship between joint fatigue characteristics of spot welds and BH properties and P and B contents;

【図6】スポット溶接性(適正溶接電流下限値)と時効
性(100℃−1h後のYP−El)におよぼす全C量
と調質圧延の圧下率との影響を示す図である。
FIG. 6 is a diagram showing the influence of the total C amount and the rolling reduction of temper rolling on the spot weldability (appropriate lower limit of welding current) and aging (YP-El after 100 ° C.-1 h).

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 C22C 38/14 (72)発明者 手墳 誠 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C22C 38/14 C22C 38/14 (72) Inventor Makoto Makoto 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel shares Company Kimitsu Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.0005〜0.0026% Si:1.2%以下 Mn:0.03〜3.0% P :0.015〜0.15% S :0.0010〜0.020% Al:0.005〜0.1% N :0.0005〜0.0080% B :0.0003〜0.0030% および残部Feおよび不可避的不純物からなる母材およ
びスポット溶接部の疲労特性に優れた深絞り用極低炭素
冷延鋼板。
1. By weight%, C: 0.0005 to 0.0026% Si: 1.2% or less Mn: 0.03 to 3.0% P: 0.015 to 0.15% S: 0.0. 0010 to 0.020% Al: 0.005 to 0.1% N: 0.0005 to 0.0080% B: 0.0003 to 0.0030% and a base metal and a spot weld consisting of the balance Fe and unavoidable impurities Ultra-low carbon cold-rolled steel sheet for deep drawing with excellent fatigue properties of the welded part.
【請求項2】 請求項1に記載の化学成分にTi:0.
0002〜0.0015%、Nb:0.0002〜0.
0015%のうちの少なくとも1種以上を含むことを特
徴とする母材およびスポット溶接部の疲労特性に優れた
深絞り用極低炭素冷延鋼板。
2. The chemical composition according to claim 1, wherein Ti: 0.
0002-0.0015%, Nb: 0.0002-0.
An ultra low carbon cold-rolled steel sheet for deep drawing, which is excellent in fatigue properties of a base material and a spot weld, characterized by containing at least one of 0015%.
【請求項3】 請求項1および2に記載の化学成分より
なるスラブをAr3以上の温度で熱間圧延を仕上げ、常
温〜750℃で巻取り、70%以上の圧延率で冷間圧延
を行い、焼鈍温度が600〜900℃の連続焼鈍を行
い、調質圧延圧下率をCを炭素量(重量%)とした場合
に1.5×(1−400×C)%以上かつ2080×
(C−0.0015)%以上とすることを特徴とする母
材およびスポット溶接部の疲労特性に優れた冷延鋼板の
製造方法。
3. A slab composed of the chemical components according to claim 1 and 2 is hot-rolled at a temperature of Ar 3 or higher, wound at room temperature to 750 ° C., and cold-rolled at a rolling ratio of 70% or more. If the annealing temperature is 600 to 900 ° C. and the temper rolling reduction ratio is C (carbon amount (wt%)), 1.5 × (1-400 × C)% or more and 2080 ×
(C-0.0015)% or more, The manufacturing method of the cold-rolled steel sheet which was excellent in the fatigue characteristics of the base material and the spot welds, which is characterized by being above (C-0.0015)%.
【請求項4】 請求項1および2に記載の化学成分より
なるスラブをAr3以上の温度で熱間圧延を仕上げ、そ
の直後1.5s以内に50℃/s以上の冷却速度で75
0℃以下まで冷却し常温〜750℃で巻取り、70%以
上の圧延率で冷間圧延を行い、焼鈍温度が600〜90
0℃の連続焼鈍を行い、調質圧延圧下率をCを炭素量
(重量%)とした場合に1.5×(1−400×C)%
以上かつ2080×(C−0.0015)%以上とする
ことを特徴とする母材およびスポット溶接部の疲労特性
に優れた深絞り性用極低炭素冷延鋼板の製造方法。
4. A slab made of the chemical composition according to claim 1 or 2 is hot-rolled at a temperature of Ar 3 or higher, and immediately thereafter, within 1.5 s, at a cooling rate of 50 ° C./s or higher, 75
It is cooled to 0 ° C. or lower, wound at room temperature to 750 ° C., cold rolled at a rolling ratio of 70% or more, and an annealing temperature of 600 to 90.
1.5 × (1-400 × C)% when the temper rolling reduction rate is 0 ° C. continuous annealing and C is the carbon amount (weight%).
Above and 2080 x (C-0.0015)% or more, a method for producing an ultra low carbon cold rolled steel sheet for deep drawability excellent in fatigue properties of a base material and a spot weld.
【請求項5】 請求項3および4の製造方法において、
冷延圧下率を84%以上とすることを特徴とする母材お
よびスポット溶接部の強度特性に優れた深絞り用極低炭
素冷延鋼板の製造方法。
5. The manufacturing method according to claim 3 or 4,
A method for producing an ultra-low carbon cold-rolled steel sheet for deep drawing, which is excellent in strength characteristics of a base material and a spot weld, characterized by having a cold rolling reduction of 84% or more.
JP16319095A 1995-03-27 1995-06-29 Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production Pending JPH08325634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16319095A JPH08325634A (en) 1995-03-27 1995-06-29 Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6810395 1995-03-27
JP7-68103 1995-03-27
JP16319095A JPH08325634A (en) 1995-03-27 1995-06-29 Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production

Publications (1)

Publication Number Publication Date
JPH08325634A true JPH08325634A (en) 1996-12-10

Family

ID=26409342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16319095A Pending JPH08325634A (en) 1995-03-27 1995-06-29 Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production

Country Status (1)

Country Link
JP (1) JPH08325634A (en)

Similar Documents

Publication Publication Date Title
US5855696A (en) Ultra low carbon, cold rolled steel sheet and galvanized steel sheet having improved fatigue properties and processes for producing the same
WO2022209519A1 (en) Steel sheet, member, method for producing steel sheet, and method for producing member
JP6248207B2 (en) Hot-dip galvanized steel sheet excellent in hole expansibility, alloyed hot-dip galvanized steel sheet, and manufacturing method thereof
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
WO2020158066A1 (en) High-strength steel sheet and method for producing same
WO2022165930A1 (en) Laser tailor-welded pre-plated steel plate and hot stamped member
CN108456832B (en) Ultra-high strength cold rolled steel sheet having excellent bending workability and method for manufacturing same
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4370795B2 (en) Method for producing hot-dip galvanized steel sheet
JPH11310827A (en) Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP4580402B2 (en) Hot-dip hot-dip steel sheet for press working and manufacturing method thereof
JPH0567684B2 (en)
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172299A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
JP3589416B2 (en) Manufacturing method of ultra-low carbon hot-dip galvanized steel sheet for deep drawing with excellent fatigue properties
JPS63317625A (en) Production of extremely low carbon cold-rolled steel sheet having excellent fatigue characteristic in spot welded part
JPH11279682A (en) High strength steel sheet good in workability and spot weldability and its production
JP4580334B2 (en) Deep drawing high strength steel plate and hot dipped steel plate
JP2007169739A (en) High strength cold rolled steel sheet for deep drawing, high strength hot dip plated steel sheet for deep drawing and method for producing the same
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JP3408873B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent strength properties of spot welds
JPH08109436A (en) Cold rolled steel sheet excellent in strength characteristic in spot-weld zone and its production
JPH08325634A (en) Dead soft cold rolled steel sheet excellent in fatigue characteristic and its production