JPH08322925A - In vivo degradable and absorptive rib fixing pin - Google Patents

In vivo degradable and absorptive rib fixing pin

Info

Publication number
JPH08322925A
JPH08322925A JP8175913A JP17591396A JPH08322925A JP H08322925 A JPH08322925 A JP H08322925A JP 8175913 A JP8175913 A JP 8175913A JP 17591396 A JP17591396 A JP 17591396A JP H08322925 A JPH08322925 A JP H08322925A
Authority
JP
Japan
Prior art keywords
polylactic acid
fixing pin
molecular weight
rib
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8175913A
Other languages
Japanese (ja)
Other versions
JP2864113B2 (en
Inventor
Kaoru Tsuta
薫 蔦
Hidekazu Bouya
英和 棒谷
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16004442&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08322925(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP8175913A priority Critical patent/JP2864113B2/en
Publication of JPH08322925A publication Critical patent/JPH08322925A/en
Application granted granted Critical
Publication of JP2864113B2 publication Critical patent/JP2864113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE: To provide a fixing pin which can secure fixing force to a rib, which is adapted to join injured or broken rib parts to each other and fix the same in the case of an injury, a breakage and solution of continuity of the ribs. CONSTITUTION: A rib fixing pin uses moldings obtained by melt-molding and drawing polylactic acid, and the moldings are secondary-molded or cut to form a bow-like rod. The compressive flexural strength is 16.0×10<2> -25.0×10<2> kg/cm<2> , and the compressive flexural elastic modulus is 5.5×10<2> -24.0×10<2> kg/mm<2> . The fixing pin has such high strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、肋骨の損傷や骨折
や離断時に、骨が形成されるまで、その部分を固定する
肋骨固定ピンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rib fixing pin that fixes a rib until it is formed when the rib is damaged, fractured or separated.

【0002】[0002]

【従来の技術】整形外科等においては、骨折部の整復に
高強度の骨接合プレートやビスなどが使用されている。
このような骨接合用の人工材料は、骨折が治癒するまで
の期間だけ機能し、治癒後は骨の弱化を防ぐためにもで
きるだけ早期に抜き去る必要がある。
2. Description of the Related Art In orthopedics and the like, high strength bone joint plates and screws are used for reducing fractures.
Such an artificial material for osteosynthesis functions only until the fracture is healed, and it is necessary to remove it as soon as possible in order to prevent weakening of the bone after healing.

【0003】現在、臨床で広く使用されている骨接合プ
レートなどはほとんどが金属製であり、最近セラミック
ス製のものも出現してきた。しかし、これらは材料その
ものの弾性率が高すぎて、かえって周囲の骨の強度を低
下させたり、弾性率が高くて脆かったり、金属イオンの
溶出によって生体を損傷するなどの問題がある。従っ
て、生体骨と同程度かやや高い程度の弾性率をもち、な
おかつ生体内分解吸収性である材料を骨接合に用いるな
らば、取りはずしのための再手術が不必要になるだけで
なく、異物が長期にわたって生体内に存在することによ
り生じる様々な悪影響を除外できるはずである。
Most of clinically widely used bone joint plates and the like are made of metal at present, and ceramics have recently appeared. However, these materials have such problems that the elastic modulus of the material itself is too high and the strength of the surrounding bone is rather reduced, the elastic modulus is high and brittle, and the living body is damaged by elution of metal ions. Therefore, if a material that has elasticity equal to or slightly higher than that of living bone and that is biodegradable and absorbable is used for bone joining, not only reoperation for removal becomes unnecessary, but also foreign material. It should be possible to exclude various adverse effects caused by long-term presence in the living body.

【0004】かかる事情から、生体内分解吸収性材料で
あるポリ乳酸や乳酸−グリコール酸共重合体を用いる骨
接合材の開発が活発に進められている。
Under such circumstances, development of bone cements using polylactic acid or lactic acid-glycolic acid copolymer, which are biodegradable and absorbable materials, has been actively promoted.

