JPH08325294A - Human hematopoietic cell growth potentiating factor - Google Patents

Human hematopoietic cell growth potentiating factor

Info

Publication number
JPH08325294A
JPH08325294A JP8124416A JP12441696A JPH08325294A JP H08325294 A JPH08325294 A JP H08325294A JP 8124416 A JP8124416 A JP 8124416A JP 12441696 A JP12441696 A JP 12441696A JP H08325294 A JPH08325294 A JP H08325294A
Authority
JP
Japan
Prior art keywords
leu
glu
ala
val
hcgpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8124416A
Other languages
Japanese (ja)
Other versions
JP2612158B2 (en
Inventor
Koreaki Taniguchi
維紹 谷口
Hajime Yamada
源 山田
Junji Hamuro
淳爾 羽室
Shinsuke Taki
伸介 滝
Yutaka Matsui
裕 松井
Shinichi Kashima
信一 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP8124416A priority Critical patent/JP2612158B2/en
Publication of JPH08325294A publication Critical patent/JPH08325294A/en
Application granted granted Critical
Publication of JP2612158B2 publication Critical patent/JP2612158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject new factor, which is a polypeptide having a specific amino acid sequence, activities in proliferating a hematopoietic cell, especially a bone marrow cell and further immunomodulating and hematopoietic regulating functions and useful for treatment, etc., of immunodeficiency, autoimmune diseases, infectious diseases, cancers, etc. CONSTITUTION: This new human hematopoietic cell growth potentiating factor is a polypeptide, having an amino acid sequence represented by any of formulas I to III and capable of manifesting activities in proliferating a human hematopoietic cell, especially a bone marrow cell. The factor has immunomodulating and hematopoietic regulating functions, can be applied to treatment, etc., of immunodeficiency, infectious diseases, cancers, hepatitises, nephritides, bone marrow transplantation, etc., and is further effective in potentiating effects and reduction, etc., in adverse effects of other medicines by using thereof with other immunologically active substances, immunotherapeutic agents, lymphokines, cytokinins, interferons, cell growth factors, chemotherapeutic agents, antibiotic substances or antiviral agents in combination. This factor is obtained by isolating an mRNA from a monocytic cell derived from a human peripheral blood, preparing a cDNA library, screening the resultant cDNA library and expressing the resultant gene in a host cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、造血系細胞、特に
骨髄細胞を増殖せしめる活性を増強する因子(以下、H
CGPF:Hematopoietic cell g
rowth potentiating facto
r)ポリペプチドに関する。
TECHNICAL FIELD The present invention relates to a factor (hereinafter, referred to as H) for enhancing the activity of proliferating hematopoietic cells, especially bone marrow cells.
CGPF: Hematopoietic cell g
rowh potentiating facto
r) Polypeptides.

【0002】本HCGPFは単独においても骨髄細胞、
胸腺細胞、胎生肝細胞の増殖を亢進するが、他の造血系
細胞増殖因子(HCGF)と併用すると、これら造血系
細胞の増殖は著しく亢進されるものであり、このような
因子の存在は従来全く知られていない。
This HCGPF alone, even in bone marrow cells,
It promotes the growth of thymocytes and embryonic hepatocytes, but when used in combination with other hematopoietic cell growth factors (HCGF), the proliferation of these hematopoietic cells is significantly enhanced. Not known at all.

【0003】本発明者らは既にマウスのIL−3依存性
増殖細胞株FDC−P細胞の増殖を誘導する因子の遺伝
子を同定している(特願昭61−2633)。今回本因
子を該遺伝子を用いて、単一サイトカインとして生産す
ることに成功し、かつ単一蛋白にまで精製し、物質とし
て始めて同定しえた本因子が前述の如く、骨髄細胞、胸
腺細胞、胎生肝細胞などの造血系細胞に汎く作用し、か
つ、他のHCGFと称すべき因子と併用すると、更に著
明な造血系細胞の増殖を惹起することを確認し、本発明
を完成するに至ったわけである。
The present inventors have already identified the gene of a factor that induces the proliferation of mouse IL-3-dependent proliferating cell line FDC-P cells (Japanese Patent Application No. 61-2633). This factor was successfully produced as a single cytokine using this gene, was purified to a single protein, and was the first substance identified as a substance. It has been confirmed that the compound has a general effect on hematopoietic cells such as hepatocytes, and when it is used in combination with other factors to be called HCGF, it induces more prominent proliferation of hematopoietic cells, thus completing the present invention. That is why.

【0004】本HCGPFはヒト生体内において上述の
作用を基本とし広汎な免疫調節機能、造血調節機能を有
し、免疫不全症、自己免疫、感染症、肝炎、腎炎、癌、
骨髄移植などの分野において、その有用性が強く期待さ
れるものである。と同時に他の免疫活性物質、免疫療法
剤、リンホカイン、サイトカイン、インターフェロン、
細胞生長因子、化学療法剤、抗生物質、抗ウイルス剤と
の併用において効果増強ならびに他薬剤の副作用軽減に
も有効である。
The present HCGPF has a wide range of immunoregulatory and hematopoietic regulating functions based on the above-mentioned actions in the human body, and has immunodeficiency, autoimmunity, infectious diseases, hepatitis, nephritis, cancer,
It is strongly expected to be useful in fields such as bone marrow transplantation. At the same time, other immunoactive substances, immunotherapeutics, lymphokines, cytokines, interferons,
When used in combination with cell growth factors, chemotherapeutic agents, antibiotics and antiviral agents, it is also effective in enhancing the effect and reducing the side effects of other agents.

【0005】以上のような有用性をもつ新規物質であ
り、医薬分野での有用性に留まらず、本物質、本物質に
対する抗体、本物質の受容体分子は更に診断薬としての
有用性も期待される。
[0005] The novel substance having the above-mentioned usefulness is not limited to the usefulness in the pharmaceutical field, and the present substance, the antibody against this substance, and the receptor molecule of this substance are expected to be useful as diagnostic agents. To be done.

【0006】[0006]

【従来の技術】最近、コロニー刺激因子と総称され造血
系細胞に直接に作用し、増殖させる因子がヒトについて
3種報告され、それらの遺伝子がクローニングされてい
る。即ち、Gouzh,N.M et al.(198
4)Nature 309,763 Kawasak
i,E.S.,et al.(1985)Scince
230,291 Nagata,S.et al.(1
986)Nature319,415。これらは各々、
GM−CSF,M−CSF,G−CSFと略称されてい
る。これ以外に、造血系細胞に汎く作用するコロニー刺
激因子としてのmulti−CSFがマウスにおいては
知られており、既に遺伝子クローニングもされている
(Fung,M.C.et al.(1984)Nat
ure,307,233 Yokota,T.et a
l.(1984)Proc.NAS,USA81,10
70)。
2. Description of the Related Art Recently, three types of factors, which are collectively referred to as colony stimulating factors and directly act on hematopoietic cells and proliferate, have been reported for humans, and their genes have been cloned. That is, Goush, N .; M et al. (198
4) Nature 309 , 763 Kawasak
i, E. S. , Et al. (1985) Science
230 , 291 Nagata, S .; et al. (1
986) Nature 319 , 415. These are each
They are abbreviated as GM-CSF, M-CSF, and G-CSF. In addition, multi-CSF as a colony stimulating factor that acts widely on hematopoietic cells is known in mice, and gene cloning has already been performed (Fung, MC et al. (1984) Nat).
ure, 307 , 233 Yokota, T .; et a
l. (1984) Proc. NAS, USA 81 , 10
70).

【0007】また、マウスにおいて、未分化のマウスT
細胞に作用して20α−ヒドロキシステロイドデヒドロ
ゲナーゼ(以下「20αSDH」と記す)を誘導し成熟
T細胞に分化させる特異な作用を有するリンホカインが
見い出されインターロイキン3(以下「IL−3」と記
す)と名付けられている。またマウスIL−3は顆粒
球、巨核球、マスト細胞、好塩基球などの細胞の分化増
殖にも関与しているのみならずその生物活性は性ホルモ
ンの代謝にまで及んでいることが考えられ、その幅広い
生物活性に非常な興味が注がれている(Immunol
ogical Rev,(1982)63,5−3
2)。このことよりマウスIL−3はマウスmulti
−CSFとも呼称される。
[0007] In addition, undifferentiated mouse T
A lymphokine having a specific action of inducing 20α-hydroxysteroid dehydrogenase (hereinafter referred to as “20αSDH”) to act on cells and differentiating into mature T cells has been found. It is named. Mouse IL-3 is considered to be involved not only in the differentiation and proliferation of cells such as granulocytes, megakaryocytes, mast cells, and basophils, but also to extend its biological activity to the metabolism of sex hormones. There is great interest in its wide range of biological activities (Immunol
optical Rev, (1982) 63 , 5-3.
2). From this, mouse IL-3 can be expressed in mouse multi.
-Also called CSF.

【0008】この物質はこの様な生物活性から免疫学的
に欠陥または異常のある疾患に対して汎く有用でありか
つ免疫系疾患の臨床上の診断に有用であることが期待さ
れるとともに生物、医学全般の研究試薬としても有用で
ある。
Due to such biological activity, this substance is expected to be generally useful for immunologically deficient or abnormal diseases and useful for clinical diagnosis of immune system diseases. It is also useful as a research reagent in general medicine.

【0009】しかるにIL−3は、マウスについてその
遺伝子、蛋白構造が解明されたに留まり、ヒトIL−3
についてはその適切な活性検定系のないこと、ヒトIL
−3の好適な産生細胞の知られていないことよりヒトI
L−3の存在すら確認されていない。
However, the gene and protein structure of mouse IL-3 has only been elucidated, and human IL-3 has only been elucidated.
Does not have a suitable activity assay system, human IL
That no human I-producing cell is known
Even the presence of L-3 has not been confirmed.

【0010】これらヒトG−CSF,M−CSF,GM
−CSF,マウスIL−3(multi−CSF)は、
骨髄中の幹細胞が分化、成熟する段階に作用して、造血
系細胞のコロニーを形成させる活性がよく知られてお
り、骨髄移植や免疫不全症の治療の領域でその有用性が
検討されつつある。
These human G-CSF, M-CSF, GM
-CSF, mouse IL-3 (multi-CSF),
It is well known that stem cells in the bone marrow act at the stage of differentiation and maturation to form colonies of hematopoietic cells, and their usefulness is being studied in the area of bone marrow transplantation and the treatment of immunodeficiency disorders. .

【0011】このような因子を生体に投与するに当たっ
ては、生体が本来もつ生理的濃度域での適用が最も望ま
しいものであり、外部から大量に人体に投与すること
は、いたずらに、副作用のみ惹起し、医薬としての適用
に困難を伴なうことの多いことは、ヒトインターロイキ
ン2(IL−2)の臨床例をみても明らかである。
In administering such a factor to a living body, it is most desirable to apply it within the physiological concentration range originally possessed by the living body, and administering a large amount to the human body from the outside unnecessarily causes only side effects. However, it is clear from the clinical cases of human interleukin 2 (IL-2) that it is often difficult to apply it as a medicine.

【0012】本発明が完成しようとする新規な技術はこ
れら造血系細胞のコロニー形成作用を有する因子と併用
することにより、造血系細胞の増殖を相乗的に強める作
用を有し、かつ自身も単独でその作用を示す物質を同定
し、提供することにある。従って、本因子はヒトIL−
3様の活性も併せもつ面も有する。
The novel technique to be completed by the present invention has an effect of synergistically enhancing the proliferation of hematopoietic cells when used in combination with these factors having a colony forming effect on hematopoietic cells, and the novel technique itself is used alone. The purpose of the present invention is to identify and provide substances exhibiting the action. Therefore, this factor is human IL-
It also has the aspect of having three kinds of activities.

【0013】[0013]

【発明が解決しようとする課題】このような造血系細胞
の増殖に関与する因子(インターロイキン3=mult
i CSFなど)と共存させること、もしくは単独でヒ
ト造血系細胞の増殖を増強する因子(以下HCGPFと
称する)を物質として同定し、微生物等の細胞内に本因
子をコードする遺伝子を導入して生産せしめることが、
本HCGPFを有用ならしめる必須の手段である。従っ
て本発明の目的は本HCGPFの新規物質としての同定
及び提供にある。
The factors involved in the proliferation of hematopoietic cells (interleukin 3 = multi)
i CSF, etc.) or by independently identifying a factor that enhances the growth of human hematopoietic cells (hereinafter referred to as HCGPF) as a substance and introducing a gene encoding this factor into cells such as microorganisms. To be produced
This is an essential means of making the present HCGPF useful. Accordingly, an object of the present invention is to identify and provide the present HCGPF as a novel substance.

【0014】[0014]

【課題を解決するための手段】本発明は、配列表の配列
番号1、配列表の配列番号2又は配列表の配列番号3の
いずれかに記載のアミノ酸配列を有するヒト造血系細胞
増殖増強因子(HCGPF)である。
The present invention provides a human hematopoietic cell growth-enhancing factor having the amino acid sequence of any one of SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 3 in the sequence listing. (HCGPF).

【0015】[0015]

【発明の実施の形態】本発明者らはヒト末梢血由来単球
系細胞を常法で調製し、このリンパ球をPHA,TPA
の共存下48時間刺激し、かく活性化したリンパ球より
常法のフェノール抽出によりRNAを抽出し、エタノー
ル沈澱後オリゴdT−セルロースによるアフィニティク
ロマトグラフィーによりmRNAを採取し、同mRNA
の純度を向上させ、かつmRNAのサイズ分画を行うべ
く更にオリゴdT−セルロースクロマトグラフィーを繰
り返した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors prepared human peripheral blood-derived monocytic cells by a conventional method, and
RNA was extracted from the activated lymphocytes by conventional phenol extraction, precipitated with ethanol, and then mRNA was collected by affinity chromatography using oligo dT-cellulose.
The oligo dT-cellulose chromatography was further repeated to improve the purity of the product and to perform size fractionation of mRNA.

【0016】一方、サル細胞(COS細胞)でのcDN
A発現ベクターpDE−2を構築した(特願昭59−2
08645,昭59.10.4出願)。すなわち本pD
E−2はpML−R11G(Nature 293,7
9(1981))とpKCR(Proc.Natl.A
cad.Sci.,U.S.A.,78,1527(1
981))を用いて図2に示すように構築したものでc
DNAを両向きのSV40初期プロモーターにはさみ込
むことができ、E.coli中で複製可能でまたアンピ
シリ耐性として選択することができる。
On the other hand, cDN in monkey cells (COS cells)
An A expression vector pDE-2 was constructed (Japanese Patent Application No. 59-2).
08645, 59.10.4 application). That is, this pD
E-2 is pML-R11G (Nature 293, 7
9 (1981)) and pKCR (Proc. Natl. A.
cad. Sci. , U. S. A. , 78, 1527 (1
981)) and constructed as shown in FIG.
The DNA can be sandwiched between the SV40 early promoters in both orientations, and E. It can be replicated in E. coli and can be selected for ampicilly resistance.

【0017】本pDE−2にC−tailingしたも
のと前述の2本鎖cDNAをG−tailingしたも
のを混合しアニーリングを行った。本アニーリングした
DNAをコンピテントなE.coli MC1061
(J.Mol.Biol., 38,179−207
(1980))に導入した。L培地の寒天プレートに塗
抹しコロニーを出現させた。
The pDE-2 obtained by C-tailing and the above-mentioned G-tailed double-stranded cDNA were mixed and annealed. This annealed DNA was transformed into competent E. coli MC1061
(J.Mol.Biol., 1 38, 179-207
(1980)). The L medium was smeared on an agar plate to allow colonies to appear.

【0018】このようにして得られたコロニーを32ケ
ずつ192グループに分け混合培養し常法により32種
の混合したプラスミドDNAを精製した。
The colonies thus obtained were divided into 192 groups each of 32 colonies, mixed and cultured, and 32 types of mixed plasmid DNAs were purified by a conventional method.

【0019】本プラスミドDNA混合物(32種)をサ
ル細胞(COS−7)(Cell23,175−182
(1981))に導入し、クロロキン処理、洗浄後、4
8時間培養し、その培養上清について、FDC−P細胞
増殖活性を測定し、活性を有するDNA混合物のグルー
プを同定した。ここに活性の認められたDNA混合物を
含むグループのDNAプラスミドを32ケの単一プラス
ミドDNAとして精製し、再びCOS細胞に導入し、そ
の培養上清を同様に活性検定することによりFDC−P
細胞増殖活性、すなわちIL−3様活性を示すクローン
p4−15を同定した。
This plasmid DNA mixture (32 kinds) was used for monkey cells (COS-7) (Cell 23 , 175-182).
(1981)), and after chloroquine treatment and washing, 4
After culturing for 8 hours, the FDC-P cell proliferation activity of the culture supernatant was measured, and a group of active DNA mixtures was identified. The DNA plasmids of the group containing the DNA mixture in which activity was recognized here were purified as 32 single plasmid DNAs, re-introduced into COS cells, and the culture supernatant was subjected to the same activity assay to obtain FDC-P.
Clone p4-15, which exhibited cell proliferation activity, ie, IL-3-like activity, was identified.

【0020】次いで本クローンに含まれるcDNAをd
ideoxy chain termination法
(Sangerら、Proc.Natl.Acad.S
ci,U.S.A.74,5463−5467(197
7))およびMaxam−Gilbertの方法(Me
th.Enzym,65,510−580(198
0))を用いて解析し、その全塩基配列を決定した。本
cDNAはおよそ900bpの塩基対からなりシグナル
ペプチドを有する分泌蛋白をコードすることが判明し
た。このcDNA並びにそこから類推されるポリペプチ
ドの構造は現在までに見出されていないものであり従っ
て全く新しいものである。また、このcDNAに対応す
るメッセンジャーRNAはTPA,PHAにより活性化
されたヒトリンパ球に特異的に発現していることから、
新規のリンフォカインであると考えられる。
Then, the cDNA contained in this clone was d
ideoxy chain termination method (Sanger et al., Proc. Natl. Acad. S.
ci, U. S. A. 74 , 5463-5467 (197)
7)) and the method of Maxam-Gilbert (Me.
th. Enzym, 65 , 510-580 (198
0)) and analyzed the whole base sequence. This cDNA was found to encode a secretory protein having a base peptide of about 900 bp and having a signal peptide. The structure of this cDNA, as well as the polypeptide deduced therefrom, has not been found to date and is therefore entirely new. Since the messenger RNA corresponding to this cDNA is specifically expressed in human lymphocytes activated by TPA and PHA,
It is considered to be a novel lymphokine.

【0021】cDNAインサートの制限酵素エンドヌク
レアーゼによる切断図を図1に示す。図1に示すごと
く、このcDNAはAvaI,PstI,BanIなる
制限酵素エンドヌクレアーゼで切断される構造を有す
る。配列表の配列番号9にcDNAの塩基配列を示す。
A cleavage diagram of the cDNA insert with a restriction endonuclease is shown in FIG. As shown in FIG. 1, this cDNA has a structure that is cleaved by restriction endonucleases AvaI, PstI, and BanI. The nucleotide sequence of cDNA is shown in SEQ ID NO: 9 in the sequence listing.

【0022】本cDNAインサートのDNA配列は一つ
の大きなオープンリーディングフレームを保有する。真
核生物の読み取り開始配列となると推定したATG配列
(Kozak,M.Cell.15,1109−112
3(1978))は、5′−端から64−66ヌクレオ
チド位に存在し、読み終りコドンTGAが存在するヌク
レオチド位655−657迄196のコードンがこのA
TGにつながっている。mRNAの3′−poly
(A)末端に相当するAのつながりがcDNA末端に見
出され、通常真核生物mRNAのほとんどに見出される
6個からなるヌクレオチドAATAAA(883−88
8位)が先に位置する(Proudfoot,N.J.
& Brownlee C.G.,Nature 26
,211−214(1976))。配列表の配列番号
9参考。
The DNA sequence of this cDNA insert carries one large open reading frame. ATG sequence predicted to be a read initiation sequence for eukaryotes (Kozak, M. Cell. 15 , 1109-112).
3 (1978)) is located 64 to 66 nucleotides from the 5'-end, and the 196 codons at nucleotide positions 655 to 657 where the read-end codon TGA is present
It is connected to TG. 3'-poly of mRNA
(A) A linkage corresponding to the terminus is found at the cDNA terminus and consists of the six nucleotides AATAAA (883-88) normally found in most eukaryotic mRNAs.
(8th position) is located first (Prodfoot, NJ.
& Brownlee C.E. G. , Nature 26
3 , 211-214 (1976)). See SEQ ID NO: 9 in the Sequence Listing.