【0005】例えばM.Vert、F.Chabotらは、骨接合プ
レート用としてポリ乳酸や乳酸−グリコール酸共重合体
を合成しており、ポリ乳酸100%のもので圧縮曲げ弾
性率が3.4GPa(340kg/mm2 )の値のもの
を報告している(Makromol Chem.Suppl.、5、30〜
41、1981)。また、D.C.Tuncは圧縮曲げ弾性率
520kg/mm2 のポリ乳酸骨接合用プレートを報告
している(第9回USAバイオマテリアル学会要旨集、
6、47、1983)。
For example, M. Vert, F.F. Chabot et al. Have synthesized polylactic acid and lactic acid-glycolic acid copolymers for bone-bonding plates, and have 100% polylactic acid and a compressive bending elastic modulus of 3.4 GPa (340 kg / mm 2 ). (Makromol Chem. Suppl., 5, 30-).
41, 1981). In addition, D. C. Tunc reports a plate for polylactic acid osteosynthesis with a compressive bending elastic modulus of 520 kg / mm 2 (9th USA Biomaterials Society Abstracts,
6, 47, 1983).

【0006】また、特開昭59−97654号公報に
は、吸収性の骨固定用器具の材料としてのポリ乳酸の合
成法が開示されているが、このポリ乳酸の引張り強度は
約580kg/cm2 と低い値であり、しかもポリ乳酸
の成形加工法については何ら説明されていない。
Further, Japanese Patent Application Laid-Open No. 59-97654 discloses a method for synthesizing polylactic acid as a material for an absorbable bone fixing device. The tensile strength of this polylactic acid is about 580 kg / cm. The value is as low as 2, and the method of molding polylactic acid is not described at all.

【0007】また、J.W.Leenslag、A.J.Pennings
らは、粘度平均分子量約100万のポリ乳酸を合成し、
その高分子量ポリ乳酸を用いた骨接合プレートの圧縮曲
げ弾性率は5GPa(500kg/mm2 )であったと
報告している(Biomaterials、8、70、1987)
が、高分子量すぎて成形加工性に難点がある。
In addition, J. W. Leenslag, A. J. Pennings
Synthesized polylactic acid having a viscosity average molecular weight of about 1,000,000,
It has been reported that the compression bending elastic modulus of the osteosynthesis plate using the high molecular weight polylactic acid was 5 GPa (500 kg / mm 2 ) (Biomaterials, 8, 70, 1987).
However, there is a problem in molding processability due to too high a molecular weight.

【0008】このように、ポリ乳酸系骨接合材の機械的
性質を向上させるための研究が数多く報告され、様々な
方法が試みられているが、未だ臨床で充分に使用されう
るような満足できる強度の材料は開発されていない。本
発明者等は特願昭62−333333号において生体骨
と同程度かやや高い程度の強度を有する生体内分解吸収
性外科用材料の提案を行ない、臨床で使用し得る材料を
得た。この材料は種々のサイズ及び形状の骨接合用プレ
ート、ピン、ビス、スクリュー等に切削加工されて使用
される。
As described above, many studies have been reported for improving the mechanical properties of polylactic acid-based bone cements, and various methods have been tried, but they are still satisfactory in clinical use. Strength materials have not been developed. The inventors of the present invention proposed in Japanese Patent Application No. 62-333333 a biodegradable and absorbable surgical material having a strength that is about the same as or slightly higher than that of living bone, and obtained a material that can be used clinically. This material is used after being cut into various sizes and shapes of osteosynthesis plates, pins, screws, screws and the like.

【0009】[0009]

【発明が解決しようとする課題】このように、ポリ乳酸
系骨接合材は種々開発されているが、その形状について
は、直状のプレート、ピン等でしかなかったために、こ
れを肋骨固定ピンとして用いても、肋骨髄腔内への挿入
がしずらいものであった。また、髄腔内での固定性にも
不安があった。
As described above, various polylactic acid-based bone-bonding materials have been developed. However, since their shapes were only straight plates, pins, etc. However, it was difficult to insert it into the costal bone marrow cavity. In addition, there was concern about the fixation in the medullary cavity.