【0023】cDNAによってコードされるアミノ酸配
列は配列表の配列番号3のごとく演えきでき、しかも配
列番号3のポリペプチドは197個のアミノ酸からな
り、今日迄知られている分泌蛋白の殆んどに見られると
報告されているように(Blobel G.et a
l,Sym.Soc.Exp.Med.,33,9−3
6(1979))、上記演えきHCGPFポリペプチド
のN末端領域はやはり疎水性である。本領域は成熟HC
GPFの分泌時に切断されるシグナルペプチドの役割を
果しているであろう。切断は18−19位のSerとT
hr間で起るか30−31位間のGly−Ile間で切
断され、それぞれ配列表の配列番号1および配列番号2
を有するポリペプチドを生成する。何故ならば同様な切
断位置は今迄知られたその他の分泌蛋白にもしばしば見
出されているからである(Blobel,G.et a
l.,Symp.Soc.Exp.Med.,33,9
−36(1979))。
The amino acid sequence encoded by the cDNA can be performed as shown in SEQ ID NO: 3 in the sequence listing, and the polypeptide of SEQ ID NO: 3 consists of 197 amino acids, and is almost all of the secretory proteins known to date. As reported in (Blobel G. et a
1, Sym. Soc. Exp. Med. , 33 , 9-3
6 (1979)), the N-terminal region of the described HCGPF polypeptide is also hydrophobic. This region is mature HC
It may play the role of a signal peptide that is cleaved upon secretion of GPF. Cleavage: Ser and T at positions 18-19
hr or truncated between positions Gly-Ile between positions 30-31, respectively.
To produce a polypeptide having This is because similar cleavage sites are often found in other secreted proteins known so far (Blobel, G. et a.
l. , Symp. Soc. Exp. Med. , 33 , 9
-36 (1979)).

【0024】従って成熟HCGPFポリペプチドは17
9ないし167個のアミノ酸から成ると算出される。ま
た実施例4に示すごとく配列表の配列番号9の塩基配列
118−120位にあるACCコードンから始まるDN
A画分、即ち19位に位置するThrから始まるポリペ
プチドに対するコードはHCGPF活性を有するポリペ
プチドを表現していることが確認された(配列表の配列
番号1)。配列表の配列番号9の塩基配列154−15
6位にあるATCから始まるDNA画分、即ち、31位
に位置するIleから始まるポリペプチドをコードする
DNA画分は、実施例5に示すごとくHCGPF活性を
有するポリペプチドを表現していることが確認された
(配列表の配列番号2)。
Accordingly, the mature HCGPF polypeptide is 17
It is calculated to consist of 9 to 167 amino acids. In addition, as shown in Example 4, DN starting from the ACC codon at nucleotide positions 118 to 120 of SEQ ID NO: 9 in the sequence listing.
It was confirmed that the code for the A fraction, ie, the polypeptide starting from Thr located at position 19, expressed a polypeptide having HCGPF activity (SEQ ID NO: 1 in the sequence listing). Nucleotide sequence 154-15 of SEQ ID NO: 9 in Sequence Listing
The DNA fraction starting from ATC at position 6, that is, the DNA fraction encoding the polypeptide starting from Ile at position 31, may express a polypeptide having HCGPF activity as shown in Example 5. It was confirmed (SEQ ID NO: 2 in the sequence listing).

【0025】真核生物の遺伝子はヒトインターフェロン
遺伝子でも知られている様に多形現象を示すことが知ら
れている(谷口ら,Gene 10,11−15(19
80),大野,谷口.,Proc.Natl.Aca
d.Sci.USA,77,5305−5309(19
81):Gray et al,Nature 29
,501−508(1981))。この多形現象によ
って、蛋白生産物のアミノ酸のあるものが置換される場
合もあれば、塩基配列の変化はあっても全く変わらない
場合もある。
Eukaryotic genes are known to exhibit polymorphism, as is also known for the human interferon gene (Taniguchi et al., Gene 10 , 11-15 (19).
80), Ohno, Taniguchi. , Proc. Natl. Aca
d. Sci. USA, 77 , 5305-5309 (19
81): Gray et al, Nature 29
5 , 501-508 (1981)). Due to this polymorphism, some of the amino acids in the protein product may be substituted, or there may be changes in the nucleotide sequence but no change at all.

【0026】上記説明からも明らかなごとく、本発明の
遺伝子は、配列表の配列番号9に示された塩基配列を有
するDNAの64−66位のATG配列から始まり、6
52−654位にある少くともGCC配列に至る連続塩
基配列を有するDNA、118−120位のACC配列
から始まり、ACC配列から少くともGCC配列に至る
連続塩基配列を有するDNA、また154−156位の
ATC配列から少くともGCC配列に至る連続塩基配列
を有するDNAを包含する。
As is clear from the above description, the gene of the present invention starts from the ATG sequence at positions 64-66 of DNA having the nucleotide sequence shown in SEQ ID NO: 9 in the sequence listing, and 6
DNA having a continuous base sequence at least from position 52-654 to the GCC sequence, DNA having a continuous base sequence starting from the ACC sequence at positions 118 to 120 and extending from the ACC sequence to at least the GCC sequence, and positions 154 to 156 DNA having a continuous base sequence from the ATC sequence to at least the GCC sequence.

【0027】本発明の遺伝子はまた、652−654位
のGCC配列に終り、1位のGに始まるDNA、64−
66位のATGで始まるDNA、118−120位のA
CC配列で始まるDNA又は154−156位のATC
配列で始まるDNAを包含する。更に本発明の遺伝子
は、909位のTで終り、1位のAで始まるDNA、6
4−66位のATGで始まるDNA、118−120位
のACCで始まるDNAまたは154−156位のAT
C配列で始まるDNAを包含する。
The gene of the present invention also terminates at the GCC sequence at positions 652-654 and begins at G at position 1, 64-,
DNA beginning with ATG at position 66, A at positions 118-120
DNA starting with CC sequence or ATC at positions 154-156
It includes DNA starting with the sequence. Furthermore, the gene of the present invention comprises a DNA ending with T at position 909, starting with A at position 1, 6
DNA starting with ATG at positions 4-66, DNA starting with ACC at positions 118-120, or AT at positions 154-156
Includes DNA that begins with the C sequence.

【0028】本発明の遺伝子はまたpoly(A)で終
り、64−66位のATGコードンから始まるDNA、
118−120位のACC配列で始まるDNAまたは1
54−156位のATC配列で始まるDNAを含む。ま
た、本発明は、配列表の配列番号1,2又は3に記載の
アミノ酸配列に相当する塩基配列を有する遺伝子を含
む。
The gene of the present invention may also comprise a DNA ending with poly (A) and beginning with the ATG codon at positions 64-66.
DNA starting from ACC sequence 118-120 or 1
It includes DNA starting with the ATC sequence at positions 54-156. The present invention also includes a gene having a base sequence corresponding to the amino acid sequence described in SEQ ID NO: 1, 2, or 3 in the sequence listing.

【0029】配列表の配列番号3記載のアミノ酸配列の
中で1個ないしそれ以上のアミノ酸を欠くポリペプチ
ド、あるいは、配列表の配列番号3記載のアミノ酸配列
中の1個ないしそれ以上のアミノ酸が1個ないしそれ以
上のアミノ酸で置換されたポリペプチドはHCGPF活
性を有することもあり、従ってこの様なポリペプチドを
コードする遺伝子は本発明の遺伝子として使える。
A polypeptide lacking one or more amino acids in the amino acid sequence of SEQ ID NO: 3 in the sequence listing, or one or more amino acids in the amino acid sequence of SEQ ID NO: 3 in the sequence listing Polypeptides substituted with one or more amino acids may also have HCGPF activity, and thus genes encoding such polypeptides can be used as the gene of the present invention.

【0030】同様に配列表の配列番号1,2又は3記載
のアミノ酸配列に対して1個ないしそれ以上のアミノ酸
を表現し得る1個ないしそれ以上の塩基を余分に結合し
た遺伝子であっても追加されたアミノ酸が、ポリペプチ
ドのHCGPF活性発現を邪魔しない限り本発明の中に
包含される。HCGPFとしてのポリペプチド機能を阻
害する追加アミノ酸配列を有する修飾領域であっても新
たに追加された領域が容易に除去出来るものならば本発
明の遺伝子として利用出来る。
Similarly, a gene in which one or more bases capable of expressing one or more amino acids with respect to the amino acid sequence described in SEQ ID NO: 1, 2, or 3 in the sequence listing may be added. As long as the added amino acids do not interfere with the expression of HCGPF activity of the polypeptide, they are included in the present invention. Even a modified region having an additional amino acid sequence that inhibits the polypeptide function as HCGPF can be used as the gene of the present invention as long as the newly added region can be easily removed.

【0031】同じことは配列表の配列番号1,2又は3
記載のアミノ酸配列に対応する遺伝子の各アミノ酸配列
のC−末端にアミノ酸追加をコードするDNAが3′−
末端に追加結合せしめたDNAの場合にも言える。従っ
て、この様なポリペプチドをコードする遺伝子の利用
は、本発明に包含される。
The same applies to SEQ ID Nos. 1, 2 or 3 in the sequence listing.
The DNA encoding an amino acid addition at the C-terminus of each amino acid sequence of the gene corresponding to the described amino acid sequence is 3'-
The same can be said for the DNA additionally bound to the end. Accordingly, the use of genes encoding such polypeptides is encompassed by the present invention.

【0032】生細胞中でHCGPF産生をする組み換え
DNA体は、次の各種方法で作られる。例えば、HCG
PFcDNAをコードする配列を発現するベクターのプ
ロモーター配列下流に挿入する。あるいはプロモーター
配列を持つcDNA片を発現ベクターのcDNA挿入の
前あるいは後にHCGPFをコードする配列の上流に挿
入することが出来る。
Recombinant DNA bodies that produce HCGPF in living cells can be produced by the following various methods. For example, HCG
The sequence encoding the PF cDNA is inserted downstream of the promoter sequence of the expressing vector. Alternatively, a cDNA fragment having a promoter sequence can be inserted upstream of the sequence encoding HCGPF before or after insertion of the cDNA into the expression vector.

【0033】HCGPFcDNAを発現し、HCGPF
ポリペプチドを産生する真核生物、あるいは原核生物の
造成法を詳述すれば以下の通りである。
Expressing HCGPF cDNA, HCGPF
The method for constructing a eukaryote or a prokaryote that produces a polypeptide is described in detail below.

【0034】エシェリヒア・コリ中でHCGPFcDN
Aを発現させるには、先ずcDNAを各種細菌プロモー
ターと結合せしめた後、プロモーター下流にcDNAを
含有するハイブリドプラスミドを作る。このプラスミド
を、例えばエシェリヒア・コリHB101に感染させ、
ヒトHCGPF活性を有する蛋白を生合成する細菌がク
ローンされる。本来細菌のプロモーターならば如何なる
ものでもcDNAに適当に接続されていればHCGPF
cDNAを発現する。この様なcDNAの発現例は実施
例において示す。
HCGPFcDN in Escherichia coli
To express A, cDNA is first linked to various bacterial promoters, and then a hybrid plasmid containing cDNA downstream of the promoter is prepared. This plasmid was used to infect Escherichia coli HB101,
Bacteria that biosynthesize a protein having human HCGPF activity are cloned. HCGPF as long as any bacterial promoter is properly connected to cDNA
Express the cDNA. Examples of such cDNA expression will be shown in the Examples.

【0035】HCGPFcDNAはまた適当な発現ベク
ターに組み込みこれを宿主細胞に導入すれば酵母でも発
現させることができる。酵母に外来遺伝子を発現させる
ための各種シャトル・ベクターは既にいくつか報告され
ている(HeitzmanらNature 293,7
17−722(1981)宮下ら,Proc.Nat
l.Acad.Sci.USA,80,1−5(198
3))。これらのベクターはエシェリヒア・コリおよび
酵母両方の宿主で増殖することができる。また、酵母遺
伝子のプロモーター配列を内蔵している基本的には発現
ベクターすべてがHCGPFcDNAの発現に利用可能
である。動物細胞や細菌の利用に較べ酵母を利用すれば
HCGPF産生能のレベルをより高くすることも可能で
あり、また糖鎖を含むHCGPFを生産することも可能
であり、HCGPFの溶解性向上に有用である。
HCGPF cDNA can also be expressed in yeast by incorporating it into an appropriate expression vector and introducing it into a host cell. Various shuttle vectors for the expression of foreign genes in yeast have already been reported several (Heitzman et Nature 293, 7
17-722 (1981) Miyashita et al., Proc. Nat
l. Acad. Sci. USA, 80 , 1-5 (198
3)). These vectors are capable of growing in both E. coli and yeast hosts. Basically, all expression vectors containing a yeast gene promoter sequence can be used for expression of HCGPF cDNA. The use of yeast as compared to the use of animal cells and bacteria makes it possible to increase the level of HCGPF-producing ability, and it is also possible to produce HCGPF containing sugar chains, which is useful for improving the solubility of HCGPF. It is.

【0036】酵母−エシェリヒア・コリシャトル・ベク
ターpAT77,pAM82が宮下ら(Proc.Na
tl.Acad.Sci.USA 80 1−5(19
83))によって報告されている。ベクターpAM82
はpAT77の誘導体であり、両者ともarslのマー
カーを持ち(Stinchcomb DT et al
Nature 282,39−43(1979),2
μm ori(Broach J.R.et al,G
ene,,121−133(1979),leu2
(Ratzkin B.et al Proc.Nat
l,Acad.Sci.USA, ,474−491
(1979))酵母の酸性フォスファターゼ(APas
e)に対するプロモーターを持っている。両ベクターと
もアンピシリン耐性マーカー(APr )を持つpBR3
22の3,700塩基からなるDNA画分と増幅オリジ
ンを持っている。APaseプロモーターは培養液中で
高濃度リン酸を低濃度にシフトすると始めて誘導され
る。
The yeast-Escherichia coli shuttle vector pAT77, pAM82 was prepared by Miyashita et al.
tl. Acad. Sci. USA 80 1-5 (19
83)). Vector pAM82
Is a derivative of pAT77, both of which have an arsl marker (Stinchcomb DT et al.
Nature 282 , 39-43 (1979), 2
μm ori (Broach JR et al, G
ene, 8 , 121-133 (1979), leu2
(Ratzkin B. et al Proc. Nat
1, Acad. Sci. USA, 7 4, 474-491
(1979)) Yeast acid phosphatase (APas
Has a promoter for e). PBR3 with ampicillin resistance marker (APr) for both vectors
It has 22 DNA fractions consisting of 3,700 bases and an amplified origin. The APase promoter is induced only when a high concentration of phosphate is shifted to a low concentration in a culture solution.

【0037】その他の真核生物細胞に増幅したDNAを
挿入するには、宿主細胞に適したベクターを原核細胞か
ら切断分離されたcDNA挿入に結合すれば良い。そし
て、有核生物細胞を合成したベクターに感染させ培養す
る。
To insert the amplified DNA into other eukaryotic cells, a vector suitable for the host cell may be ligated to the cDNA insert that has been cut and separated from the prokaryotic cell. Then, the nucleated cells are infected with the synthesized vector and cultured.

【0038】組み換えDNA体を挿入した細胞を培養し
て組み換えDNA体を増幅し又はHCGPFポリペプチ
ドを生産する。この培養は通常の方法で行なわれる。例
えば感染した酵母を炭素源、窒素源、無機塩類、必要あ
れば、ビタミン、アミノ酸の如き有機栄養源を含有する
培地で27℃ないし37℃の範囲、pH4〜7にて好気
的条件下で行う。エシエリヒア・コリ又はバチルス・ズ
ブチリスの如き形質転換された原核生物も通常の方法で
培養することが出来る。
Cells in which the recombinant DNA body has been inserted are cultured to amplify the recombinant DNA body or produce the HCGPF polypeptide. This cultivation is performed by a usual method. For example, the infected yeast is subjected to aerobic conditions in a medium containing carbon sources, nitrogen sources, inorganic salts and, if necessary, organic nutrients such as vitamins and amino acids in the range of 27 ° C to 37 ° C, pH 4 to 7. To do. Transformed prokaryotes such as Escherichia coli or Bacillus subtilis can also be cultured by conventional methods.

【0039】ここに得られたHCGPFはマウスIL−
3に対応するヒト由来のリンホカインであるとも推定さ
れるが現在ヒトIL−3の存在が不明であり、ヒトIL
−3の権威づけられた活性検定系が存在しないことより
マウスIL−3に対応するヒト由来のものと断定するこ
とは出来ない。事実、このcDNAの構造はマウスIL
−3 cDNAのそれと類似性を持たず、同一のanc
estral geneから両者が分岐したものとは考
え難い。
The HCGPF obtained here was a mouse IL-
It is also presumed that it is a human-derived lymphokine corresponding to 3, but the presence of human IL-3 is currently unknown, and human IL-3
Due to the absence of the authoritative activity assay system of -3, it cannot be concluded that it is of human origin corresponding to mouse IL-3. In fact, the structure of this cDNA is mouse IL
-3 which has no similarity to that of cDNA and has the same anc
It is hard to imagine that both branches off from the estral gene.

【0040】またFDC−P細胞はIL−3依存性細胞
株として広く国内外で常用されている細胞株であり、他
のリンホカイン類の存在では増殖しないことも確認され
ている。例えばインターロイキン2、インターロイキン
1、インターフェロンにはこれらの活性は存在しない。
ここに得られた遺伝子配列のコードするアミノ酸配列を
有する蛋白はこれまで未知でありIL−3と若干類似の
活性を示すヒトG−CSF,M−CSF,GM−CSF
とも構造が異なり、いわゆる選択的コロニー刺激因子
(CSF)とは異なる物質である。従って本遺伝子(c
DNA)によって発現される新規なリンフォカインと考
えられるポリペプチドの示す活性は、少くとも上述のヒ
トIL−3活性の一部を担っていることが明らかであ
る。
FDC-P cells are widely used in Japan and overseas as IL-3-dependent cell lines, and it has been confirmed that they do not proliferate in the presence of other lymphokines. For example, interleukin 2, interleukin 1, and interferon do not have these activities.
The protein having the amino acid sequence encoded by the gene sequence obtained heretofore unknown and has human G-CSF, M-CSF, GM-CSF showing an activity slightly similar to IL-3.
Both have different structures and are different from so-called selective colony stimulating factor (CSF). Therefore, this gene (c
It is clear that the activity of the novel putative lymphokines expressed by (DNA) exhibits at least part of the human IL-3 activity described above.

【0041】ここにおいて得られたヒトIL−3様蛋白
は塩析、ゲル濾過、アフィニティークロマトグラフィ
ー、イオン交換クロマトグラフィー、等電点電気泳動、
高速液体クロマトグラフィーおよびその他の知られてい
るポリペプチドの分離、精製法を単独または組み合せれ
ば容易に純化される。
The human IL-3-like protein obtained here was subjected to salting out, gel filtration, affinity chromatography, ion exchange chromatography, isoelectric focusing,
It is easily purified by high performance liquid chromatography and other known methods for separating and purifying polypeptides alone or in combination.

【0042】本IL−3様蛋白をCOS細胞において多
量に発現してその活性を検定したところ単独でも、マウ
ス骨髄細胞、ヒト骨髄細胞、胸腺細胞やマウス胎生肝細
胞に対して増殖誘導活性を示し、活性の強度は別として
multi−CSF様の活性を示すことも確認されてい
る。更に、マウス骨髄細胞を標的細胞とする系において
本発現蛋白はマウスIL−3の存在下に相乗的に著明な
増殖を誘導した。
A large amount of this IL-3 like protein was expressed in COS cells, and its activity was assayed. As a result, it showed growth-inducing activity on mouse bone marrow cells, human bone marrow cells, thymocytes and mouse embryonic hepatocytes. It has also been confirmed that, apart from the activity intensity, it exhibits multi-CSF-like activity. Furthermore, in a system using mouse bone marrow cells as target cells, the expressed protein synergistically induced significant proliferation in the presence of mouse IL-3.

【0043】以上のことより本ヒトIL−3様、mul
ti−CSF様活性を有し、IL−3と相乗的に作用
し、造血系細胞(Hematopoietic Cel
ls)を増殖させる因子として本新規リンホカインポリ
ペプチドをHCGPFと呼称することにしたわけであ
る。
From the above, it can be seen that the present human IL-3-like, mul
It has a ti-CSF-like activity and acts synergistically with IL-3 to produce hematopoietic cells (Hematopoietic Cell).
This novel lymphokine polypeptide was designated as HCGPF as a factor for proliferating Iss).

【0044】かくしてえられたHCGPFは哺乳動物細
胞から作られるHCGPFと同一の生化学的ならびに生
物学的挙動を示しHCGPF活性を示す。HCGPF活
性はDNaseおよびRNase処理しても又56℃3
0分間熱処理しても安定であり、活性はpH4〜9で安
定である。
The HCGPF thus obtained shows the same biochemical and biological behavior as HCGPF produced from mammalian cells and shows HCGPF activity. HCGPF activity was measured at 56 ° C3 even after DNase and RNase treatment.
It is stable even after heat treatment for 0 minutes, and the activity is stable at pH 4-9.

【0045】[0045]

【実施例】以下に実施例にもとづいて本発明を詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments.

【0046】実施例1 (1)Falkoffらの方法(J.of Immun
ol.Method.,50,39(1982))及び
Taniguchiらの方法(Proc.Natl.A
cad.Sci.U.S.A.78,pp3469−3
472(1981))に従ってヒト末梢血由来細胞を調
製した。そしてPHA5μg/mlとTPA5ng/m
lで48時間刺激した末梢血由来細胞(3.4×101
0)はTBS(10mM Tris−HCl,pH7.
5,10mM NaCl,1.5mM MgCl2 )お
よそ400mlに懸濁した。この細胞を遠心操作により
2回洗浄し、ヌクレアーゼ阻害剤であるリボヌクレオシ
ド−バナジル複合体10mMを含むTBS溶液200m
lに再懸濁した。
Example 1 (1) The method of Falkoff et al. (J. of Immun)
ol. Method. , 50 , 39 (1982)) and the method of Taniguchi et al. (Proc. Natl. A.).
cad. Sci. U. S. A. 78 , pp3469-3
472 (1981)). And PHA 5 μg / ml and TPA 5 ng / m
peripheral blood-derived cells (3.4 × 10 1
0) is TBS (10 mM Tris-HCl, pH 7.
(5, 10 mM NaCl, 1.5 mM MgCl2). The cells were washed twice by centrifugation, and 200 m of a TBS solution containing 10 mM of ribonucleoside-vanadyl complex which is a nuclease inhibitor.
resuspended in 1 l.

【0047】さらに界面活性剤NP−40を最終濃度
0.1%となるように加え、ゆっくり混合し、細胞核を
3000rpm,5分,4℃下で遠心分離して除いた。
その上清液はSDS(0.5%)とEDTA(5mM)
を加えた後、等量の水飽和フェノールを加え抽出した。
フェノールによる抽出を3回繰り返した後、RNAは2
倍量の冷エタノールにより沈澱させ、本沈澱物を遠心に
より集め、10mM Tris−HCl,pH7.5溶
液に溶解した。得られたRNAは40mgであった。
Further, the surfactant NP-40 was added so that the final concentration was 0.1%, the mixture was slowly mixed, and the cell nuclei were removed by centrifugation at 3000 rpm for 5 minutes at 4 ° C.
The supernatant was SDS (0.5%) and EDTA (5 mM)
After adding, an equal amount of water-saturated phenol was added for extraction.
After three extractions with phenol, the RNA was 2
The precipitate was precipitated with twice the volume of cold ethanol, and the precipitate was collected by centrifugation and dissolved in a 10 mM Tris-HCl, pH 7.5 solution. The RNA obtained was 40 mg.

【0048】mRNAの分画はオリゴdT−セルロース
(P.L.Biochemicals,Type7)に
よるアフィニティークロマトグラフィーにより行った。
吸着液は20mM Tris−HCl,0.5M Na
Cl,1mM EDTAおよび0.5%SDSを含むp
H7.5の溶液であり、溶出はカラムを緩衝液(20m
M Tris−HCl,pH7.5,0.5M NaC
l,1mM EDTA)でよく洗浄後、H2 Oと10m
M Tris−HCl,pH7.5で交互に行った。溶
出により得られたmRNAは使用したRNA33mgに
対し0.9mgであった。
Fractionation of mRNA was performed by affinity chromatography with oligo dT-cellulose (PL Biochemicals, Type 7).
The adsorbent was 20 mM Tris-HCl, 0.5 M Na.
P containing Cl, 1 mM EDTA and 0.5% SDS
It is a solution of H7.5, and elution is performed with a buffer solution (20 m
M Tris-HCl, pH 7.5, 0.5M NaC
After washing well with 1,1 mM EDTA, 10m
Alternately with M Tris-HCl, pH 7.5. The mRNA obtained by elution was 0.9 mg based on 33 mg of RNA used.

【0049】さらにmRNAの精製度を高めるために再
度、オリゴdT−セルロースによるアフィニティークロ
マトを同じように繰り返し、mRNA標品0.45mg
を得た。
To further enhance the purification of mRNA, affinity chromatography with oligo dT-cellulose was repeated in the same manner to obtain 0.45 mg of the mRNA standard.
I got

【0050】(2)次に本mRNA標品より次のように
cDNAライブラリーを作製し、cDNAクローニング
のために使用した。cDNAの合成法は基本的にはLa
ndらの方法(Nucleic Acids Re
s.,vol 9,P2551(1981))に従っ
た。
(2) Next, a cDNA library was prepared from the present mRNA sample as follows and used for cDNA cloning. The method of cDNA synthesis is basically La
nd et al. (Nucleic Acids Re
s. , Vol 9, P2551 (1981)).

【0051】(イ)50mM Tris−HCl,pH
8.3,10mM MgCl2 ,0.1M KCl,1
0mMジチオスレイトール(DTT),0.5mMの各
dATP,dGTP,dCTP,dTTP(dCTPは
32P放射標識したものを含む)、0.375OD単位の
オリゴdT10,50μgmRNAおよび50単位AMV
逆転写酵素(Life Science社製)を混合
し、41℃下で90分反応した。反応終了後、フェノー
ル処理を行い、エタノール沈澱物としてmRNA−cD
NAハイブリッドを回収し、0.3N NaOH溶液に
溶解した。室温にて15時間静置し、次いでpH7.5
の2M Tris−HCl溶液を等量加えて中和後、セ
ファデックスG−50カラムを通して、cDNAを回収
した。回収された単鎖cDNAは約10μgであった。
(A) 50 mM Tris-HCl, pH
8.3, 10 mM MgCl2, 0.1 M KCl, 1
0 mM dithiothreitol (DTT), 0.5 mM of each dATP, dGTP, dCTP, dTTP (dCTP is
32P radiolabeled), 0.375 OD units of oligo dT10, 50 μg mRNA and 50 units AMV
Reverse transcriptase (manufactured by Life Science) was mixed and reacted at 41 ° C. for 90 minutes. After the completion of the reaction, phenol treatment was performed, and mRNA-cD
The NA hybrid was recovered and dissolved in 0.3N NaOH solution. Let stand at room temperature for 15 hours, then pH 7.5
Was neutralized by adding an equal volume of a 2M Tris-HCl solution, and the cDNA was recovered through a Sephadex G-50 column. The recovered single-stranded cDNA was about 10 μg.

【0052】(ロ)0.1Mカコジル酸カリウム(pH
7.2)、10mM DTT,2mM CoCl2 ,
0.5mM 32P−dCTP(比活性1×106 cpm
/nmole)、10μg cDNAおよび60単位の
デオキシヌクレオチジルターミナルトランスフェラーゼ
(BRL)を混合し、24℃,23分間インキュベート
した後、フェノール処理を行い、セファデックスG−5
0カラムを通してcDNA画分を集め、エタノール沈澱
物として9.5μgのdC−tailed cDNAを
得た。このcDNAは約20個のdCMP残基が3′末
端に付加されていた。
(B) 0.1 M potassium cacodylate (pH
7.2) 10 mM DTT, 2 mM CoCl2,
0.5 mM 32 P-dCTP (specific activity 1 × 10 6 cpm
/ Nmole), 10 μg of cDNA and 60 units of deoxynucleotidyl terminal transferase (BRL) were mixed, incubated at 24 ° C. for 23 minutes, and then treated with phenol to give Sephadex G-5.
The cDNA fraction was collected through a 0 column to obtain 9.5 μg of dC-tailed cDNA as an ethanol precipitate. This cDNA had about 20 dCMP residues added to the 3 'end.

【0053】(ハ)次に50mMリン酸カリウム緩衝液
(pH7.5)、10mM MgCl2 ,10mM D
TT,1mMの各dATP,dGTP,dCTP,dT
TP(dCTPは 3Hで標識したものを含む)、7.2
μgオリゴdG10,9.5μgの単鎖cDNAおよび5
0単位のDNAポリメラーゼI(Klenow)(BR
L製)を混ぜ6時間、15℃で反応を行った。反応終了
後、フェノール処理を行い、セファデックスG−50カ
ラムを通して、二本鎖cDNA画分を集め、エタノール
沈澱物として約16μgのDNAを回収した。
(C) Next, a 50 mM potassium phosphate buffer (pH 7.5), 10 mM MgCl 2, 10 mM D
TT, 1 mM each of dATP, dGTP, dCTP, dT
TP (dCTP includes those labeled with 3H), 7.2
μg oligo dG10, 9.5 μg single-stranded cDNA and 5 μg
0 units of DNA polymerase I (Klenow) (BR
L) was mixed and the reaction was carried out at 15 ° C. for 6 hours. After completion of the reaction, phenol treatment was performed, and the double-stranded cDNA fraction was collected through a Sephadex G-50 column, and about 16 μg of DNA was recovered as an ethanol precipitate.

【0054】(ニ)次に33mM Tris−アセテー
ト、pH7.9,10mM酢酸マグネシウム,10mM
DTT,66mM酢酸カリウム、0.1mMの各dA
TP,dGTP,dTTP(dCTPは除く),16μ
gの二本鎖cDNAおよび22.5単位のT4 DNA
ポリメラーゼ(タカラ)を混ぜ15分,37℃で反応を
行い、31 末端についたdC−tailを除去した。反
応終了後、フェノール処理を行い、セファデックスG−
50カラムを通してDNA画分を集め、エタノール沈澱
物として15.5μgのDNAを回収した。
(D) Next, 33 mM Tris-acetate, pH 7.9, 10 mM magnesium acetate, 10 mM
DTT, 66 mM potassium acetate, 0.1 mM each dA
TP, dGTP, dTTP (excluding dCTP), 16μ
g of double-stranded cDNA and 22.5 units of T4 DNA
A polymerase (Takara) was mixed and reacted at 37 ° C. for 15 minutes to remove dC-tail attached to the 31 terminal. After the reaction, phenol treatment is applied to Sephadex G-
The DNA fraction was collected through 50 columns and 15.5 μg of DNA was recovered as an ethanol precipitate.

【0055】(ホ)次に50mM酢酸ソーダ(pH4.
5)、0.2M NaCl,1mMZnCl2 および1
5.5μgの二本鎖cDNAを37℃で20分間、予備
インキュベートした後、3単位のヌクレアーゼS1 (三
共製)を加え、さらに37℃,15分間インキュベート
した。反応終了後、フェノール処理を2回行い、セファ
デックスG−50を通して二本鎖cDNA15μgを得
た。
(E) Next, 50 mM sodium acetate (pH 4.
5), 0.2M NaCl, 1mM ZnCl2 and 1M
5.5 μg of double-stranded cDNA was preincubated at 37 ° C. for 20 minutes, 3 units of nuclease S1 (manufactured by Sankyo) was added, and the mixture was further incubated at 37 ° C. for 15 minutes. After completion of the reaction, phenol treatment was performed twice, and 15 μg of double-stranded cDNA was obtained through Sephadex G-50.

【0056】(ヘ)得られた二本鎖cDNA15μgを
蔗糖密度勾配遠心法(50mM Tris−HCl,1
mM EDTA,pH7.5を含む溶液中で蔗糖密度勾
配5−25%,40,000rpm,4℃下で13時
間)により分画し、その1部をアガロースゲル電気泳動
法によるオートラジオグラムにより解析し、二本鎖cD
NAのsizeが600bp以上の画分を集めてエタノ
ール沈澱法で回収した。回収した二本鎖cDNAは約7
μgであった。
(F) 15 μg of the obtained double-stranded cDNA was subjected to sucrose density gradient centrifugation (50 mM Tris-HCl, 1
Fractionation was carried out in a solution containing mM EDTA, pH 7.5 by sucrose density gradient 5-25%, 40,000 rpm, 4 ° C. for 13 hours), and a part thereof was analyzed by autoradiogram by agarose gel electrophoresis. And double-stranded cd
Fractions having an NA size of 600 bp or more were collected and collected by ethanol precipitation. The recovered double-stranded cDNA is about 7
It was μg.

【0057】(ト)0.1Mカコジル酸カリウム(トリ
スBaseでpHを7.2にしたもの)10mM DT
T,2mM CoCl2 ,0.5mM 32P−dGTP
(比活性1×106 cpm/nmole),7μg二本
鎖cDNAおよび50単位のデオキシヌクレオチジルタ
ーミナルトランスフェラーゼ(BRL)を混合し、24
℃,20分間インキュベートした後、フェノール処理を
行い、セファデックスG−50カラムを通してcDNA
画分を集め、エタノール沈澱物として6μgのdG−t
ailed cDNAを得た。このcDNAは約13個
のdGMP残基が3′両末端に付加されていた。
(G) 0.1 M potassium cacodylate (pH 7.2 with Tris Base) 10 mM DT
T, 2mM CoCl2, 0.5mM 32P-dGTP
(Specific activity 1 × 10 6 cpm / nmole), 7 μg double-stranded cDNA and 50 units of deoxynucleotidyl terminal transferase (BRL) were mixed,
After incubation at 20 ° C for 20 minutes, phenol treatment was performed and cDNA was passed through a Sephadex G-50 column.
Fractions were collected and 6 μg dG-t as ethanol precipitate
Ailed cDNA was obtained. This cDNA had about 13 dGMP residues added to both 3 'ends.

【0058】(チ)次にdG−tailed cDNA
6μgを1%アガースゲル電気泳動を行いsize分
画した。すなわち約700bp以上のcDNA画分をD
EAE−セルロースペーパに吸着させて、次いで1.5
M NaClを含む20mMTris−HCl,pH
7.5溶液にて溶出させて回収し、さらにフェノール処
理、クロロホルム処理、エタノール沈澱により回収し、
約1.9μgのdG−tailed cDNAを得た。
(H) Next, dG-tailed cDNA
6 μg was subjected to 1% agarose gel electrophoresis to size fractionate. That is, the cDNA fraction of about 700 bp or more
Adsorbed on EAE-cellulose paper, then 1.5
20 mM Tris-HCl containing M NaCl, pH
It was recovered by eluting with a 7.5 solution and further by phenol treatment, chloroform treatment and ethanol precipitation,
About 1.9 μg of dG-tailed cDNA was obtained.

【0059】(3)一方、図2に示したようにサル細胞
(COS細胞)でのcDNA発現ベクターpDE−2を
構築した。pDE−2はcDNAを両向きのSV40初
期プロモーターにはさみ込むことができ、E.coli
中で複製可能で、またアンピシリン耐性として選択する
ことができる。
(3) On the other hand, as shown in FIG. 2, a cDNA expression vector pDE-2 in monkey cells (COS cells) was constructed. pDE-2 is capable of sandwiching the cDNA into the bidirectional SV40 early promoter; coli
And can be selected as ampicillin resistant.

【0060】このpDE−2をEcoRIで切断し、D
NAポリメラーゼI(クレノウ)で接着末端を充した
後、先程のds−cDNAの3′端の両端にdG ta
ilをつけたのと全く同じようにdC tailを13
個前後付与した。次にこのdC−tailed pDE
−2 100ngとdG−tailedds−cDNA
20ngを50mM Tris−HCl,pH7.
5,0.1M NaCl,1mM EDTAの溶液に混
合し、まず65℃で2分間、ついで45℃で60分間、
37℃で60分間、そして室温で60分間インキュベー
トした。そしてこのアニーリングしたDNAをコンピテ
ントなE.coli MC1061に導入した。次にM
C1061のコンピテント細胞の作り方、導入法を以下
に示す。
This pDE-2 was cut with EcoRI to give D
After filling the cohesive ends with NA polymerase I (Klenow), dGta was added to both ends of the 3 'end of the ds-cDNA.
The dC tail is set to 13 just like attaching il.
Around one piece was given. Next, this dC-tailed pDE
-2 100 ng and dG-tailed ds-cDNA
20 ng of 50 mM Tris-HCl, pH7.
5,0.1 M NaCl, 1 mM EDTA, mixed at 65 ° C. for 2 minutes, then at 45 ° C. for 60 minutes,
Incubated at 37 ° C. for 60 minutes and at room temperature for 60 minutes. Then, the annealed DNA was treated with competent E. coli. coli MC1061. Then M
The method for preparing and introducing the competent cells of C1061 is described below.

【0061】E.coli MC1061を100ml
のΨ培地(2%トリプトン、0.5%酵母エキス、0.
5%MgSO4 ・7H2 O,pH7.6)に接種し、培
養液の吸光度が550nmで0.3〜0.5付近になる
まで37℃で振盪培養した。培養終了後、培養液を5分
間、0℃に保持し、菌体を遠心分離により集め、Tfb
I(30mM酢酸カリウム,100mM RbCl,1
0mM CaCl2 ,50mM MnCl2 ,15%グ
リセリン,pH5.8)の40mlに懸濁し、0℃に5
分間静置した。
E. 100 ml of E. coli MC1061
Medium (2% tryptone, 0.5% yeast extract, 0.1%
5% MgSO 4 .7H 2 O, pH 7.6), and cultured with shaking at 37 ° C. until the absorbance of the culture solution was about 0.3 to 0.5 at 550 nm. After completion of the culture, the culture was maintained at 0 ° C. for 5 minutes, and the cells were collected by centrifugation.
I (30 mM potassium acetate, 100 mM RbCl, 1
Suspended in 40 ml of 0 mM CaCl2, 50 mM MnCl2, 15% glycerin, pH 5.8).
Let stand for minutes.

【0062】再び菌体を遠心分離により集め、TfbII
(10mM MOPS又はPIPES,75mM Ca
Cl2 ,10mM RbCl,10%グリセリン,pH
6.5)の4mlに懸濁し、0℃で15分間静置した。
この懸濁液を分注して−70℃に保存した。
The bacterial cells were collected again by centrifugation, and TfbII
(10 mM MOPS or PIPES, 75 mM Ca
Cl2, 10 mM RbCl, 10% glycerin, pH
The suspension was suspended in 4 ml of 6.5) and allowed to stand at 0 ° C. for 15 minutes.
This suspension was dispensed and stored at -70 ° C.