【0010】本発明は上記の事情に鑑みてなされたもの
であり、肋骨固定ピンとして最適の形状のロッド状ピン
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a rod-shaped pin having an optimum shape as a rib fixing pin.

【0011】[0011]

【課題を解決するための手段】本発明に使用するポリ乳
酸は以下のものである。即ち、高分子量のポリ乳酸を、
その融点ないし220℃の温度条件下に溶融成形、例え
ば押出成形またはプレス成形したものであり、これを6
0〜160℃の温度条件下または酸化分解に伴う分子量
低下を抑えるために窒素雰囲気中あるいはオイル中にて
延伸した。このものは圧縮曲げ強度が16.0×102
〜25.0×102 kg/cm2 、圧縮曲げ弾性率が
5.5×102 〜24.0×102 kg/mm2 の強靱
なポリ乳酸の成形物である。そして、本発明は上記物性
値を有するポリ乳酸の成形物を肋骨の形状に合わせて弓
形のロッドに成形したものである。
The polylactic acid used in the present invention is as follows. That is, high molecular weight polylactic acid,
It is melt-formed, for example, extruded or press-formed under the temperature conditions of its melting point or 220 ° C.
Stretching was carried out in a nitrogen atmosphere or in oil in order to suppress the molecular weight reduction due to the temperature condition of 0 to 160 ° C. or oxidative decomposition. This has a compressive bending strength of 16.0 × 10 2.
It is a molded product of tough polylactic acid of ˜25.0 × 10 2 kg / cm 2 , and a compression bending elastic modulus of 5.5 × 10 2 to 24.0 × 10 2 kg / mm 2 . The present invention is a molded product of polylactic acid having the above-mentioned physical properties, which is molded into an arched rod in conformity with the shape of the ribs.

【0012】すなわち、本発明の請求項1の生体内分解
吸収性肋骨固定ピンは、溶融成形・延伸されたポリ乳酸
成形物が弓形をなしたロッド状の肋骨接合用のものであ
り、請求項2は上記ポリ乳酸成形物の圧縮曲げ強度が1
6.0×102 〜25.0×102 kg/cm2 、圧縮
曲げ弾性率が5.5×102 〜24.0×102 kg/
mm2 の強度を有するものである。
That is, the biodegradable and absorbable rib-fixing pin according to claim 1 of the present invention is a rod-shaped rib joint for which a melt-molded / stretched polylactic acid molded product has an arc shape. 2 has a compressive bending strength of the above polylactic acid molded product of 1
6.0 × 10 2 to 25.0 × 10 2 kg / cm 2 , and the compression bending elastic modulus is 5.5 × 10 2 to 24.0 × 10 2 kg / cm 2 .
It has a strength of mm 2 .

【0013】[0013]

【発明の実施の形態】本発明に用いられるポリ乳酸につ
いて詳述すると、ポリ乳酸は光学活性を有するL体また
はD体の乳酸から常法(C.E.Love、米国特許第2,6
68,182号明細書)にしたがって乳酸の環状二量体
であるラクチドを合成したあと、そのラクチドを開環重
合することによって得られるものである。このポリ乳酸
は熱安定性に劣るため溶融成形時の分子量低下を考慮す
ると、少なくとも粘度平均分子量が30万以上のもので
あることが好ましく、分子量が高いものほど高強度の肋
骨固定ピンを得るのに適する。しかし、分子量があまり
高すぎると、溶融成形の際に高温、高圧が必要となるた
め分子量の大幅な低下を招き、結果的に溶融成形後の分
子量が20万を下回るようになり、高強度の肋骨固定ピ
ンを得ることが困難となる。従って、粘度平均分子量が
30万〜60万程度のものを使用するのが適当であり、
好ましくは35万〜55万、なかでも40万〜50万程
度の分子量を有するものが特に好適に使用される。
BEST MODE FOR CARRYING OUT THE INVENTION The polylactic acid used in the present invention will be described in detail. The polylactic acid is prepared from an optically active L-form or D-form lactic acid by a conventional method (CE Love, US Pat.
68,182), synthesizing lactide, which is a cyclic dimer of lactic acid, and then subjecting the lactide to ring-opening polymerization. Since this polylactic acid is inferior in thermal stability, it is preferable that at least the viscosity average molecular weight is 300,000 or more in consideration of the decrease in the molecular weight at the time of melt molding. The higher the molecular weight, the higher the strength of the rib fixing pin can be obtained. Suitable for However, if the molecular weight is too high, high temperature and high pressure are required during the melt molding, resulting in a large decrease in the molecular weight, and as a result, the molecular weight after the melt molding becomes less than 200,000, resulting in high strength. It becomes difficult to obtain the rib fixation pin. Therefore, it is suitable to use one having a viscosity average molecular weight of about 300,000 to 600,000,
Those having a molecular weight of preferably 350,000 to 550,000, and particularly about 400,000 to 500,000 are particularly preferably used.