【0063】次にこのように調製したコンピテント細胞
の100μlを15分間,0℃に保持し、この中に先程
dG−tailed pDE−2ベクターとdC−ta
iled cDNAとをアニールした標品10μl及び
50mM MgCl2 10mM CaCl2 の溶液9
0μlとを混合し、0℃で20分間静置する。ついで3
7℃で60秒間熱処理後、1〜2分間、0℃に保持し、
これにΨ培地7mlを加え、37℃で60分間振盪培養
した。この培養液を25μg/mlのアンピシリンと2
5μg/mlのストレプトマイシンを含むL培地(1%
トリプトン、0.5%酵母エキス、0.5%NaCl)
の寒天プレートに塗抹し、37℃で一晩インキュベート
するとコロニーが出現した。
Next, 100 μl of the competent cells thus prepared was kept at 0 ° C. for 15 minutes, into which the dG-tailed pDE-2 vector and dC-ta
10 μl of a sample annealed with iled cDNA and a solution 9 of 50 mM MgCl 2 and 10 mM CaCl 2
Mix with 0 μl and let stand at 0 ° C. for 20 minutes. Then 3
After heat treatment at 7 ° C for 60 seconds, hold at 0 ° C for 1 to 2 minutes,
To this, 7 ml of Ψ medium was added, and the mixture was cultured at 37 ° C. for 60 minutes with shaking. This culture was mixed with 25 μg / ml of ampicillin and 2
L medium containing 5 μg / ml streptomycin (1%
Tryptone, 0.5% yeast extract, 0.5% NaCl)
When smeared on the agar plate of No. 1 and incubated at 37 ° C. overnight, colonies appeared.

【0064】(4)出現したコロニーを32コずつ19
2グループに分け、25μg/mlのアンピシリンと2
5μg/mlのストレプトマイシンを含むΨ培地100
mlに接種し、37℃で5〜7時間振盪培養した。次に
最終濃度170μg/mlとなるようにクロラムフェニ
コールを含む新たなΨ培地100mlを加え、さらに一
晩振盪培養した。
(4) 19 colonies each of which appeared 32
Divided into two groups, 25 μg / ml ampicillin and 2
Medium 100 containing 5 μg / ml streptomycin
The mixture was inoculated in a volume of 5 ml and cultured with shaking at 37 ° C for 5 to 7 hours. Next, 100 ml of a new Ψ medium containing chloramphenicol was added to a final concentration of 170 μg / ml, followed by shaking culture overnight.

【0065】このようにして増幅されたプラスミドDN
Aを以下のように精製した。培養液を遠心分離により菌
体のみ集め、50mM Tris−HCl,pH7.5
の5mlに懸濁し−80℃に凍結後、融解して次にリゾ
チーム(最終濃度、2mg/ml)を加えて0℃で10
分間静置し、さらにEDTA(最終濃度0.1M)を加
え、0℃で10分間静置する。その後、TritonX
−100(最終濃度0.1%)を加えて0℃で60分間
静置する。ついで30,000rpm,30分間超遠心
分離し、その上清液を等量の水飽和フェノールで処理す
る。その水層をさらに等量のクロロホルムで処理し、そ
の水層を抽出し、これに最終濃度20μg/mlとなる
ようにRNaseを加え、37℃で60分間インキュベ
ートした。
The plasmid DN thus amplified
A was purified as follows. The culture was collected by centrifugation, and only the cells were collected and 50 mM Tris-HCl, pH 7.5.
Suspended in 5 ml of lysozyme, frozen at -80 ° C, thawed, then added lysozyme (final concentration, 2 mg / ml) and added at 0 ° C for 10
Allow to stand for 10 minutes, add EDTA (final concentration 0.1M), and let stand at 0 ° C for 10 minutes. Then, TritonX
Add -100 (final concentration 0.1%) and let stand at 0 ° C for 60 minutes. Then, ultracentrifugation is performed at 30,000 rpm for 30 minutes, and the supernatant is treated with an equal amount of water-saturated phenol. The aqueous layer was further treated with an equal volume of chloroform, the aqueous layer was extracted, RNase was added to this to a final concentration of 20 μg / ml, and the mixture was incubated at 37 ° C. for 60 minutes.

【0066】その後0.2容の5M NaClと1/3
容のポリエチレングリコールを加え、0℃に60分間静
置後、10,000rpm20分間、遠心分離によりD
NA沈澱を回収する。次にこの沈澱を3.8mlの水に
溶解し、4gのCsClを加えて溶解後、10mg/m
lのEtBrの200μlを加えて40,000rp
m、16時間、20℃で超遠心分画を行う。
Then, 0.2 volume of 5M NaCl and 3
Volume of polyethylene glycol was added, and the mixture was allowed to stand at 0 ° C. for 60 minutes and then centrifuged at 10,000 rpm for 20 minutes to give D
Collect the NA precipitate. Next, this precipitate was dissolved in 3.8 ml of water, 4 g of CsCl was added and dissolved, and then 10 mg / m
Add 200 μl of EtBr and add 40,000 rpm
Ultracentrifugal fractionation is performed at 20 ° C. for 16 hours.

【0067】遠心終了後、plasmid DNA画分
を抽出し、水飽和n−ブタノールの1〜2容で4回抽出
操作を行ってEtBrを除く、その後H2 O中で透析を
行ってCsClを除去後、3M酢酸ソーダpH5.6の
1/10容を加えさらに2容の冷エタノールを加えて、
−20℃で一晩静置する。このエタノール沈澱を遠心分
離で集めて80%エタノール−水溶液で洗浄後、よく乾
燥し、この沈澱物を10mM Tris−HCl,pH
7.5の50μlに溶解しサル細胞トランスフェクショ
ンのためのサンプルとする。
After the centrifugation, the plasmid DNA fraction was extracted and extracted with 1 to 2 volumes of water-saturated n-butanol to remove EtBr. After that, dialysis was performed in H 2 O to remove CsCl. 1/10 volume of 3M sodium acetate pH 5.6 was added and 2 volumes of cold ethanol was added,
Let stand overnight at -20 ° C. The ethanol precipitate was collected by centrifugation, washed with an 80% ethanol-water solution, dried well, and the precipitate was washed with 10 mM Tris-HCl, pH
Dissolve in 50 μl of 7.5 to use as a sample for monkey cell transfection.

【0068】実施例2 (1)サルCOS−7細胞へのプラスミドの感染法 COS−7細胞を1×105 コ/mlになる様に10%
牛胎児血清含有DMEMに懸濁し、この8ml分を10
cmシャーレにて5%炭酸ガスインキュベーター内37
℃で一夜培養した。培養上清を除去し、新しい10%牛
胎児血清含有DMEM 5mlを加え、37℃5%炭酸
ガスインキュベーター内で4時間培養した。培養後、上
清を除去し、TBS(25mM Tris−HCl,p
H7.5,130mM NaCl,5mM KCl,
0.6mM Na2 HPO4 )5mlにて1回洗浄し
た。
Example 2 (1) Method of Infecting Monkey COS-7 Cells with Plasmids COS-7 cells were cultivated in 10% to 1 × 10 5 cells / ml.
Suspend in DMEM containing fetal bovine serum, and add 8 ml of this to 10
37% in a 5% carbon dioxide gas incubator in a cm dish
C. overnight. The culture supernatant was removed, 5 ml of fresh DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37 ° C. in a 5% carbon dioxide gas incubator for 4 hours. After the culture, the supernatant was removed, and TBS (25 mM Tris-HCl, p
H7.5, 130 mM NaCl, 5 mM KCl,
Washed once with 5 ml of 0.6 mM Na2 HPO4).

【0069】TBS(+)(TBSに0.7mM Ca
Cl2 ,0.5mM MgCl2 を加えたもの)2.5
ml,プラスミドDNA5μgおよび10mg/ml
DEAE−dextran 128μlを加え、37℃
5%炭酸ガスインキュベーター内で1時間インキュベー
トし、上清を除去後、TBS5mlで洗浄除去し、15
0μMクロロキン含有10%FCS DMEM 5ml
を加えた。37℃5%炭酸ガスインキュベーター内で3
時間インキュベート後上清を除去し、TBS5mlで2
回洗浄した。10%牛胎児血清含有DMEM 8mlを
加え、37℃5%炭酸ガスインキュベーター内で一夜培
養した。上清を除去後同DMEM 8mlを加え、37
℃5%炭酸ガスインキュベーター内で2日間培養した。
そしてこの培養上清を遠沈後その上清をIL−3様活性
測定用サンプルとした。
TBS (+) (0.7 mM Ca in TBS
Cl2, 0.5 mM MgCl2) 2.5
ml, plasmid DNA 5 μg and 10 mg / ml
Add 128 μl of DEAE-dextran, 37 ° C
After incubating for 1 hour in a 5% CO 2 incubator, removing the supernatant, washing and removing with 5 ml of TBS,
10% FCS DMEM containing 0 μM chloroquine 5 ml
Was added. 3 in a 5% CO2 incubator at 37 ℃
After incubation for 1 hour, the supernatant was removed, and 5 ml of TBS was added.
Washed twice. 8 ml of DMEM containing 10% fetal bovine serum was added, and the cells were cultured overnight at 37 ° C. in a 5% carbon dioxide gas incubator. After removing the supernatant, 8 ml of the same DMEM was added, and 37
The cells were cultured in a 5% carbon dioxide gas incubator for 2 days.
The culture supernatant was spun down and the supernatant was used as a sample for measuring IL-3-like activity.

【0070】(2)Assay法とAssay結果 FDC−P細胞の増殖活性の測定は以下の方法に従っ
た。96穴の組織培養プレートの個々の穴に、FDC−
P細胞増殖活性を検定しようとするCOS細胞培養上清
を100μlずつ入れ、RPMI1640プラス10%
FBS培地にて2倍希釈を繰り返す。
(2) Assay method and results of assay The measurement of the proliferation activity of FDC-P cells was carried out according to the following method. In each well of a 96-well tissue culture plate, FDC-
100 μl of COS cell culture supernatant to be assayed for P cell proliferation activity was added, and RPMI1640 plus 10%
Repeat 2-fold dilution in FBS medium.

【0071】次いでIL−3依存性細胞株であるFDC
−P細胞を1×104 個/100μlの細胞密度で各穴
に100μl宛添加する。37℃,5%CO2 下で18
時間培養後に、トリチウムチミジン1μCiを加え6時
間パルスをおこなった後、この分野で良く知られた方法
に従って細胞をグラスファイバー濾紙上に採取し、シン
チレーターを添加後、細胞内に取り込まれたβ−放射線
量を測定した。FDC−P細胞増殖活性の高い検体ほど
細胞内に取り込まれるトリチウム化チミジン量が多いこ
とより、COS細胞培養上清中のFDC−P細胞増殖因
子の産生量を容易に定量することができる。
Next, FDC, which is an IL-3 dependent cell line
-Add 100 μl of P cells to each well at a cell density of 1 × 10 4 cells / 100 μl. 18 at 37 ° C, 5% CO2
After culturing for 1 hour, 1 μCi of tritium thymidine was added and pulsed for 6 hours. Then, cells were collected on a glass fiber filter paper according to a method well known in the art, and scintillator was added, and β-radiation incorporated into the cells The quantity was measured. Since the amount of tritiated thymidine incorporated into cells increases as the amount of FDC-P cell growth activity increases, the amount of FDC-P cell growth factor produced in the COS cell culture supernatant can be easily quantified.

【0072】本方法により前述のプラスミド混合物をC
OS細胞にトランスフェクションして得られた192の
培養上清について活性検定を行ったところ表1に示す結
果が得られ、3−11と番号表示したグループについて
有意の活性の存在が認められた。
According to this method, the above plasmid mixture was
An activity assay was performed on 192 culture supernatants obtained by transfection into OS cells, and the results shown in Table 1 were obtained. The presence of significant activity was confirmed in the groups indicated by 3-11.

【0073】[0073]

【表1】 [Table 1]

【0074】(3)グループ3−11は32クローンの
混合体であるので次は32クローンを別々に培養し、実
施例1の(4)で用いたのと全く同じ方法でプラスミド
を調製し前項の(1)と同じ方法でCOS細胞にトラン
スフェクションしてその培養上清についてFDC−P細
胞増殖活性を測定したところ1つのクローン(15番
目、p4−15と命名)に増殖活性が認められ(図
3)、本クローンがIL−3様活性を示すcDNAを持
つことが同定された。
(3) Group 3-11 is a mixture of 32 clones. Next, 32 clones were separately cultured, and a plasmid was prepared by the same method as that used in (4) of Example 1 to prepare the plasmid described above. When COS cells were transfected by the same method as in (1) above, and the FDC-P cell proliferative activity of the culture supernatant was measured, the proliferative activity was observed in one clone (15th, named p4-15) ( FIG. 3), it was identified that this clone has a cDNA showing IL-3-like activity.

【0075】(4)プラスミドp4−15よりEcoR
IによりcDNAを切り出し、M13を用いるdide
oxy chain termination法とMa
xam−Gilbertの方法を用いてその塩基配列を
決定したところ、本IL−3cDNAはおよそ900b
pの塩基対よりなり、そのオープンリーディングフレー
ムよりおよそ197アミノ酸、あるいは83アミノ酸か
らなる前駆HCGPF蛋白をコードしていることが推定
された。本cDNAの塩基配列(配列表の配列番号9)
と推定アミノ酸配列(配列表の配列番号3及び10)を
示す。
(4) EcoR from plasmid p4-15
CDNA was cut out by I and did using M13
oxy chain termination method and Ma
When its nucleotide sequence was determined using the method of xam-Gilbert, this IL-3 cDNA was found to be approximately 900 bp.
It is estimated that it encodes a precursor HCGPF protein consisting of p base pairs and consisting of about 197 amino acids or 83 amino acids from its open reading frame. Base sequence of this cDNA (SEQ ID NO: 9 in Sequence Listing)
And deduced amino acid sequences (SEQ ID NOS: 3 and 10 in the sequence listing).

【0076】即ち、本cDNAは、909個の塩基より
なり、コードするアミノ酸配列としては、配列表の配列
番号3及び10に示すものが考えられる。
That is, the present cDNA is composed of 909 bases, and the amino acid sequence to be encoded may be any of those shown in SEQ ID NOs: 3 and 10 in the sequence listing.

【0077】実施例3 (1)ヒトHCGPF遺伝子をより効率よく発現させる
ためにcDNAの5′側に含まれるpoly GC t
ailを除いたプラスミドを以下のように構築した(図
4)。実施例1で構築したプラスミドp4−15から制
限酵素EcoRIによりcDNAを切り出し、そのうち
の一部を制限酵素BglIで切断した。このようにして
得られた396塩基対のBglI−BglI断片をT4
ポリメラーゼを用いて両端を平滑末端にした後、Hin
dIII リンカーとモル比で1:1になる様混合し、T4
DNAリガーゼを用いて結合させた。結合した断片を回
収後制限酵素HindIII およびSphIで切断し、H
indIII −SphI断片を得た。
Example 3 (1) In order to express the human HCGPF gene more efficiently, polyGC t contained on the 5 'side of cDNA was used.
The plasmid excluding ail was constructed as follows (FIG. 4). CDNA was excised from the plasmid p4-15 constructed in Example 1 with the restriction enzyme EcoRI, and a part thereof was cut with the restriction enzyme BglI. The 396 base pair BglI-BglI fragment thus obtained was designated as T4.
After blunting both ends with polymerase, Hin
Mix with dIII linker at a molar ratio of 1: 1 and mix with T4
Ligation was performed using DNA ligase. After the bound fragment was recovered, it was digested with restriction enzymes HindIII and SphI,
An indIII-SphI fragment was obtained.

【0078】一方のこりのcDNAをSphIで切断し
SphI−EcoRI断片を得た。更に、プラスミドp
SP62−PL(NEN)を制限酵素HindIII およ
びEcoRIで切断してSP6プロモーターを含むDN
A断片を得た。
One of the cDNAs was digested with SphI to obtain a SphI-EcoRI fragment. Furthermore, the plasmid p
SP62-PL (NEN) is cut with restriction enzymes HindIII and EcoRI to obtain a DN containing SP6 promoter.
A fragment was obtained.

【0079】以上の様にして得られた3つの断片をモル
比で1:1:1になる様混合しT4DNAリガーゼを用
いて結合させた。このようにして得られた組み換えDN
Aをエシエリヒア・コリHB101株へ導入し、アンピ
シリン抵抗性を有する株を選択した。分離した株よりプ
ラスミドを調製し、制限酵素による切断試験および結合
部位付近の塩基配列の決定を行なう事によりpSP6−
4−15を保持する菌を選定した。
The three fragments obtained as described above were mixed at a molar ratio of 1: 1: 1 and ligated using T4 DNA ligase. The recombinant DN thus obtained
A was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected. A plasmid was prepared from the isolated strain, and a cleavage test with a restriction enzyme and determination of the nucleotide sequence near the binding site were performed to obtain pSP6-
Bacteria retaining 4-15 were selected.

【0080】次にこの菌より得たプラスミドを制限酵素
HindIII およびEcoRIで切断しcDNAインサ
ートを回収した。このcDNAをT4ポリメラーゼを用
いて両端を平滑末端にした後、BamHIリンカーとモ
ル比で1:1となる様混合し、T4DNAリガーゼを用
いて結合させた。結合した断片を、制限酵素BamHI
で開裂したpKCR(Glutzman,Y.Cell
23,175−182(1981))と混合しT4リガ
ーゼを用いて結合させた。
Next, the plasmid obtained from this bacterium was digested with the restriction enzymes HindIII and EcoRI to recover the cDNA insert. This cDNA was blunt-ended at both ends with T4 polymerase, then mixed with a BamHI linker at a molar ratio of 1: 1 and ligated with T4 DNA ligase. The ligated fragment was digested with the restriction enzyme BamHI.
PKCR cleaved at (Glutzman, Y. Cell
23 , 175-182 (1981)) and ligated with T4 ligase.

【0081】このようにして得られた組み換えDNAを
エシエリヒア・コリHB101株へ導入しアンピシリン
抵抗性を有する株を選択した。分離した株からプラスミ
ドを調製し、制限酵素切断試験を行なう事によってベク
ター上およびcDNA上の制限酵素切断部位がEcoR
I−BamHI−SphI−BglI−BamHIの順
に並ぶ様な形でcDNAが挿入されているプラスミドp
KCR−4−15を保持する菌を選定した(pKCR−
4−15/HB101)。本pKCR−4−15/HB
101を常法に従って培養し、実施例1の第(4)項の
方法に従ってプラスミドpKCR−4−15を得た。
The recombinant DNA thus obtained was introduced into the Escherichia coli HB101 strain to select a strain having ampicillin resistance. A plasmid was prepared from the isolated strain and subjected to a restriction enzyme cleavage test to confirm that the restriction sites on the vector and cDNA were EcoR.
Plasmid p into which cDNA has been inserted in the form of I-BamHI-SphI-BglI-BamHI
Bacteria retaining KCR-4-15 were selected (pKCR-
4-15 / HB101). This pKCR-4-15 / HB
101 was cultured in a conventional manner to obtain a plasmid pKCR-4-15 according to the method described in Example 1, section (4).

【0082】実施例4 (1)ヒトHCGPF遺伝子を原核生物で発現させるた
めに使用したベクターDNAを以下のように構築した
(図5)。まず図6に示すDNA配列を持つDNA断片
(a)〜(l)をそれぞれ固相リン酸トリエステル法で
合成した。(a)および(g)以外はT4ポリヌクレオ
チドキナーゼとATPを用いて5′末端をリン酸化して
おいた。
Example 4 (1) The vector DNA used for expressing the human HCGPF gene in prokaryotes was constructed as follows (FIG. 5). First, each of the DNA fragments (a) to (l) having the DNA sequence shown in FIG. 6 was synthesized by the solid phase phosphate triester method. Except for (a) and (g), the 5'end was phosphorylated using T4 polynucleotide kinase and ATP.