【0014】また、ポリ乳酸成形物は、上記のようにポ
リ乳酸を原料とし、これをロッド状あるいは平板状など
に溶融成形、例えば押出成形、プレス成形したのち、更
に長軸方向に一軸延伸することによって得られる。
As described above, the polylactic acid molded product is made from polylactic acid as a raw material, and is melt-molded into a rod shape or a flat plate shape, for example, extrusion molding or press molding, and then uniaxially stretched in the longitudinal direction. Obtained by

【0015】溶融押出成形の温度条件については、上記
ポリ乳酸の融点以上220℃以下の温度範囲とする必要
がある。融点より低い温度では、溶融押出が困難とな
り、逆に220℃より高い温度では、ポリ乳酸の熱不安
定性のため分子量低下が著しくなって、溶融押出成形後
の粘度平均分子量が20万を下回るようになるからであ
る。
Regarding the temperature condition of the melt extrusion molding, it is necessary to set the temperature range above the melting point of the above-mentioned polylactic acid and below 220 ° C. If the temperature is lower than the melting point, melt extrusion becomes difficult, and conversely, if the temperature is higher than 220 ° C., the molecular weight is markedly decreased due to the thermal instability of polylactic acid, and the viscosity average molecular weight after melt extrusion is less than 200,000. Because.

【0016】溶融押出成形後の成形物の分子量は20万
以上とくに25万〜40万の範囲内となるものが好まし
く、20万を下回ると延伸操作によっても力学的性質の
向上は期待できない。分子量低下を最小限に抑えるに
は、原料ポリマーの融点よりわずかに高い温度で溶融押
出成形することが大切であり、従って、原料ポリマーと
して既述のごとき40万〜50万程度の分子量を有する
ものを使用する場合は、200℃以下の温度条件で溶融
押出成形することが望ましい。成形後の分子量は、機械
的強度から見るとより高い方が好ましい。
The molecular weight of the molded product after melt extrusion molding is preferably 200,000 or more, particularly preferably in the range of 250,000 to 400,000, and if it is less than 200,000, improvement in mechanical properties cannot be expected even by stretching. In order to minimize the decrease in the molecular weight, it is important to carry out melt extrusion molding at a temperature slightly higher than the melting point of the raw material polymer. Therefore, the raw material polymer having a molecular weight of about 400,000 to 500,000 as described above. When using, it is desirable to perform melt extrusion molding at a temperature condition of 200 ° C. or lower. From the viewpoint of mechanical strength, the molecular weight after molding is preferably higher.