【0083】次に(a)〜(l)を混合し、アニール
後、T4DNAリガーゼを用いて二本鎖合成DNA
(A)を形成させた。一方、pT9−11(特開昭61
−88882)を制限酵素HpaIおよびXbaIで切
断しアガロースゲル電気泳動により大きなDNA断片を
分離した。次に得られたpT9−11断片と合成DNA
(A)を混合し、T4DNAリガーゼを使って結合させ
た。得られた組み換えDNAを、エシエリヒア・コリH
B101株へ導入し、アンピシリン抵抗性を有する株を
選択した。分離した株から、プラスミドDNAを得て制
限酵素による切断試験および塩基配列の決定を行うこと
により、pT13S(Nco)を保持する菌を選択し
た。
Next, (a) to (l) were mixed, annealed, and then double-stranded synthetic DNA was prepared using T4 DNA ligase.
(A) was formed. On the other hand, pT9-11 (Japanese Unexamined Patent Publication No.
-88882) was cut with restriction enzymes HpaI and XbaI, and a large DNA fragment was separated by agarose gel electrophoresis. Next, the obtained pT9-11 fragment and the synthetic DNA
(A) was mixed and ligated using T4 DNA ligase. The obtained recombinant DNA was used for Escherichia coli H
The strain was introduced into the B101 strain and a strain having ampicillin resistance was selected. From the isolated strain, a plasmid DNA was obtained, a digestion test with a restriction enzyme and a nucleotide sequence were determined to select a bacterium having pT13S (Nco).

【0084】(2)プラスミドpT13S(Nco)お
よびp4−15を用いN末端をThr19としたHCGP
Fを発現する組み換えDNAを以下の様に構築した(図
7)。
(2) HCGP using plasmids pT13S (Nco) and p4-15 and N-terminal at Thr19
Recombinant DNA expressing F was constructed as follows (FIG. 7).

【0085】i)プラスミドpT13S(Nco)を制
限酵素ClaIおよびPvuIIで切断し、アガロースゲ
ル電気泳動により大きなDNA断片を単離精製した。
I) The plasmid pT13S (Nco) was digested with restriction enzymes ClaI and PvuII, and a large DNA fragment was isolated and purified by agarose gel electrophoresis.

【0086】他方、プラスミドp4−15を制限酵素E
coRIで切断し、アガロースゲル電気泳動によりHC
GPFcDNAインサートを回収した。そして該Eco
RIHCGPFcDNAインサートを制限酵素BalI
およびHgiAIで完全切断し、アガロースゲル電気泳
動により大きなDNA断片を回収した。次にトリプトフ
ァンプロモーター/オペレーター(trpP/O)を含
むpT13S(Nco)断片;HCGPFcDNAを含
むHgiAI−BalI断片および合成DNA(I)
〔配列表の配列番号17と18〕を混合し、T4DNA
リガーゼを使って結合させた。
On the other hand, plasmid p4-15 was replaced with restriction enzyme E
Cleavage with coRI and agarose gel electrophoresis
The GPF cDNA insert was recovered. And the Eco
Replace RIHCGPF cDNA insert with restriction enzyme BalI
And complete digestion with HgiAI, and a large DNA fragment was recovered by agarose gel electrophoresis. Then, a pT13S (Nco) fragment containing a tryptophan promoter / operator (trpP / O); a HgiAI-BalI fragment containing HCGPF cDNA and a synthetic DNA (I).
[SEQ ID NOS: 17 and 18 in the sequence listing] were mixed, and
Ligation was performed using ligase.

【0087】得られた組み換えDNAをエシエリヒア・
コリHB101株へ導入し、アンピシリン抵抗性を有す
る株を選択した。分離した株からプラスミドを得て制限
酵素による切断試験および結合部位付近の塩基配列の決
定を行なうことにより、pTHCGPF−19を保持す
る菌を選定した(pTHCGPF−19/HB101,
FERM BP−1246)。
The obtained recombinant DNA was used for E. coli
The strain was introduced into E. coli HB101 strain and a strain having ampicillin resistance was selected. By obtaining a plasmid from the isolated strain and performing a cleavage test with a restriction enzyme and determining the nucleotide sequence near the binding site, a bacterium holding pTHCGPF-19 was selected (pTHCGPF-19 / HB101,
FERM BP-1246).

【0088】ii)pTHCGPF−19/HB101を
25μg/mlストレプトマイシンおよび25μg/m
lアンピシリンを含むLG培地(1%バクトトリプト
ン,0.5%酵母エキス0.5%NaCl,0.1%グ
ルコース,pH7.5)10ml中で37℃一晩生育さ
せた。ついで培養懸濁液5mlをM9−カザミノ酸培地
(0.6%Na2 HPO4 ・12H2 O,0.3%KH
2 PO4 ,0.05%NaCl,0.1%NH4 Cl,
0.05%MgSO4 ・7H2 O,0.00147%C
aCl2 ,0.2%グルコース,0.2%カザミノ酸、
0.02%L−ロイシン,0.02%L−プロリン,
0.0002%チアミン塩酸塩,pH7.4)へ移植
し、28℃にて3時間培養した。
Ii) pTHCGPF-19 / HB101 was converted to 25 μg / ml streptomycin and 25 μg / m
The cells were grown overnight at 37 ° C. in 10 ml of an LG medium (1% bactotryptone, 0.5% yeast extract 0.5% NaCl, 0.1% glucose, pH 7.5) containing 1 ampicillin. Then, 5 ml of the culture suspension was added to an M9-casamino acid medium (0.6% Na2 HPO4.12H2 O, 0.3% KH
2 PO4, 0.05% NaCl, 0.1% NH4 Cl,
0.05% MgSO4.7H2O, 0.00147% C
aCl2, 0.2% glucose, 0.2% casamino acid,
0.02% L-leucine, 0.02% L-proline,
0.0002% thiamine hydrochloride, pH 7.4) and cultured at 28 ° C. for 3 hours.

【0089】その後、25μg/mlになる様に3−ト
ンドールアクリル酸(IAA)を添加し23℃にて21
時間誘導培養した。培養菌体を遠心分離し、20mMト
リス−塩酸(pH7.5,30mM NaClを含む)
で洗浄し、同じ緩衝液8mlに懸濁した。かくして菌体
内に産生される蛋白を50mM EDTA存在下1%ド
デシル硫酸ナトリウム(SDS)または1mg/mlリ
ゾチーム消化に引き続きソニック処理(50W,30秒
間)することにより抽出した。図8に示す如く、該培養
抽出液はHCGPF活性を示した。
Thereafter, 3-tondoleacrylic acid (IAA) was added to a concentration of 25 μg / ml.
Induction culture was performed for hours. The cultured cells are centrifuged, and 20 mM Tris-hydrochloric acid (containing pH 7.5 and 30 mM NaCl)
, And suspended in 8 ml of the same buffer. The protein thus produced in the cells was extracted by digestion with 1% sodium dodecyl sulfate (SDS) or 1 mg / ml lysozyme in the presence of 50 mM EDTA, followed by sonication (50 W, 30 seconds). As shown in FIG. 8, the culture extract showed HCGPF activity.

【0090】実施例5 (1)実施例4にて構築したプラスミドpT13S(N
co)およびp4−15を用いN末端をIle31とした
HCGPFを発現する組み換えDNAを以下の様に構築
した(図9)。
Example 5 (1) Plasmid pT13S (N
co) and p4-15, a recombinant DNA expressing HCGPF with the N-terminus at Ile31 was constructed as follows (FIG. 9).

【0091】i)プラスミドpT13S(Nco)を成
分酵素NcoIおよびBamHIで切断後、DNAポリ
メラーゼI(Klenow)で処理し、アガロースゲル
電気泳動により大きいDNA断片を回収した。他方、プ
ラスミドp4−15を制限酵素ApaIで切断後、T4
DNAポリメラーゼで処理し、アガロースゲル電気泳動
により小さなDNA断片を回収した。これら両断片をT
4DNAリガーゼを使って結合させた。得られた組み換
えDNAをエシエリヒア・コリHB101株へ導入し、
アンピシリン抵抗性を有する株を選択した。分離した株
からプラスミドを得て制限酵素による切断試験を行なう
ことにより、pTHCGPF−01を保持する菌を選定
した(pTHCGPF−01/HB101)。
I) The plasmid pT13S (Nco) was cleaved with the component enzymes NcoI and BamHI, treated with DNA polymerase I (Klenow), and a larger DNA fragment was recovered by agarose gel electrophoresis. On the other hand, after cutting plasmid p4-15 with restriction enzyme ApaI, T4
After treatment with DNA polymerase, small DNA fragments were recovered by agarose gel electrophoresis. Both of these fragments
Ligation was performed using 4 DNA ligase. The obtained recombinant DNA was introduced into Escherichia coli HB101 strain,
A strain having ampicillin resistance was selected. By obtaining a plasmid from the isolated strain and performing a cleavage test with a restriction enzyme, a bacterium carrying pTHCGPF-01 was selected (pTHCGPF-01 / HB101).

【0092】ii)i)で得たプラスミドpTHCGPF
−01を制限酵素ClaIで完全切断後、AvaIで部
分切断し、アルカリ性フォスファターゼ処理を行なっ
た。この様にして調製したDNA断片と合成DNA(I
I)〔配列表の配列番号11,12〕を混合し、T4D
NAリガーゼを使って結合させた。得られた組み換えD
NAをエシエリヒア・コリHB101株へ導入し、アン
ピシリン抵抗性を有する株を選択した。分離した株から
プラスミドを得て制限酵素による切断試験および結合部
位付近の塩基配列の決定を行なうことにより、pTHC
GPF−31を保持する菌を選択した(pTHCGPF
−31/HB101,FERM BP−1247)。
Ii) The plasmid pTHCGPF obtained in i)
After completely digesting -01 with the restriction enzyme ClaI, it was partially digested with AvaI and treated with alkaline phosphatase. Thus prepared DNA fragment and synthetic DNA (I
I) [Sequence ID Nos. 11 and 12 in the Sequence Listing] are mixed, and T4D
It was ligated using NA ligase. Obtained recombinant D
NA was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected. By obtaining a plasmid from the isolated strain and carrying out a restriction enzyme digestion test and determination of the nucleotide sequence near the binding site, pTHC
Bacteria carrying GPF-31 were selected (pTHCGPF
-31 / HB101, FERM BP-1247).

【0093】iii)pTHCGPF−31/HB101を
実施例4ii)に従い培養菌体抽出液を得た。図8に示す
如く、該培養抽出液はHCGPF活性を示した。
Iii) A cultured cell extract was obtained from pTHGPPF-31 / HB101 according to Example 4ii). As shown in FIG. 8, the culture extract showed HCGPF activity.

【0094】実施例6 (1)実施例4にて構築したプラスミドpT13S(N
co)および実施例5にて構築したpTHCGPF−0
1を用いHIL−2蛋白融合N末端をThr19としたH
CGPFを発現する組み換えDNAを以下の様に構築し
た(図10)。
Example 6 (1) Plasmid pT13S (N
co) and pTHCGPF-0 constructed in Example 5
HIL-2 protein fusion N-terminal was used as Thr19
Recombinant DNA expressing CGPF was constructed as follows (FIG. 10).

【0095】i)プラスミドpT13S(Nco)を制
限酵素SacIおよびBamHIで切断後アガロースゲ
ル電気泳動により大きいDNA断片を回収した。他方プ
ラスミドpTHCGPF−01を制限酵素EcoRIお
よびBamHIで切断しアガロースゲル電気泳動により
小さいDNA断片を回収した。該DNA断片をHgiA
Iで完全切断し、アガロースゲル電気泳動にて大きいD
NA断片を回収した。
I) The plasmid pT13S (Nco) was digested with restriction enzymes SacI and BamHI, and then a larger DNA fragment was recovered by agarose gel electrophoresis. On the other hand, the plasmid pTHCGPF-01 was digested with restriction enzymes EcoRI and BamHI, and a smaller DNA fragment was recovered by agarose gel electrophoresis. The DNA fragment was converted into HgiA
After complete digestion with I, a large D
The NA fragment was recovered.

【0096】この様にして調製したDNA断片と合成D
NA(III)〔配列表の配列番号13と配列番号14〕を
混合し、T4DNAリガーゼを使って結合させた。得ら
れた組み換えDNAをエシエリヒア・コリHB101株
へ導入し、アンピシリン抵抗性を有する株を選択した。
分離した株からプラスミドDNAを得て制限酵素による
切断試験および塩基配列の決定を行うことにより、pT
13SΔHIL2(53)−HCGPF−19(pT1
3SΔHIL2(53)−HCGPF−19/HB10
1,FERM BP−1248)を保持する菌を選択し
た。
The DNA fragment thus prepared and synthetic D
NA (III) [SEQ ID NO: 13 and SEQ ID NO: 14 in the sequence listing] were mixed and ligated using T4 DNA ligase. The obtained recombinant DNA was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected.
By obtaining plasmid DNA from the isolated strain and performing a cleavage test with a restriction enzyme and determining the nucleotide sequence, pT
13SΔHIL2 (53) -HCGPF-19 (pT1
3SΔHIL2 (53) -HCGPF-19 / HB10
1, FERM BP-1248) was selected.

【0097】(2)生産物の取得 pT13SΔHIL2(53)−HCGPF−19/H
B101を実施例4に従い培養し、以下の手順で、菌体
内に生成した顆粒を抽出した。遠心分離により菌体を集
め、10倍濃縮になるように30mM NaClを含む
20mM Tris−HCl緩衝液(pH7.5)を添
加し懸濁後そこにリゾチーム1mg/ml,EDTA
0.05Mを添加し攪拌した後、氷中にて、1時間放置
した。次いで、超音波破砕で菌体を破壊し、10,00
0rpm,5分間の遠心分離で、顆粒を回収した。
(2) Obtaining the product pT13SΔHIL2 (53) -HCGPF-19 / H
B101 was cultured according to Example 4, and granules generated in the cells were extracted by the following procedure. The bacterial cells were collected by centrifugation, and 20 mM Tris-HCl buffer solution (pH 7.5) containing 30 mM NaCl was added so as to be 10-fold concentrated. After suspension, 1 mg / ml of lysozyme and EDTA were added thereto.
After adding 0.05 M and stirring, the mixture was left in ice for 1 hour. Next, the cells were disrupted by sonication, and
The granules were collected by centrifugation at 0 rpm for 5 minutes.

【0098】そして、この顆粒を6M塩酸グアニジンで
可溶化した。該可溶化物は図11に示す如く、HCGP
F活性を示した。また該可溶化物の逆相HPLC(AP
−312、山村化学)分画物も同様HCGPF活性を示
した(図12)。さらに該6M塩酸グアニジン可溶化物
をΔHIL2(53)−HCGPF−19蛋白濃度が1
00mg/ml、及び2M塩酸グアニジン溶液となるよ
うに濃度調整を行ない、これに、酸化型グルタチオン1
mMと還元型グルタチオン10mMを添加し、pH8.
0、室温で10〜16時間放置した。
The granules were solubilized with 6M guanidine hydrochloride. The solubilized material was HCGP as shown in FIG.
It showed F activity. In addition, reverse phase HPLC (AP
(312, Yamamura Kagaku) fraction also showed HCGPF activity (FIG. 12). Further, the 6 M guanidine hydrochloride solubilized product was used when the ΔHIL2 (53) -HCGPF-19 protein concentration was 1%.
The concentration was adjusted to be 00 mg / ml and a 2M guanidine hydrochloride solution, and oxidized glutathione 1
mM and reduced glutathione 10 mM, pH8.
0 and left at room temperature for 10-16 hours.

【0099】次に、SephadexG−25によるゲ
ル濾過で塩酸グアニジンを除去すると同時に、カリクレ
イン反応用緩衝液溶液となったΔHIL2(53)−H
CGPF−19蛋白相当画分を得た。本物質はSDSポ
リアクリルアミドゲル電気泳動により、分子量がアミノ
酸組成から計算した値とほぼ一致し、又、プロテインシ
ークエンサーにてN末端側のアミノ酸配列を検定した結
果、HIL−2の配列であることが確認された。
Next, guanidine hydrochloride was removed by gel filtration using Sephadex G-25, and at the same time, ΔHIL2 (53) -H, which became a kallikrein reaction buffer solution, was obtained.
A fraction corresponding to the CGPF-19 protein was obtained. The substance has a molecular weight almost identical to the value calculated from the amino acid composition by SDS polyacrylamide gel electrophoresis, and the amino acid sequence on the N-terminal side was assayed by a protein sequencer. confirmed.

【0100】(3)カリクレインによる切断 113mM NaClを含む、50mM Tris−H
Cl緩衝液、pH7.8中で、得られたΔHIL2(5
3)−HCGPF−19蛋白80μgとヒトプラズマカ
リクレインを37℃、15時間反応後、逆相HPLCで
HCGPF−19蛋白相当画分を分取した。これを、プ
ロテインシークエンサーにてN末端付近のアミノ酸配列
を分析した結果ΔHIL2(53)−HCGPF−19
蛋白が、定量的にHCGPF−19蛋白に変換されたこ
とが確認された。該HCGPF−19蛋白はHCGPF
活性を示した(図13)。
(3) Cleavage with Kallikrein 50 mM Tris-H containing 113 mM NaCl
The resulting ΔHIL2 (5 in Cl buffer, pH 7.8)
3) After reacting 80 µg of -HCGPF-19 protein with human plasma kallikrein at 37 ° C for 15 hours, a fraction corresponding to HCGPF-19 protein was collected by reverse phase HPLC. This was analyzed using a protein sequencer to analyze the amino acid sequence near the N-terminus. As a result, ΔHIL2 (53) -HCGPF-19
It was confirmed that the protein was quantitatively converted to HCGPF-19 protein. The HCGPF-19 protein is HCGPF
It showed activity (FIG. 13).

【0101】実施例7 (1)実施例4および5にてそれぞれ構築したプラスミ
ドpT13S(Nco)およびpTHCGPF−01を
用いHIL−2蛋白融合N末端をIle31としたHCG
PFを発現する組み換えDNAを以下の様に構築した
(図14)。
Example 7 (1) HCG using the plasmids pT13S (Nco) and pTHCGPF-01 constructed in Examples 4 and 5, respectively, with the N-terminal of the HIL-2 protein fused to Ile31
Recombinant DNA expressing PF was constructed as follows (FIG. 14).

【0102】i)プラスミドpT13S(Nco)を制
限酵素SacIおよびBamHIで切断後アガロースゲ
ル電気泳動により大きいDNA断片を回収した。他方プ
ラスミドpTHCGPF−01を制限酵素BamHIで
完全切断後、AvaIで部分切断し、HCGPFcDN
Aインサートを含むDNA断片をアガロースゲル電気泳
動により回収した。
I) Plasmid pT13S (Nco) was cleaved with restriction enzymes SacI and BamHI, and then a larger DNA fragment was recovered by agarose gel electrophoresis. On the other hand, the plasmid pTHCGPF-01 was completely digested with the restriction enzyme BamHI, then partially digested with AvaI, and HCGPFcDN.
The DNA fragment containing the A insert was recovered by agarose gel electrophoresis.

【0103】この様に調製したDNA断片と合成DNA
(IV)〔配列表の配列番号15と16〕を混合し、T4
DNAリガーゼを使って結合させた。得られた組み換え
DNAをエシエリヒア・コリHB101株へ導入し、ア
ンピシリン抵抗性を有する株を選択した。分離した株か
らプラスミドDNAを得て、制限酵素による切断試験お
よび塩基配列の決定を行うことにより、pT13SΔH
IL2(53)−HCGPF−31を保持する菌を選択
した(pT13SΔHIL2(53)−HCGPF−3
1/HB101,FERM BP−1251)。
DNA fragment and synthetic DNA thus prepared
(IV) [SEQ ID NOS: 15 and 16 in the sequence listing] were mixed, and T4
Ligation was performed using DNA ligase. The obtained recombinant DNA was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected. By obtaining a plasmid DNA from the isolated strain and carrying out a cleavage test with a restriction enzyme and determination of the nucleotide sequence, pT13SΔH
A bacterium carrying IL2 (53) -HCGPF-31 was selected (pT13SΔHIL2 (53) -HCGPF-3.
1 / HB101, FERM BP-1251).

【0104】(2)生産物の取得 pT13SΔHIL2(53)−HCGPF−31/H
B101を実施例4に従い培養し、実施例6に従い菌体
内に生成した顆粒を抽出し、この顆粒を6M塩酸グアニ
ジンで可溶化した。図15に示す如く、該可溶化物はH
CGPF活性を示した。さらに、ΔHIL2(53)−
HCGPF−31蛋白濃度が100μg/ml、及び2
M塩酸グアニジン溶液となるように、濃度調整を行ない
これに、酸化型グルタチオン1mMと還元型グルタチオ
ン10mMを添加し、pH8.0、室温で10〜16時
間放置した。
(2) Obtaining the product pT13SΔHIL2 (53) -HCGPF-31 / H
B101 was cultured according to Example 4, and the granules formed in the cells were extracted according to Example 6, and the granules were solubilized with 6M guanidine hydrochloride. As shown in FIG. 15, the solubilized product is H
It showed CGPF activity. Furthermore, ΔHIL2 (53)-
HCGPF-31 protein concentration of 100 μg / ml, and 2
The concentration was adjusted so as to obtain a M guanidine hydrochloride solution, to which 1 mM of oxidized glutathione and 10 mM of reduced glutathione were added, and the mixture was allowed to stand at pH 8.0 at room temperature for 10 to 16 hours.

【0105】次に、SephadexG−25によるゲ
ル濾過で塩酸グアニジンを除去すると同時にカリクレイ
ン反応用緩衝液溶液となったΔHIL2(53)−HC
GPF−31蛋白相当画分を得た。本物質はSDSポリ
アクリルアミドゲル電気泳動により、分子量が、アミノ
酸組成から計算した値とほぼ一致し、又、プロテインシ
ークエンサーにてN末端側のアミノ酸配列を検定した結
果、HIL−2の配列であることが確認された。
Next, guanidine hydrochloride was removed by gel filtration using Sephadex G-25, and at the same time, ΔHIL2 (53) -HC which became a buffer solution for kallikrein reaction was obtained.
A fraction corresponding to the GPF-31 protein was obtained. The molecular weight of this substance was almost the same as the value calculated from the amino acid composition by SDS polyacrylamide gel electrophoresis, and the N-terminal side amino acid sequence was assayed by a protein sequencer. Was confirmed.

【0106】(3)カリクレインによる切断 113mM NaClを含む、50mM Tris−H
Cl緩衝液、pH7.8中で得られたΔHIL2(5
3)−HCGPF−31蛋白80μgとヒトプラズマカ
リクレインを37℃、15時間反応後、逆相HPLCで
HCGPF−31蛋白相当画分を分取した。これを、プ
ロテインシークエンサーにてN末端付近のアミノ酸配列
を分析した結果ΔHIL2(53)−HCGPF−31
蛋白が定量的に、HCGPF−31蛋白に変換されたこ
とが確認された。該HCGPF−31蛋白は、HCGP
F活性を示した(図13)。
(3) Cleavage by Kallikrein 50 mM Tris-H containing 113 mM NaCl
ΔHIL2 (5) obtained in Cl buffer, pH 7.8
3) 80 µg of -HCGPF-31 protein and human plasma kallikrein were reacted at 37 ° C for 15 hours, and then a fraction corresponding to HCGPF-31 protein was collected by reverse phase HPLC. As a result of analyzing the amino acid sequence near the N-terminus with a protein sequencer, ΔHIL2 (53) -HCGPF-31
It was confirmed that the protein was quantitatively converted to HCGPF-31 protein. The HCGPF-31 protein is HCGP
F activity was shown (FIG. 13).

【0107】実施例8 (1)i)実施例6にて構築したプラスミドpT13S
ΔHIL2(53)−HCGPF−19を制限酵素Bg
lIIおよびXbaIで切断し、DNAポリメラーゼI
(Klenow)処理後、T4DNAリガーゼにより結
合させた(図16)。得られた組み換えDNAをエシエ
リヒア・コリHB101株へ導入し、アンピシリン抵抗
性を有する株を選択した。分離した株からプラスミドD
NAを得て制限酵素による切断試験および結合部位付近
の塩基配列の決定を行うことにより、pT13SΔHI
L2(20)−HCGPF−19を保持する菌を選択し
た(pT13SΔHIL2(20)−HCGPF−19
/HB101,FERM BP−1249)。
Example 8 (1) i) Plasmid pT13S Constructed in Example 6
ΔHIL2 (53) -HCGPPF-19 is a restriction enzyme Bg
cut with lII and XbaI to give DNA polymerase I
After treatment with (Klenow), they were ligated with T4 DNA ligase (FIG. 16). The obtained recombinant DNA was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected. Plasmid D from the isolated strain
By obtaining NA and performing a cleavage test with a restriction enzyme and determining a base sequence near the binding site, pT13SΔHI
A bacterium carrying L2 (20) -HCGPF-19 was selected (pT13SΔHIL2 (20) -HCGPF-19.
/ HB101, FERM BP-1249).

【0108】(2)生産物の取得 pT13SΔHIL2(20)−HCGPF−19/H
B101を実施例4に従い培養し、実施例6に従い菌体
内に生成した顆粒を抽出し、この顆粒を6M塩酸グアニ
ジンで可溶化した。図11に示す如く、該可溶化物はH
CGPF活性を示した。さらに、ΔHIL2(20)−
HCGPF−19蛋白濃度が100μg/ml、及び2
M塩酸グアニジン溶液となるように、濃度調整を行な
い、これに、酸化型グルタチオン1mMと還元型グルタ
チオン10mMを添加し、pH8.0、室温で10〜1
6時間放置した。
(2) Obtaining the product pT13SΔHIL2 (20) -HCGPF-19 / H
B101 was cultured according to Example 4, and the granules formed in the cells were extracted according to Example 6, and the granules were solubilized with 6M guanidine hydrochloride. As shown in FIG. 11, the solubilized material is H
It showed CGPF activity. Further, ΔHIL2 (20) −
HCGPF-19 protein concentration of 100 μg / ml, and 2
The concentration was adjusted so as to obtain a M guanidine hydrochloride solution, to which 1 mM of oxidized glutathione and 10 mM of reduced glutathione were added, and pH was adjusted to 10 to 1 at room temperature.
It was left for 6 hours.

【0109】次に、SephadexG−25によるゲ
ル濾過で塩酸グアニジンを除去すると同時に、カリクレ
イン反応用緩衝液溶液となったΔHIL2(20)−H
CGPF−19蛋白相当画分を得た。本物質はSDSポ
リアクリルアミドゲル電気泳動により分子量が、アミノ
酸組成から計算した値とほぼ一致し、又、プロテインシ
ークエンサーにてN末端側のアミノ酸配列を検定した結
果、HIL−2の配列であることが確認された。
Next, guanidine hydrochloride was removed by gel filtration using Sephadex G-25, and at the same time, ΔHIL2 (20) -H, which became a buffer solution for kallikrein reaction, was obtained.
A fraction corresponding to the CGPF-19 protein was obtained. The substance has a molecular weight almost identical to the value calculated from the amino acid composition by SDS polyacrylamide gel electrophoresis, and the N-terminal side amino acid sequence was assayed by a protein sequencer. confirmed.

【0110】(3)カリクレインによる切断 113mM NaClを含む、50mM Tris−H
Cl緩衝液、pH7.8中で、得られたHCGPF−1
9蛋白80μgとヒトプラズマカリクレインを37℃1
5時間反応後、逆相HPLCでHCGPF−19蛋白相
当画分を分取した。これを、プロテインシークエンサー
にてN末端付近のアミノ酸配列を分析した結果ΔHIL
2(20)−HCGPF−19蛋白が定量的にHCGP
F−19蛋白に変換されたことが確認された。該HCG
PF−19蛋白はHCGPF活性を示した。
(3) Cleavage with kallikrein 50 mM Tris-H containing 113 mM NaCl
HCGPF-1 obtained in Cl buffer, pH 7.8
9 protein and human plasma kallikrein at 37 ° C
After the reaction for 5 hours, a fraction corresponding to the HCGPF-19 protein was collected by reverse phase HPLC. This was analyzed by using a protein sequencer to analyze the amino acid sequence near the N-terminus.
2 (20) -HCGPF-19 protein is quantitatively HCGP
It was confirmed that the protein was converted to F-19 protein. The HCG
The PF-19 protein showed HCGPF activity.

【0111】実施例9 (1)i)実施例7にて構築したプラスミドpT13S
ΔHIL2(53)−HCGPF−31を制限酵素Bg
lIIおよびXbaIで切断し、DNAポリメラーゼI
(Klenow)処理後、T4DNAリガーゼを使って
結合させた(図17)。得られた組み換えDNAをエシ
エリヒア・コリHB101株へ導入し、アンピシリン抵
抗性を有する株を選択した。分離した株からプラスミド
DNAを得て制限酵素による切断試験および結合部位付
近の塩基配列の決定を行うことにより、pT13SΔH
IL2(20)−HCGPF−31を保持する菌を選択
した(pT13SΔHIL2(20)−HCGPF−3
1/HB101,FERMBP−1252)。
Example 9 (1) i) Plasmid pT13S constructed in Example 7
ΔHIL2 (53) -HCGPF-31 is replaced with restriction enzyme Bg
cut with lII and XbaI to give DNA polymerase I
After the (Klenow) treatment, binding was performed using T4 DNA ligase (FIG. 17). The obtained recombinant DNA was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected. PT13SΔH was obtained by obtaining plasmid DNA from the isolated strain and carrying out a cleavage test with a restriction enzyme and determination of the nucleotide sequence near the binding site.
A bacterium retaining IL2 (20) -HCGPF-31 was selected (pT13SΔHIL2 (20) -HCGPF-3).
1 / HB101, FERMBP-1252).

【0112】(2)生産物の取得 pT13SΔHIL2(20)−HCGPF−31/H
B101を実施例4に従い培養し、実施例6に従い菌体
内に生成した顆粒を抽出し、この顆粒を6M塩酸グアニ
ジンで可溶化した。図15に示す如く、該可溶化物はH
CGPF活性を示した。さらに、ΔHIL2(20)−
HCGPF−31蛋白濃度が100μg/ml、及び2
M塩酸グアニジン溶液となるように濃度調整を行ない、
これに、酸化型グルタチオン1mMと還元型グルタチオ
ン10mMを添加し、pH8.0、室温で10〜16時
間放置した。
(2) Obtaining the product pT13SΔHIL2 (20) -HCGPF-31 / H
B101 was cultured according to Example 4, and the granules formed in the cells were extracted according to Example 6, and the granules were solubilized with 6M guanidine hydrochloride. As shown in FIG. 15, the solubilized product is H
It showed CGPF activity. Further, ΔHIL2 (20) −
HCGPF-31 protein concentration of 100 μg / ml, and 2
Adjust the concentration so that it becomes M guanidine hydrochloride solution,
Oxidized glutathione 1 mM and reduced glutathione 10 mM were added thereto, and the mixture was allowed to stand at pH 8.0 at room temperature for 10 to 16 hours.

【0113】次に、SephadexG−25によるゲ
ル濾過で塩酸グアニジンを除去すると同時に、カリクレ
イン反応用緩衝液溶液となったΔHIL2(20)−H
CGPF−31蛋白相当画分を得た。本物質はSDSポ
リアクリルアミドゲル電気泳動により、分子量が、アミ
ノ酸組成から計算した値とほぼ一致し、又、プロテイン
シークエンサーにてN末端側のアミノ酸配列を検定した
結果、HIL−2の配列であることが確認された。
Next, guanidine hydrochloride was removed by gel filtration using Sephadex G-25, and at the same time, ΔHIL2 (20) -H, which became a kallikrein reaction buffer solution, was obtained.
A fraction corresponding to CGPF-31 protein was obtained. The molecular weight of this substance was almost the same as the value calculated from the amino acid composition by SDS polyacrylamide gel electrophoresis, and the N-terminal side amino acid sequence was assayed by a protein sequencer. Was confirmed.

【0114】(3)カリクレインによる切断 113mM NaClを含む、50mM Tris−H
Cl緩衝液、pH7.8中で得られたΔHIL2(2
0)−HCGPF−31蛋白80μgとヒトプラズマカ
リクレインを37℃、15時間反応後逆相HPLCでH
CGPF−31蛋白相当画分を分取した。これを、プロ
テインシークエンサーにてN末端付近のアミノ酸配列を
分析した結果ΔHIL2(20)−HCGPF−31蛋
白が、定量的にHCGPF−31蛋白に変換されたこと
が確認された。該HCGPF−31蛋白はHCGPF活
性を示した。
(3) Cleavage by kallikrein 50 mM Tris-H containing 113 mM NaCl
ΔHIL2 (2 in Cl buffer, pH 7.8)
0) -HCGPF-31 protein (80 μg) and human plasma kallikrein were reacted at 37 ° C. for 15 hours, and then H was measured by reverse phase HPLC.
A fraction corresponding to the CGPF-31 protein was collected. As a result of analyzing the amino acid sequence near the N-terminal with a protein sequencer, it was confirmed that ΔHIL2 (20) -HCGPF-31 protein was quantitatively converted to HCGPF-31 protein. The HCGPF-31 protein showed HCGPF activity.

【0115】実施例10 (1)実施例4にて構築したプラスミドpT13S(N
co)および実施例6にて構築したプラスミドpT13
SΔHIL2(53)−HCGPF−19を用いHIL
−2蛋白融合N末端をThr19としたHCGPFを発現
する組み換えDNAを以下の様に構築した(図18)。
Example 10 (1) Plasmid pT13S (N
co) and the plasmid pT13 constructed in Example 6.
HIL using SΔHIL2 (53) -HCGPF-19
Recombinant DNA expressing HCGPF in which the N-terminal of the -2 protein fusion was Thr19 was constructed as follows (FIG. 18).

【0116】i)プラスミドpT13S(Nco)を制
限酵素PstIで切断後T4DNAポリメラーゼで処理
し、更に制限酵素PvuIで切断し、アガロースゲル電
気泳動により2番目に大きいDNA断片を回収した。他
方、プラスミドpT13SΔHIL2(53)−HCG
PF−19を制限酵素XbaIで切断後、DNAポリメ
ラーゼI(Klenow)で処理し、更に制限酵素Pv
uIで切断し、アガロースゲル電気泳動により大きいD
NA断片を回収した。
I) Plasmid pT13S (Nco) was digested with restriction enzyme PstI, treated with T4 DNA polymerase, further digested with restriction enzyme PvuI, and the second largest DNA fragment was recovered by agarose gel electrophoresis. On the other hand, plasmid pT13SΔHIL2 (53) -HCG
After cleaving PF-19 with restriction enzyme XbaI, it is treated with DNA polymerase I (Klenow), and further, restriction enzyme Pv
cleaved with uI and larger D on agarose gel electrophoresis
The NA fragment was recovered.

【0117】これら両断片をT4DNAリガーゼを使っ
て結合させた。得られた組み換えDNAをエシエリヒア
・コリHB101株へ導入し、アンピシリン抵抗性を有
する株を選択した。分離した株からプラスミドを得て制
限酵素による切断試験および結合部位付近の塩基配列の
決定を行なうことによりpT13SΔHIL2(11)
−HCGPF−19を保持する菌を選択した(pT13
SΔHIL2(11)−HCGPF−19/HB10
1,FERM BP−1250)。
These two fragments were ligated using T4 DNA ligase. The obtained recombinant DNA was introduced into Escherichia coli HB101 strain, and a strain having ampicillin resistance was selected. PT13SΔHIL2 (11) was obtained by obtaining a plasmid from the isolated strain and carrying out a restriction enzyme digestion test and determination of the nucleotide sequence near the binding site.
-A bacterium holding HCGPF-19 was selected (pT13
SΔHIL2 (11) -HCGPF-19 / HB10
1, FERM BP-1250).

【0118】(2)生産物の取得 pT13SΔHIL2(11)−HCGPF−19/H
B101を実施例4に従い培養し、実施例6に従い菌体
内に生成した顆粒を抽出し、この顆粒を6M塩酸グアニ
ジンで可溶化した。図11に示す如く、該可溶化物はH
CGPF活性を示した。さらに、ΔHIL2(11)−
HCGPF−19濃度が100μg/ml及び2M塩酸
グアニジン溶液となるように濃度調整を行ないこれに、
酸化型グルタチオン1mMと還元型グルタチオン10m
Mを添加し、pH8.0、室温で、10〜16時間放置
した。
(2) Acquisition of product pT13SΔHIL2 (11) -HCGPF-19 / H
B101 was cultured according to Example 4, and the granules formed in the cells were extracted according to Example 6, and the granules were solubilized with 6M guanidine hydrochloride. As shown in FIG. 11, the solubilized material is H
It showed CGPF activity. Further, ΔHIL2 (11) −
The concentration was adjusted so that the concentration of HCGPF-19 was 100 μg / ml and a 2M guanidine hydrochloride solution.
Oxidized glutathione 1 mM and reduced glutathione 10 m
M was added and left at pH 8.0 and room temperature for 10-16 hours.

【0119】次に、SephadexG−25によるゲ
ル濾過で塩酸グアニジンを除去すると同時に、カリクレ
イン反応用緩衝液溶液となったΔHIL2(11)−H
CGPF−19蛋白相当画分を得た。本物質はSDSポ
リアクリルアミドゲル電気泳動により、分子量が、アミ
ノ酸組成から計算した値とほぼ一致し、又、プロテイン
シークエンサーにてN末端側のアミノ酸配列を検定した
結果、HIL−2の配列であることが確認された。
Next, guanidine hydrochloride was removed by gel filtration using Sephadex G-25, and at the same time, ΔHIL2 (11) -H, which became a kallikrein reaction buffer solution, was obtained.
A fraction corresponding to the CGPF-19 protein was obtained. The molecular weight of this substance was almost the same as the value calculated from the amino acid composition by SDS polyacrylamide gel electrophoresis, and the N-terminal side amino acid sequence was assayed by a protein sequencer. Was confirmed.

【0120】(3)カリクレインによる切断 113mM NaClを含む50mM Tris−HC
l緩衝液pH7.8中で、得られたΔHIL2(11)
−HCGPF−19蛋白80μgとヒトプラズマカリク
レインを37℃、15時間反応後逆相HPLCでHCG
PF−19蛋白相当画分を分取した。これを、プロテイ
ンシークエンサーにてN末端付近のアミノ酸配列を分析
した結果ΔHIL2(11)−HCGPF−19蛋白
が、定量的にHCGPF−19蛋白に変換されたことが
確認された。該HCGPF−19はHCGPF活性を示
した。
(3) Cleavage with kallikrein 50 mM Tris-HC containing 113 mM NaCl
The resulting ΔHIL2 (11) in 1 buffer pH 7.8
-HCGPF-19 protein (80 µg) was reacted with human plasma kallikrein at 37 ° C for 15 hours, and then HCG was detected by reverse phase HPLC.
A fraction corresponding to PF-19 protein was collected. The amino acid sequence near the N-terminus was analyzed using a protein sequencer, and it was confirmed that ΔHIL2 (11) -HCGPF-19 protein was quantitatively converted to HCGPF-19 protein. The HCGPF-19 showed HCGPF activity.

【0121】実施例11 マウス骨髄細胞を用いるHC
GPF活性検定 (1)ヒトHCGPFを含むCOS細胞培養上清を以下
の様に調製した。実施例3で得られたプラスミドpKC
R−4−15 5μgを実施例2の方法に従ってサルC
OS−7細胞に感染させ培養上清を得、これをアミコン
社製限外濾過膜(YM10)を用いて5倍濃縮しヒトH
CGPF活性測定サンプルとした。
Example 11 HC using mouse bone marrow cells
GPF activity assay (1) COS cell culture supernatant containing human HCGPF was prepared as follows. Plasmid pKC obtained in Example 3
5 μg of R-4-15 was added to monkey C according to the method of Example 2.
OS-7 cells were infected to obtain a culture supernatant, which was concentrated 5-fold using an Amicon ultrafiltration membrane (YM10), and human H
This was used as a CGPF activity measurement sample.