【0017】同様に、溶融押出成形の圧力条件について
も、分子量低下を極力抑えるために、溶融原料ポリマー
の粘度(分子量)に応じて押出し可能な最小限の押出し
圧力とするのが望ましい。従って、原料ポリマーの分子
量が60万までの場合は260kg/cm2 以下、分子
量が40万〜50万の場合は170〜210kg/cm
2 程度の押出し圧力とするのが適当である。
Similarly, regarding the pressure condition of the melt extrusion molding, in order to suppress the decrease of the molecular weight as much as possible, it is desirable that the extrusion pressure is the minimum extrudable pressure in accordance with the viscosity (molecular weight) of the molten raw material polymer. Therefore, when the molecular weight of the raw material polymer is up to 600,000, 260 kg / cm 2 or less, and when the molecular weight is between 400,000 and 500,000, 170 to 210 kg / cm.
An extrusion pressure of about 2 is suitable.

【0018】尚、溶融押出成形のまえに、原料ポリマー
のペレットは予め減圧加熱乾燥して水分を充分に除去し
ておくのが望ましい。
Prior to melt extrusion molding, it is desirable that the raw material polymer pellets be dried by heating under reduced pressure to sufficiently remove water.

【0019】溶融押出成形によって得られた押出成形物
は、粘度平均分子量が20万以上に保たれているので、
かなりの強度を有するが、まだ目的とする強度には及ば
ない。そこで、前述のように、この押出成形物をさらに
流動パラフィンやシリコーンオイルあるいは加熱窒素気
流中で長軸方向(押出し方向)に一軸延伸することによ
り、ポリマー分子を配向させて強度を向上させる。
The extruded product obtained by melt extrusion molding has a viscosity average molecular weight of 200,000 or more.
It has considerable strength, but it is still below the desired strength. Therefore, as described above, the extruded product is further uniaxially stretched in the long axis direction (extrusion direction) in liquid paraffin, silicone oil, or a heated nitrogen stream to orient the polymer molecules and improve the strength.

【0020】また、延伸時の加熱により材料の結晶化度
を高めることができる。しかし、熱処理により材料の結
晶化度を高めると、初期強度は向上するが、分子量低下
が起こるので、加水分解速度は速くなり、強度保持期間
は非晶性の材料に比べて短くなるので注意が必要であ
る。従って、延伸時の温度条件は60〜160℃の範囲
が好ましく、60℃より低い場合は、ガラス転移温度に
近すぎるため好ましくない。逆に160℃以上特に18
0℃を越えると分子量低下を起こすと共に分子相互の滑
り変形が優先して分子配向が起こらず、強度の向上も期
待できない。また加熱時間は10分以内であることが望
ましい。
The crystallinity of the material can be increased by heating during stretching. However, if the crystallinity of the material is increased by heat treatment, the initial strength is improved, but the molecular weight decreases, so the hydrolysis rate becomes faster, and the strength retention period becomes shorter than that of the amorphous material. is necessary. Therefore, the temperature condition during stretching is preferably in the range of 60 to 160 ° C., and when it is lower than 60 ° C., it is not preferable because it is too close to the glass transition temperature. Conversely, above 160 ° C, especially 18
When the temperature exceeds 0 ° C., the molecular weight decreases, and the sliding deformation of the molecules takes precedence, so that the molecular orientation does not occur and the improvement of the strength cannot be expected. Further, the heating time is preferably within 10 minutes.

【0021】次に、延伸倍率については、2〜6倍にす
るのが望ましい。2倍より小さい延伸倍率では、分子配
向が不充分となり、満足に強度を向上させることが困難
となるからであり、一方、6倍以上になるとフィブリル
化が生じて耐加水分解性が低下するからである。
Next, the draw ratio is preferably 2 to 6 times. If the stretching ratio is less than 2 times, the molecular orientation becomes insufficient and it is difficult to satisfactorily improve the strength. On the other hand, if the stretching ratio is 6 times or more, fibrillation occurs and the hydrolysis resistance decreases. Is.