【0122】(2)ヒトHCGPFを含むエシエリヒア
・コリ抽出物の調製および、そのカリクレインによる切
断は実施例6〜10に述べた通りに行なった。各々得ら
れた培養抽出物、6M Guanidine塩酸可溶
物、その逆相HPLC(AP−312,山村化学)によ
る精製分画およびカリクレイン切断物を各々1μg/m
lになる様20%のFBSを含むRPMI培地にて希釈
しこれをヒトHCGPF活性測定サンプルとした。
(2) Preparation of Escherichia coli extract containing human HCGPF and its cleavage with kallikrein were performed as described in Examples 6 to 10. Each of the obtained culture extract, 6M Guanidine hydrochloride-soluble substance, its purified fraction by reverse phase HPLC (AP-312, Yamamura Chemical) and cut kallikrein were each 1 μg / m 2.
and diluted with RPMI medium containing 20% FBS to obtain a human HCGPF activity measurement sample.

【0123】(3)アッセイ法 マウス骨髄細胞を用いるヒトHCGPFアッセイは以下
の様にして行った。5〜9週令のDBA/2雌マウス
(チャールズリバージャパン(株))の大腿骨を取り出
し、両骨端を切除した後、1mlの10%(容量比)の
牛胎児血清(FBS)を含むRPMI培地を、注射針を
操着した注射筒にて一方より注入する事により骨髄細胞
をプラスチックチューブに押し出した。更に本骨髄細胞
懸濁液を注射針を操着した注射筒にて吸引、吹出しを繰
り返す事でシングル細胞化した。10%FBSを含むR
PMI培地で3回洗浄した後1×106 個/mlになる
様20%FBSを含むRPMI培地に懸濁した。
(3) Assay Method A human HCGPF assay using mouse bone marrow cells was performed as follows. The femur of a 5-9 week old DBA / 2 female mouse (Charles River Japan Co., Ltd.) was taken out, and both epiphyses were excised, followed by 1 ml of 10% (volume ratio) fetal bovine serum (FBS). The bone marrow cells were extruded into a plastic tube by injecting the RPMI medium from one side into a syringe with a needle attached. Further, the bone marrow cell suspension was repeatedly made into single cells by repeatedly sucking and blowing with a syringe barrel having a needle attached thereto. R with 10% FBS
After washing 3 times with PMI medium, the cells were suspended in RPMI medium containing 20% FBS so that the concentration became 1 × 10 6 cells / ml.

【0124】96穴の組織培養プレートの個々の穴にH
CGPF活性を測定しようとするサンプルを100μl
ずつ入れ、10%のFBSを含むRPMI培地にて2倍
希釈を繰り返した。次いで、実施例2の方法に従って、
マウスインターロイキン3(IL−3)cDNAを含む
プラスミドpQRMIL3 5μgをサルCOSの細胞
に感染させて得たマウスIL−3を含む培養上清を各穴
に50μlずつ添加した。
H in individual wells of 96-well tissue culture plates
100 μl of the sample whose CGPF activity is to be measured
, And a 2-fold dilution was repeated in an RPMI medium containing 10% FBS. Then, according to the method of Example 2,
50 μl of culture supernatant containing mouse IL-3 obtained by infecting monkey COS cells with 5 μg of plasmid pQRMIL3 containing mouse interleukin 3 (IL-3) cDNA was added to each well.

【0125】HCGPFの直接の骨髄細胞に対する増殖
刺激を測定する場合には、本培養上清の代わりに20%
のFBSを含むRPMIを50μl添加する。
When measuring the growth stimulation of HCGPF directly on bone marrow cells, 20% was used instead of the main culture supernatant.
Add 50 μl of RPMI containing FBS.

【0126】最後に、上記の様に調製したマウス骨髄細
胞浮遊液を各穴50μlずつ添加し、37℃、5%CO
2 存在下に5日間培養後、トリチウムチミジン1μCi
を加え8時間パルスを行った後、常法に従って細胞内に
取り込まれたβ−放射線量を測定した。
Finally, the mouse bone marrow cell suspension prepared as described above was added in an amount of 50 μl / well, and the mixture was added at 37 ° C. and 5% CO 2.
After culturing in the presence of 2 days for 5 days, tritiated thymidine 1 μCi
, And pulsed for 8 hours, and then the amount of β-radiation taken into the cells was measured according to a conventional method.

【0127】骨髄細胞のうち、HCGPFに応答して増
殖する細胞は取り込むトリチウムチミジン量が多いこと
によりCOS細胞上清中およびエシエリヒア・コリ抽出
物などの産生量を容易に定量することができる。本方法
によって、COS上清中には図19に示すように単独で
骨髄細胞を増殖させる弱い活性並びにマウスIL−3と
協同して骨髄細胞を増殖させる活性が含まれる事が明ら
かとなった。対照として用いたcDNAを含まないプラ
スミドpKCRを感染して得たCOS−7細胞上清には
いずれの活性もみとめられない。
Among the bone marrow cells, cells proliferating in response to HCGPF can easily quantify the amount of tritium thymidine incorporated in the COS cell supernatant and the amount of Escherichia coli extract and the like produced. According to this method, it was revealed that the COS supernatant contained weak activity to grow bone marrow cells alone as shown in FIG. 19 and activity to grow bone marrow cells in cooperation with mouse IL-3. No activity was observed in the COS-7 cell supernatant obtained by infecting the plasmid pKCR containing no cDNA used as a control.

【0128】また、エシエリヒア・コリ抽出物、6M
Guanidine塩酸可溶化物、該抽出物逆相HPL
C分画、さらにはカリクレイン切断物においても同様に
活性が認められた(図8,図11,図12,図13,図
15)。
Also, Escherichia coli extract, 6M
Guanidine hydrochloric acid solubilized product, said extract reverse phase HPL
The activity was similarly observed in the C fraction and also in the kallikrein digest (FIG. 8, FIG. 11, FIG. 12, FIG. 13, FIG. 15).

【0129】実施例12 ヒト骨髄細胞、胸腺細胞を用
いる活性検定 実施例11と同じサンプルにつき以下の方法を用いてH
CGPF活性を測定した。健常人より得たヒト骨髄細胞
(2×105 個/well)もしくは胸腺細胞(5×1
05 /well)を10%FBSを含むRPMI培地に
懸濁したものを、10%FBSを含む倍々希釈したHC
GPF活性を測定しようとするサンプル100μlを含
む96穴の組織培養プレートの各穴100μlずつ加
え、5日間37℃、5%CO2 中で培養した後、1μC
iのトリチウムチミジンを各穴に加え8時間パルスし
た。常法に従って細胞をハーベストした後、取り込まれ
たβ放射活性を測定した。表2に示す様に弱いながら有
意な増殖誘導が認められた。
Example 12 Activity Assay Using Human Bone Marrow Cells and Thymocytes H
CGPF activity was measured. Human bone marrow cells (2 × 10 5 cells / well) or thymocytes (5 × 1) obtained from a healthy person.
(0 5 / well) was suspended in RPMI medium containing 10% FBS, and the diluted HC containing 10% FBS was double-diluted.
After adding 100 μl of each well of a 96-well tissue culture plate containing 100 μl of the sample to be measured for GPF activity, the cells were cultured for 5 days at 37 ° C. in 5% CO 2, and then 1 μC
i tritiated thymidine was added to each well and pulsed for 8 hours. After harvesting the cells according to a conventional method, the incorporated β-radioactivity was measured. As shown in Table 2, significant growth induction was observed although it was weak.

【0130】[0130]

【表2】 [Table 2]

【0131】[0131]

【発明の効果】本発明のHCGPFは免疫調節機能、造
血調節機能を有するので免疫不全症、感染症、癌、肝
炎、腎炎、骨髄移植等の分野に応用できる。また、本H
CGPFを他の免疫活性物質、免疫療法剤、リンホカイ
ン、サイトカイニン、インターフェロン、細胞生長因
子、化学療法剤、抗生物質、抗ウイルス剤と併用する
と、効果増強及び他薬剤の副作用軽減に有効であると考
えられる。
EFFECTS OF THE INVENTION Since HCGPF of the present invention has an immunoregulatory function and a hematopoietic control function, it can be applied to the fields of immunodeficiency, infectious diseases, cancer, hepatitis, nephritis, bone marrow transplantation and the like. Also, this H
When CGPF is used in combination with other immunoactive substances, immunotherapeutic agents, lymphokines, cytokinins, interferons, cell growth factors, chemotherapeutic agents, antibiotics and antiviral agents, it is considered to be effective in enhancing the effect and reducing side effects of other agents. To be

【0132】[0132]

【配列表】[Sequence list]

配列番号:1 配列の長さ:179 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Thr Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile Phe Gly Phe 1 5 10 15 Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly 20 25 30 Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala 35 40 45 Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu Tyr Gly 50 55 60 Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys 65 70 75 80 Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp 85 90 95 Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu 100 105 110 Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val 115 120 125 Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro 130 135 140 Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr 145 150 155 160 Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg 165 170 175 Thr Gly Ala SEQ ID NO: 1 Sequence length: 179 Sequence type: Amino acid Topology: Linear Sequence type: Protein Sequence: Thr Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile Phe Gly Phe 1 5 10 15 Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly 20 25 30 Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala 35 40 45 Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu Tyr Gly 50 55 60 Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys 65 70 75 80 Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp 85 90 95 Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu 100 105 110 Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val 115 120 125 Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro 130 135 140 Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr 145 150 155 160 Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg 165 170 175 Thr Gly Ala

【0133】配列番号:2 配列の長さ:167 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Ile Phe Gly Phe Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly 1 5 10 15 Glu Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln 20 25 30 Arg Asp Ile Ala Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly 35 40 45 Asn Leu Tyr Gly Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met 50 55 60 Asn Arg Ile Cys Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile 65 70 75 80 Lys Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser 85 90 95 Leu His Val Leu Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu 100 105 110 Glu Ser Leu Val Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser 115 120 125 Ser Lys Glu Pro Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu 130 135 140 Asp Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys 145 150 155 160 Lys Ala Gln Arg Thr Gly Ala 165SEQ ID NO: 2 Sequence length: 167 Sequence type: amino acid Topology: linear Sequence type: protein Sequence: Ile Phe Gly Phe Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly 1 5 10 15 Glu Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln 20 25 30 Arg Asp Ile Ala Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly 35 40 45 Asn Leu Tyr Gly Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met 50 55 60 Asn Arg Ile Cys Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile 65 70 75 80 Lys Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser 85 90 95 Leu His Val Leu Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu 100 105 110 Glu Ser Leu Val Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser 115 120 125 Ser Lys Glu Pro Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu 130 135 140 Asp Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys 145 150 155 160 Lys Ala Gln Arg Thr Gly Ala 165

【0134】配列番号:3 配列の長さ:197 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Met Ser Gly Pro Arg Pro Val Val Leu Ser Gly Pro Ser Gly Ala Gly 1 5 10 15 Lys Ser Thr Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile Phe 20 25 30 Gly Phe Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu 35 40 45 Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp 50 55 60 Ile Ala Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu 65 70 75 80 Tyr Gly Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn Arg 85 90 95 Ile Cys Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala 100 105 110 Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His 115 120 125 Val Leu Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser 130 135 140 Leu Val Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys 145 150 155 160 Glu Pro Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln 165 170 175 Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala 180 185 190 Gln Arg Thr Gly Ala 195SEQ ID NO: 3 Sequence length: 197 Sequence type: amino acid Topology: linear Sequence type: protein Sequence: Met Ser Gly Pro Arg Pro Val Val Leu Ser Gly Pro Ser Gly Ala Gly 1 5 10 15 Lys Ser Thr Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile Phe 20 25 30 Gly Phe Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu 35 40 45 Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp 50 55 60 Ile Ala Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu 65 70 75 80 Tyr Gly Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn Arg 85 90 95 Ile Cys Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala 100 105 110 Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His 115 120 125 Val Leu Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser 130 135 140 Leu Val Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys 145 150 155 160 Glu Pro Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln 165 170 175 Ala Tyr A la Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala 180 185 190 Gln Arg Thr Gly Ala 195

【0135】配列番号:4 配列の長さ:194 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Pro Arg Phe Arg Thr 1 5 10 15 Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile Phe Gly Phe Ser 20 25 30 Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys 35 40 45 Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala Ala 50 55 60 Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu Thr Gly Thr 65 70 75 80 Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys Val 85 90 95 Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp Leu 100 105 110 Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu Glu 115 120 125 Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val Lys 130 135 140 Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro Gly 145 150 155 160 Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala 165 170 175 Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr 180 185 190 Gly AlaSEQ ID NO: 4 Sequence length: 194 Sequence type: Amino acid Topology: Linear Sequence type: Protein Sequence: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Pro Arg Phe Arg Thr 1 5 10 15 Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile Phe Gly Phe Ser 20 25 30 Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys 35 40 45 Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala Ala 50 55 60 Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu Thr Gly Thr 65 70 75 80 Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys Val 85 90 95 Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp Leu 100 105 110 Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu Glu 115 120 125 Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val Lys 130 135 140 Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro Gly 145 150 155 160 Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala 165 170 175 Glu Leu L ys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr 180 185 190 Gly Ala

【0136】配列番号:5 配列の長さ:203 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Pro Arg Phe Arg Thr Leu Leu Lys Arg Leu Leu Gln 20 25 30 Glu His Ser Gly Ile Phe Gly Phe Ser Val Ser His Thr Thr Arg Asn 35 40 45 Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg 50 55 60 Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp Phe Ile Glu His Ala 65 70 75 80 Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys Val Ala Val Gln Ala 85 90 95 Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp Val Asp Leu Gln Gly 100 105 110 Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val 115 120 125 Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg Leu Arg Gln Arg Asn 130 135 140 Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu Ala Ala Ala Gln Ala 145 150 155 160 Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe Asp Val Val Ile Ile 165 170 175 Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser 180 185 190 Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 195 200SEQ ID NO: 5 Sequence length: 203 Sequence type: Amino acid Topology: Linear Sequence type: Protein Sequence: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Pro Arg Phe Arg Thr Leu Leu Lys Arg Leu Leu Gln 20 25 30 Glu His Ser Gly Ile Phe Gly Phe Ser Val Ser His Thr Thr Arg Asn 35 40 45 Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg 50 55 60 Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp Phe Ile Glu His Ala 65 70 75 80 Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys Val Ala Val Gln Ala 85 90 95 Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp Val Asp Leu Gln Gly 100 105 110 Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val 115 120 125 Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg Leu Arg Gln Arg Asn 130 135 140 Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu Ala Ala Ala Gln Ala 145 150 155 160 Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe Asp Val Val Ile Ile 165 170 175 Asn Asp S er Leu Asp Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser 180 185 190 Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 195 200

【0137】配列番号:6 配列の長さ:236 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys 20 25 30 Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys 35 40 45 Lys Ala Thr Glu Leu Ser Arg Phe Arg Thr Leu Leu Lys Arg Leu Leu 50 55 60 Gln Glu His Ser Gly Ile Phe Gly Phe Ser Val Ser His Thr Thr Arg 65 70 75 80 Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr 85 90 95 Arg Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp Phe Ile Glu His 100 105 110 Ala Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys Val Ala Val Gln 115 120 125 Ala Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp Val Asp Leu Gln 130 135 140 Gly Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser 145 150 155 160 Val Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg Leu Arg Gln Arg 165 170 175 Asn Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu Ala Ala Ala Gln 180 185 190 Ala Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe Asp Val Val Ile 195 200 205 Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu 210 215 220 Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 225 230 235SEQ ID NO: 6 Sequence length: 236 Sequence type: Amino acid Topology: Linear Sequence type: Protein Sequence: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys 20 25 30 Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys 35 40 45 Lys Ala Thr Glu Leu Ser Arg Phe Arg Thr Leu Leu Lys Arg Leu Leu 50 55 60 Gln Glu His Ser Gly Ile Phe Gly Phe Ser Val Ser His Thr Thr Arg 65 70 75 80 Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr Tyr Tyr Phe Val Thr 85 90 95 Arg Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp Phe Ile Glu His 100 105 110 Ala Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys Val Ala Val Gln 115 120 125 Ala Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp Val Asp Leu Gln 130 135 140 Gly Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser 145 150 155 160 Val Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg Leu Arg Gln Arg 165 170 175 Asn Thr G lu Thr Glu Glu Ser Leu Val Lys Arg Leu Ala Ala Ala Gln 180 185 190 Ala Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe Asp Val Val Ile 195 200 205 Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu 210 215 220 Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 225 230 235

【0138】配列番号:7 配列の長さ:191 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Pro Arg Phe Arg Ile Phe Gly Phe Ser Val Ser His 20 25 30 Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr Tyr 35 40 45 Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp Phe 50 55 60 Ile Glu His Ala Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys Val 65 70 75 80 Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp Val 85 90 95 Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro Ile 100 105 110 Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg Leu 115 120 125 Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu Ala 130 135 140 Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe Asp 145 150 155 160 Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu Lys 165 170 175 Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 180 185 190SEQ ID NO: 7 Sequence length: 191 Sequence type: amino acid Topology: Linear Sequence type: Protein Sequence: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Pro Arg Phe Arg Ile Phe Gly Phe Ser Val Ser His 20 25 30 Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr Tyr 35 40 45 Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp Phe 50 55 60 Ile Glu His Ala Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys Val 65 70 75 80 Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp Val 85 90 95 Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro Ile 100 105 110 Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg Leu 115 120 125 Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu Ala 130 135 140 Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe Asp 145 150 155 160 Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu Lys 165 170 175 Glu Ala L eu Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 180 185 190

【0139】配列番号:8 配列の長さ:224 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys 20 25 30 Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys 35 40 45 Lys Ala Thr Glu Leu Ser Arg Phe Arg Ile Phe Gly Phe Ser Val Ser 50 55 60 His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr 65 70 75 80 Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp 85 90 95 Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys 100 105 110 Val Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp 115 120 125 Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro 130 135 140 Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg 145 150 155 160 Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu 165 170 175 Ala Ala Ala Gln Ala Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe 180 185 190 Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu 195 200 205 Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 210 215 220SEQ ID NO: 8 Sequence length: 224 Sequence type: amino acid Topology: Linear Sequence type: Protein Sequence: Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 5 10 15 Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys 20 25 30 Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys 35 40 45 Lys Ala Thr Glu Leu Ser Arg Phe Arg Ile Phe Gly Phe Ser Val Ser 50 55 60 His Thr Thr Arg Asn Pro Arg Pro Gly Glu Glu Asn Gly Lys Asp Tyr 65 70 75 80 Tyr Phe Val Thr Arg Glu Val Met Gln Arg Asp Ile Ala Ala Gly Asp 85 90 95 Phe Ile Glu His Ala Glu Phe Ser Gly Asn Leu Tyr Gly Thr Ser Lys 100 105 110 Val Ala Val Gln Ala Val Gln Ala Met Asn Arg Ile Cys Val Leu Asp 115 120 125 Val Asp Leu Gln Gly Val Arg Asn Ile Lys Ala Thr Asp Leu Arg Pro 130 135 140 Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu His Val Leu Glu Gln Arg 145 150 155 160 Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu Ser Leu Val Lys Arg Leu 165 170 175 Ala Ala A la Gln Ala Asp Met Glu Ser Ser Lys Glu Pro Gly Leu Phe 180 185 190 Asp Val Val Ile Ile Asn Asp Ser Leu Asp Gln Ala Tyr Ala Glu Leu 195 200 205 Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys Ala Gln Arg Thr Gly Ala 210 215 220