【0022】以上の製法によって得られるポリ乳酸成形
物は生体内分解吸収性を有しており、従来の金属製材料
のように生体内で悪影響を与える心配は殆どない。しか
も、溶融成形時の分子量低下を最小限に押さえて溶融成
形後の粘度平均分子量を20万以上に保ち、さらに延伸
によって分子配向及び結晶化を与えているものである。
このポリ乳酸成形物は圧縮曲げ強度が16.0×102
〜25.0×102 kg/cm2 、圧縮曲げ弾性率が
5.5×102 〜24.0×102 kg/mm2、結晶
化度が10〜60%であり、高強度を有したものとな
る。
The polylactic acid molded product obtained by the above-mentioned manufacturing method has biodegradability and absorbability, and there is almost no risk of adversely affecting it in vivo, unlike conventional metal materials. Moreover, the decrease in molecular weight during melt molding is minimized to maintain the viscosity average molecular weight after melt molding at 200,000 or more, and further molecular orientation and crystallization are imparted by stretching.
This polylactic acid molded product has a compressive bending strength of 16.0 × 10 2.
˜25.0 × 10 2 kg / cm 2 , the compressive bending elastic modulus is 5.5 × 10 2 to 24.0 × 10 2 kg / mm 2 , the crystallinity is 10 to 60%, and has high strength. It will be what you did.

【0023】こうして得られたポリ乳酸成形物を、二次
成形若しくは切削加工等により湾曲した弓形の成形物に
なすことにより、肋骨接合用の固定ピンとなすのであ
る。該弓形の固定ピンであると、肋骨の湾曲した髄腔内
へ挿入しやすく、また弓形のために弾力が付与されて圧
入でき、固定力が増す。
The polylactic acid molded product thus obtained is formed into a curved bow-shaped molded product by secondary molding, cutting or the like to form a fixing pin for rib joint. The arcuate fixing pin facilitates insertion into the curved medullary cavity of the ribs, and because of the arcuate shape, the elastic pin can be press-fitted to increase the fixing force.

【0024】[0024]

【発明の実施の形態】以下、実施例を挙げて本発明の肋
骨固定ピンを説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The rib fixing pin of the present invention will be described below with reference to examples.

【0025】粘度平均分子量が42万のポリ乳酸のペレ
ットを減圧下に80〜120℃で一昼夜乾燥し、この乾
燥ペレットを押出成形機にいれて減圧下に約40分放置
した後、押出機の温度条件としてシリンダー部分を19
8℃、アダプター部分を200℃、ダイス部分を200
℃に設定し、角棒または丸棒状に溶融押出成形した。得
られた成形物の粘度平均分子量を測定したところ、22
万であった。なお、この場合の粘度式は、下記の[数
1]を用いた。
Pellets of polylactic acid having a viscosity average molecular weight of 420,000 are dried under reduced pressure at 80 to 120 ° C. for 24 hours, and the dried pellets are placed in an extruder and left under reduced pressure for about 40 minutes. The temperature of the cylinder part is 19
8 ℃, adapter part 200 ℃, die part 200
The temperature was set to 0 ° C., and the mixture was melt-extruded into a square bar or a round bar. When the viscosity average molecular weight of the obtained molded product was measured, it was found to be 22
It was good. In addition, the following [Formula 1] was used for the viscosity formula in this case.

【数1】 [Equation 1]

【0026】次いで、この成形物を105℃の流動パラ
フィン中で長軸方向に2倍に一軸延伸してポリ乳酸成形
物を得た。
Next, this molded product was uniaxially stretched in the major axis direction twice in liquid paraffin at 105 ° C. to obtain a polylactic acid molded product.

【0027】次に、該延伸されたポリ乳酸成形物を切削
加工して図1,図2に示すポリ乳酸成形加工品のピンを
得た。図1は正面図、図2は平面図を示し、ピンの大き
さは長さLが37.5mm、一辺の長さが3mm〜4m
mの断面略正方形のもので、図2から明らかなようにR
50の曲面を有する弓形のロッドである。これは肋骨固
定用のピンとして使用されるものである。
Next, the stretched polylactic acid molded product was cut to obtain pins of the polylactic acid molded product shown in FIGS. 1 and 2. 1 shows a front view and FIG. 2 shows a plan view. The size of the pin is such that the length L is 37.5 mm and the length of one side is 3 mm to 4 m.
m has a substantially square cross section, and as is clear from FIG.
It is an arched rod having 50 curved surfaces. This is used as a rib fixing pin.

【0028】上記肋骨固定ピンの物性やin vitr
oでの強度劣化を調べるために、一軸延伸されたポリ乳
酸成形物から試験片(寸法:φ5.0mm×長さ80m
m)を作製した。得られた試験片の圧縮曲げ強度は17
20kg/cm2 、圧縮曲げ弾性率は610kg/mm
2 であり、結晶化度は28%であった。
Physical properties and in vitro of the rib fixing pin
In order to investigate the strength deterioration at o, a test piece (dimension: φ5.0 mm x length 80 m from a uniaxially stretched polylactic acid molded product
m) was prepared. The compressive bending strength of the obtained test piece is 17
20 kg / cm 2 , compressive bending elastic modulus is 610 kg / mm
2 and the crystallinity was 28%.

【0029】さらに、この試験片を37℃の生理食塩水
中に3ケ月間浸漬し、その後、この試験片の圧縮曲げ強
度を測定したところ、1700kg/cm2 、また圧縮
曲げ弾性率は600kg/mm2 であり、ほとんど強度
劣化を生じていないことがわかった。
Further, the test piece was dipped in a physiological saline solution at 37 ° C. for 3 months, and the compressive bending strength of the test piece was measured to be 1700 kg / cm 2 , and the compressive bending elastic modulus was 600 kg / mm. 2, it was found that does not occur the most strength deterioration.

【0030】なお、上記の圧縮曲げ強度及び圧縮曲げ弾
性率はJIS K−7203に基づいて測定したもので
あり、結晶化度は次の方法により測定した密度から算出
したものである。
The above-mentioned compressive bending strength and compressive bending elastic modulus are measured based on JIS K-7203, and the crystallinity is calculated from the density measured by the following method.

【0031】n−ヘキサン−四塩化炭素系の密度勾配管
を用いて30℃にて測定した。測定に先立ち、気泡を除
去するために試料をn−ヘキサン中に入れて、30分間
脱泡した。
It was measured at 30 ° C. using a density gradient tube of n-hexane-carbon tetrachloride system. Prior to measurement, the sample was placed in n-hexane to remove air bubbles and degassed for 30 minutes.

【0032】測定した密度から次式[数2]にしたがっ
て結晶化度を算出した。
The crystallinity was calculated from the measured density according to the following equation [Equation 2].

【数2】 [Equation 2]

【0033】[0033]

【発明の効果】以上の説明から理解できるように、本発
明の肋骨接合用の生体内分解吸収性肋骨固定ピンは、弓
形をなしたロッド状であるために、肋骨の髄腔内への挿
入がしやすく、また弓形により弾力が付与されて圧入し
やすく固定力が増す。さらに、一定の強度を有するから
接合中に本発明固定ピンが折損することはない。
As can be understood from the above description, since the biodegradable and absorbable rib fixing pin for rib joint of the present invention has an arcuate rod shape, the rib is inserted into the medullary cavity. It is easy to peel off, and the bow shape gives elasticity, making it easier to press fit and increasing the fixing force. Further, the fixing pin of the present invention does not break during joining because it has a certain strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態にかかる肋骨固定ピンの正
面図である。
FIG. 1 is a front view of a rib fixing pin according to an embodiment of the present invention.

【図2】本発明の上記肋骨固定ピンの平面図である。FIG. 2 is a plan view of the rib fixing pin of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月18日[Submission date] June 18, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】粘度平均分子量が42万のポリ乳酸のペレ
ットを減圧下に80〜120℃で一昼夜乾燥し、この乾
燥ペレットを押出成形機にいれて減圧下に約40分放置
した後、押出機の温度条件としてシリンダー部分を19
8℃、アダプター部分を200℃、ダイス部分を200
℃に設定し、角棒または丸棒状に溶融押出成形した。得
られた成形物の粘度平均分子量を測定したところ、22
万であった。なお、この場合の粘度式は、下記の[数
1]を用いた。
Pellets of polylactic acid having a viscosity average molecular weight of 420,000 are dried under reduced pressure at 80 to 120 ° C. for 24 hours, and the dried pellets are placed in an extruder and left under reduced pressure for about 40 minutes. The temperature of the cylinder part is 19
8 ℃, adapter part 200 ℃, die part 200
The temperature was set to 0 ° C., and the mixture was melt-extruded into a square bar or a round bar. When the viscosity average molecular weight of the obtained molded product was measured, it was found to be 22
It was good. In addition, the following [Formula 1] was used for the viscosity formula in this case.