【0140】配列番号:9 配列の長さ:909 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列: GGATGCTGCG GCGCCCGCTG GCCGGGCGGC TGCGGCCGCC CTGGCCGGGC CCCACCGGAC 60 GGC ATG TCG GGC CCC AGG CCT GTG GTG CTG AGC GGG CCT TCG GGA GCT 108 Met Ser Gly Pro Arg Pro Val Val Leu Ser Gly Pro Ser Gly Ala 1 5 10 15 GGG AAG AGC ACC CTG CTG AAG AGG CTG CTC CAG GAG CAC AGC GGC ATC 156 Gly Lys Ser Thr Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile 20 25 30 TTT GGC TTC AGC GTG TCC CAT ACC ACG AGG AAC CCG AGG CCC GGC GAG 204 Phe Gly Phe Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu 35 40 45 GAG AAC GGC AAA GAT TAC TAC TTT GTA ACC AGG GAG GTG ATG CAG CGT 252 Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg 50 55 60 GAC ATA GCA GCC GGC GAC TTC ATC GAG CAT GCC GAG TTC TCG GGG AAC 300 Asp Ile Ala Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn 65 70 75 CTG TAT GGC ACG AGC AAG GTG GCG GTG CAG GCC GTG CAG GCC ATG AAC 348 Leu Tyr Gly Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn 80 85 90 95 CGC ATC TGT GTG CTG GAC GTG GAC CTG CAG GGT GTG CGG AAC ATC AAG 396 Arg Ile Cys Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys 100 105 110 GCC ACC GAT CTG CGG CCC ATC TAC ATC TCT GTG CAG CCG CCT TCA CTG 444 Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu 115 120 125 CAC GTG CTG GAG CAG CGG CTG CGG CAG CGC AAC ACT GAA ACC GAG GAG 492 His Val Leu Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu 130 135 140 AGC CTG GTG AAG CGG CTG GCT GCT GCC CAG GCC GAC ATG GAG AGC AGC 540 Ser Leu Val Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser 145 150 155 AAG GAG CCC GGC CTG TTT GAT GTG GTC ATC ATT AAC GAC AGC CTG GAC 588 Lys Glu Pro Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp 160 165 170 175 CAG GCC TAC GCA GAG CTG AAG GAG GCG CTC TCT GAG GAA ATC AAG AAA 636 Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys 180 185 190 GCT CAA AGG ACC GGC GCC TGAGGCTTGC TGTCTGTTCT CGGCACCCTG 684 Ala Gln Arg Thr Gly Ala 195 GGCCCATACA GGACCAGGGC AGCAGCATTG AGCCACCCCC CTTGGCAGGC GATACGGCAG 744 CTCTGTGCCC TTGGCCAGCA TGTGGAGTGG AGGAGATGCT GCCCCTGTGG TTGGAACATC 804 CTGGGGTGAC CCCCGACCCA GCCTCGCTGG GCTGTCCCCT GTCCCTATCT CTCACTCTGA 864 ACCCAGGGCT GACATCCTAA TAAAATAACT GTTGGATTAG AAACT 909SEQ ID NO: 9 Sequence length: 909 Sequence type: Nucleic acid Number of strands: Double-stranded topology: Linear Sequence type: cDNA to mRNA Sequence: GGATGCTGCG GCGCCCGCTG GCCGGGCGGC TGCGGCCGCC CTGGCCGGGC CCCACCGGAC 60 GGC ATG TCG GGC CCC AGG CCT GTG GTG CTG AGC GGG CCT TCG GGA GCT 108 Met Ser Gly Pro Arg Pro Val Val Leu Ser Gly Pro Ser Gly Ala 1 5 10 15 GGG AAG AGC ACC CTG CTG AAG AGG CTG CTC CAG GAG CAC AGC GGC ATC 156 Gly Lys Ser Thr Leu Leu Lys Arg Leu Leu Gln Glu His Ser Gly Ile 20 25 30 TTT GGC TTC AGC GTG TCC CAT ACC ACG AGG AAC CCG AGG CCC GGC GAG 204 Phe Gly Phe Ser Val Ser His Thr Thr Arg Asn Pro Arg Pro Gly Glu 35 40 45 GAG AAC GGC AAA GAT TAC TAC TTT GTA ACC AGG GAG GTG ATG CAG CGT 252 Glu Asn Gly Lys Asp Tyr Tyr Phe Val Thr Arg Glu Val Met Gln Arg 50 55 60 GAC ATA GCA GCC GGC GAC TTC ATC GAG CAT GCC GAG TTC TCG GGG AAC 300 Asp Ile Ala Ala Gly Asp Phe Ile Glu His Ala Glu Phe Ser Gly Asn 65 70 75 CTG TAT GGC ACG AGC AAG GTG GCG GTG CAG GCC GTG CAG GCC ATG AAC 348 Leu Tyr Gly Thr Ser Lys Val Ala Val Gln Ala Val Gln Ala Met Asn 80 85 90 95 CGC ATC TGT GTG CTG GAC GTG GAC CTG CAG GGT GTG CGG AAC ATC AAG 396 Arg Ile Cys Val Leu Asp Val Asp Leu Gln Gly Val Arg Asn Ile Lys 100 105 110 GCC ACC GAT CTG CGG CCC ATC TAC ATC TCT GTG CAG CCG CCT TCA CTG 444 Ala Thr Asp Leu Arg Pro Ile Tyr Ile Ser Val Gln Pro Pro Ser Leu 115 120 125 CAC GTG CTG GAG CAG CGG CTG CGG CAG CGC AAC ACT GAA ACC GAG GAG 492 His Val Leu Glu Gln Arg Leu Arg Gln Arg Asn Thr Glu Thr Glu Glu 130 135 140 AGC CTG GTG AAG CGG CTG GCT GCT GCC CAG GCC GAC ATG GAG AGC AGC 540 Ser Leu Val Lys Arg Leu Ala Ala Ala Gln Ala Asp Met Glu Ser Ser 145 150 155 AAG GAG CCC GGC CTG TTT GAT GTG GTC ATC ATT AAC GAC AGC CTG GAC 588 Lys Glu Pro Gly Leu Phe Asp Val Val Ile Ile Asn Asp Ser Leu Asp 160 165 170 175 CAG GCC TAC GCA GAG CTG AAG GAG GCG CTC TCT GAG GAA ATC AAG AAA 636 Gln Ala Tyr Ala Glu Leu Lys Glu Ala Leu Ser Glu Glu Ile Lys Lys 180 185 190 GCT CAA AGG ACC GGC GCC TGAGGCTTGC TGTC TGTTCT CGGCACCCTG 684 Ala Gln Arg Thr Gly Ala 195 GGCCCATACA GGACCAGGGC AGCAGCATTG AGCCACCCCC CTTGGCAGGC GATACGGCAG 744 CTCTGTGCCC TTGGCCAGCA TGTGGAGTGG AGGAGATGCT GCCCCTGTGG TTGGAACATC 804 CTGGGGTGAC CCCCGACCCA GCCTCGCTGG GCTGTCCCCT GTCCCTATCT CTCACTCTGA 864 ACCCAGGGCT GACATCCTAA TAAAATAACT GTTGGATTAG AAACT 909

【0141】配列番号:10 配列の長さ:83 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列: Met Leu Arg Arg Pro Leu Ala Gly Arg Leu Arg Pro Pro Trp Pro Gly 1 5 10 15 Pro Thr Gly Arg His Val Gly Pro Gln Ala Cys Gly Ala Glu Arg Ala 20 25 30 Phe Gly Ser Trp Glu Glu His Pro Ala Glu Glu Ala Ala Pro Gly Ala 35 40 45 Gln Arg His Leu Trp Leu Gln Arg Val Pro Tyr His Glu Glu Pro Glu 50 55 60 Ala Arg Arg Gly Glu Arg Gln Arg Leu Leu Leu Cys Asn Gln Gly Gly 65 70 75 80 Asp Ala AlaSEQ ID NO: 10 Sequence length: 83 Sequence type: amino acid Topology: linear Sequence type: peptide Sequence: Met Leu Arg Arg Pro Leu Ala Gly Arg Leu Arg Pro Pro Trp Pro Gly 1 5 10 15 Pro Thr Gly Arg His Val Gly Pro Gln Ala Cys Gly Ala Glu Arg Ala 20 25 30 Phe Gly Ser Trp Glu Glu His Pro Ala Glu Glu Ala Ala Pro Gly Ala 35 40 45 Gln Arg His Leu Trp Leu Gln Arg Val Pro Tyr His Glu Glu Pro Glu 50 55 60 Ala Arg Arg Gly Glu Arg Gln Arg Leu Leu Leu Cys Asn Gln Gly Gly 65 70 75 80 Asp Ala Ala

【0142】配列番号:11 配列の長さ:48 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: CGATAAGCCA TGATCTTTGG CTTCAGCGTG TCCCATACCA CGAGGAAC 48SEQ ID NO: 11 Sequence length: 48 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Sequence: CGATAAGCCA TGATCTTTGG CTTCAGCGTG TCCCATACCA CGAGGAAC 48

【0143】配列番号:12 配列の長さ:50 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: TCGGGTTCCT CGTGGTATGG GACACGCTGA AGCCAAAGAT CATGGCTTAT 50SEQ ID NO: 12 Sequence length: 50 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Sequence: TCGGGTTCCT CGTGGTATGG GACACGCTGA AGCCAAAGAT CATGGCTTAT 50

【0144】配列番号:13 配列の長さ:42 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: ATCTAGATTC CGCACCCTGC TGAAGAGGCT GCTCCAGGAG CA 42SEQ ID NO: 13 Sequence length: 42 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence: ATCTAGATTC CGCACCCTGC TGAAGAGGCT GCTCCAGGAG CA 42

【0145】配列番号:14 配列の長さ:42 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: CCTGGAGCAG CCTCTTCAGC AGGGTGCGGA ATCTAGATAG CT 42SEQ ID NO: 14 Sequence length: 42 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Sequence: CCTGGAGCAG CCTCTTCAGC AGGGTGCGGA ATCTAGATAG CT 42

【0146】配列番号:15 配列の長さ:49 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: ATCTAGATTC CGCATCTTTG GCTTCAGCGT GTCCCATACC ACGAGGAAC 49SEQ ID NO: 15 Sequence length: 49 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence: ATCTAGATTC CGCATCTTTG GCTTCAGCGT GTCCCATACC ACGAGGAAC 49

【0147】配列番号:16 配列の長さ:57 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: TCGGGTTCCT CGTGGTATGG GACACGCTGA AGCCAAAGAT GCGGAATCTA GATAGCT 57SEQ ID NO: 16 Sequence length: 57 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence: TCGGGTTCCT CGTGGTATGG GACACGCTGA AGCCAAAGAT GCGGAATCTA GATAGCT 57

【0148】配列番号:17 配列の長さ:41 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列:35 CGATAAGCCA TGACCCTGCT GAAGAGGCTG CTCCAGCAGC A 41SEQ ID NO: 17 Sequence length: 41 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence: 35 CGATAAGCCA TGACCCTGCT GAAGAGGCTG CTCCAGCAGC A 41

【0149】配列番号:18 配列の長さ:35 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: CCTGGAGCAG CCTCTTCAGC AGGGTCATGG CTTAT 35SEQ ID NO: 18 Sequence length: 35 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Sequence: CCTGGAGCAG CCTCTTCAGC AGGGTCATGG CTTAT 35

【図面の簡単な説明】[Brief description of drawings]

【図1】cDNAインサートの制限酵素エンドヌクレア
ーゼによる切断図である。
FIG. 1 is a cleavage diagram of a cDNA insert with a restriction endonuclease.

【図2】発現ベクターpDE−2の構築図である。FIG. 2 is a construction diagram of the expression vector pDE-2.

【図3】p4−15クローンを導入したCOS細胞の培
養上清のFDC−P増殖誘導活性を示す。 □−□ p4−15クローン(4倍濃縮) ○−○ p4−15クローン(原液) ●−● 対照(遺伝子非導入COS上清) ----- 活性検定培地
FIG. 3 shows FDC-P proliferation-inducing activity of a culture supernatant of COS cells into which p4-15 clone has been introduced. □-□ p4-15 clone (4-fold concentration) ○-○ p4-15 clone (stock solution) ●-● control (gene-introduced COS supernatant) ----- activity assay medium

【図4】プラスミドpKCR−4−15の構築図であ
る。
FIG. 4 is a construction diagram of plasmid pKCR-4-15.

【図5】ベクターpT13S(Nco)の構築図であ
る。
FIG. 5 is a construction diagram of a vector pT13S (Nco).

【図6】ヒトIL−2のDNA断片を示す。FIG. 6 shows a DNA fragment of human IL-2.

【図7】プラスミドpTHCGPF−19の構築図であ
る。
FIG. 7 is a diagram showing the construction of plasmid pTHCGPF-19.

【図8】各種プラスミド感染エシエリヒア・コリ培養抽
出液のHCGPF活性を示す。
FIG. 8 shows HCGPF activity of culture extracts of Escherichia coli infected with various plasmids.

【図9】プラスミドpTHCGPF−31の構築図を示
す。
FIG. 9 shows a construction diagram of plasmid pTHCGPF-31.

【図10】プラスミドpT13SΔHIL2(53)−
HCGPF−19の構築図を示す。
FIG. 10. Plasmid pT13SΔHIL2 (53)-
The construction drawing of HCGPF-19 is shown.

【図11】マウスIL−3添加および無添加の場合の各
種プラスミド感染エシエリヒア・コリ培養抽出顆粒の6
Mグアニジン塩酸可溶化物のHCGPF活性を示す。
FIG. 11: 6 of Escherichia coli culture extract granules infected with various plasmids with and without addition of mouse IL-3
3 shows HCGPF activity of M guanidine hydrochloride lysate.

【図12】ΔHIL2(53)−HCGPF−19蛋白
の逆相HPLC精製分画のHCGPF活性を示す。
FIG. 12 shows the HCGPF activity of the reverse phase HPLC-purified fraction of ΔHIL2 (53) -HCGPF-19 protein.

【図13】HIL−2融合HCGPF蛋白のカリクレイ
ン切断物のHCGPF活性を示す。
FIG. 13 shows the HCGPF activity of a kallikrein cleavage product of the HIL-2 fusion HCGPF protein.

【図14】プラスミドpT13SΔHIL2(53)−
HCGPF−31の構築図を示す。
FIG. 14: Plasmid pT13SΔHIL2 (53)-
The construction drawing of HCGPF-31 is shown.

【図15】各種プラスミド感染エシエリヒア・コリ培養
抽出顆粒の6Mグアニジン塩酸可溶化物のHCGPF活
性を示す。
FIG. 15 shows the HCGPF activity of 6 M guanidine hydrochloride lysate of various plasmid-infected Escherichia coli culture extract granules.

【図16】プラスミドpT13SΔHIL2(20)−
HCGPF−19の構築図である。
FIG. 16: Plasmid pT13SΔHIL2 (20)-
It is a construction drawing of HCGPF-19.

【図17】プラスミドpT13SΔHIL2(20)−
HCGPF−31の構築図である。
FIG. 17: Plasmid pT13SΔHIL2 (20)-
It is a construction diagram of HCGPF-31.

【図18】プラスミドpT13SΔHIL2(11)−
HCGPF−19の構築図である。
FIG. 18 shows a plasmid pT13SΔHIL2 (11)-.
It is a construction drawing of HCGPF-19.

【図19】マウスIL−3添加および無添加の場合のC
OS細胞培養上清のHCGPF活性を示す。
FIG. 19: C with and without mouse IL-3
4 shows HCGPF activity of OS cell culture supernatant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (72)発明者 滝 伸介 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 松井 裕 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 鹿島 信一 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) (72) Inventor Shinsuke Taki 1-1 Central Research Institute, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa (72) Inventor Yu Matsui 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Institute (72) Inventor Shinichi Kashima 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1、配列表の配列番号
2又は配列表の配列番号3のいずれかに記載のアミノ酸
配列を有するヒト造血系細胞増殖増強因子。
1. A human hematopoietic cell growth-enhancing factor having the amino acid sequence of any of SEQ ID NO: 1 in the sequence listing, SEQ ID NO: 2 in the sequence listing, or SEQ ID NO: 3 in the sequence listing.
JP8124416A 1986-01-09 1996-05-20 Human hematopoietic cell growth enhancer Expired - Lifetime JP2612158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124416A JP2612158B2 (en) 1986-01-09 1996-05-20 Human hematopoietic cell growth enhancer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP263386 1986-01-09
JP61-302698 1986-12-18
JP61-2633 1986-12-18
JP30269886 1986-12-18
JP8124416A JP2612158B2 (en) 1986-01-09 1996-05-20 Human hematopoietic cell growth enhancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62002521A Division JP2569318B2 (en) 1986-01-09 1987-01-08 Gene encoding human hematopoietic cell growth enhancer

Publications (2)

Publication Number Publication Date
JPH08325294A true JPH08325294A (en) 1996-12-10
JP2612158B2 JP2612158B2 (en) 1997-05-21

Family

ID=27275450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124416A Expired - Lifetime JP2612158B2 (en) 1986-01-09 1996-05-20 Human hematopoietic cell growth enhancer

Country Status (1)

Country Link
JP (1) JP2612158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852313B1 (en) 1989-10-16 2005-02-08 Amgen Inc. Method of stimulating growth of melanocyte cells by administering stem cell factor
US7144731B2 (en) 1989-10-16 2006-12-05 Amgen Inc. SCF antibody compositions and methods of using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852313B1 (en) 1989-10-16 2005-02-08 Amgen Inc. Method of stimulating growth of melanocyte cells by administering stem cell factor
US6967029B1 (en) 1989-10-16 2005-11-22 Amgen Inc. Method for increasing hematopoietic progenitor cells by stem cell factor
US7144731B2 (en) 1989-10-16 2006-12-05 Amgen Inc. SCF antibody compositions and methods of using the same

Also Published As

Publication number Publication date
JP2612158B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US4582800A (en) Novel vectors and method for controlling interferon expression
FI116943B (en) A method for producing tumor necrosis factor receptor fusion proteins encoding DNA and a vector
JP3507507B2 (en) Hybrid of interferon-α and immunoglobulin linked via non-immunogenic peptide
JP2644794B2 (en) A new type of colony stimulating factor-1
NL8104400A (en) MICROBIAL PREPARATION OF HUMAN FIBROBLAST INTERFERON.
EP0751220A1 (en) Highly purified protein, production and use thereof
CZ282154B6 (en) Human immune interferon and derivative thereof, separated dna with sequence encoding human immune interferon, recombinant cloning vector, replicable expression vector, recombinant micro-organism or cellular culture, pharmaceutical preparation, process for preparing the human immune interferon and its use
JPH06199897A (en) Production and purification of lymphokine
IE881597L (en) Expression of Human Proapolipoprotein A-I
EP1717314B1 (en) Receptor for modified low-density lipoprotein
JP2749838B2 (en) Interleukin-7
JPH0797995B2 (en) Method for producing peptides
US5106733A (en) Bovine granulocyte-macrophage colony stimulating factor
US6242570B1 (en) Production and use of recombinant protein multimers with increased biological activity
JP2612158B2 (en) Human hematopoietic cell growth enhancer
Vanderspek et al. Fusion protein toxins based on diphtheria toxin: selective targeting of growth factor receptors of eukaryotic cells
JP2569318B2 (en) Gene encoding human hematopoietic cell growth enhancer
CN108822220A (en) Sheep albumin-interferon-tau-interleukin-22 fusion protein, preparation method and its encoding gene, a kind of sheep long-acting interferon
JPH02195888A (en) Recombinant dna body containing gene coding polypeptide having human interleukin-2 and procaryote cell transformed by the same recombinant dna body
CN108864305A (en) A kind of fusion protein and preparation method thereof being made of sheep albumin, sheep interferon gamma and sheep interferon-tau
CA1341160C (en) Bovine granulocyte-macrophage colony stimulating factor
CN108840934A (en) A kind of recombination sheep long-acting interferon τ and the fusion protein for preparing this long-acting interferon and preparation method thereof
EP0274560A2 (en) Human hematopoietic cell growth potentiating factor
CN107253995A (en) It is a kind of by bovine albumin, Bov IFN γ and Bov IFN α fusion protein constituted and preparation method thereof
JP2555816B2 (en) Method for producing human interleukin-2 protein