【数1】 [Equation 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶融成形・延伸されたポリ乳酸成形物が弓
形をなしたロッド状の肋骨接合用の生体内分解吸収性肋
骨固定ピン。
1. A biodegradable and absorbable rib-fixing pin for joining ribs, which is rod-shaped and has a polylactic acid molded product obtained by melt-forming and stretching and having an arc shape.
【請求項2】ポリ乳酸成形物の圧縮曲げ強度が16.0
×102 〜25.0×102 kg/cm2 、圧縮曲げ弾
性率が5.5×102 〜24.0×102 kg/mm2
である請求項1に記載の生体内分解吸収性肋骨固定ピ
ン。
2. A polylactic acid molded product having a compressive bending strength of 16.0.
× 10 2 ~25.0 × 10 2 kg / cm 2, compression flexural modulus of 5.5 × 10 2 ~24.0 × 10 2 kg / mm 2
The biodegradable and absorbable rib fixing pin according to claim 1.
JP8175913A 1996-06-14 1996-06-14 Biodegradable absorbable rib fixation pin Expired - Lifetime JP2864113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8175913A JP2864113B2 (en) 1996-06-14 1996-06-14 Biodegradable absorbable rib fixation pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8175913A JP2864113B2 (en) 1996-06-14 1996-06-14 Biodegradable absorbable rib fixation pin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1165740A Division JP2860663B2 (en) 1989-06-28 1989-06-28 Biodegradable and absorbable surgical molding

Publications (2)

Publication Number Publication Date
JPH08322925A true JPH08322925A (en) 1996-12-10
JP2864113B2 JP2864113B2 (en) 1999-03-03

Family

ID=16004442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8175913A Expired - Lifetime JP2864113B2 (en) 1996-06-14 1996-06-14 Biodegradable absorbable rib fixation pin

Country Status (1)

Country Link
JP (1) JP2864113B2 (en)

Also Published As

Publication number Publication date
JP2864113B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
EP0491983B1 (en) Biodegradable and resorbable molded article for surgical use
JP3043778B2 (en) Decomposition-absorbent molded article and method for producing the molded article
US5227412A (en) Biodegradable and resorbable surgical material and process for preparation of the same
JP3779327B2 (en) Degradable material under tissue conditions and method for producing the same
JP2739974B2 (en) Articles made from lactic acid polymers that can be used as biodegradable prostheses and methods of making the same
JP3418350B2 (en) Biodegradable and absorbable implant material and its shape adjusting method
JP2002505142A (en) Biocompatible deformable fixation plate
JP2587664B2 (en) Biodegradable and absorbable surgical materials
JP2002540855A (en) Biologically active, bioabsorbable and surgically used composites and devices comprising a copolymer of polyethylene glycol and polybutylene terephthalate
JPH0363901B2 (en)
CN111956871B (en) Silk protein/gelatin composite material and application thereof
Coskun et al. Hydroxyapatite reinforced poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) based degradable composite bone plate
JPH11206871A (en) In vivo degradable and absorptive bone fixing material and its manufacture
JPH08322925A (en) In vivo degradable and absorptive rib fixing pin
JP2912923B2 (en) Biodegradable and absorbable surgical material and method for producing the same
JPH06142182A (en) Internal fixing material for joining bone
JP3141088B2 (en) Method for producing biodegradable and absorbable surgical materials
JP3148932B2 (en) Biodegradable and absorbable plate for internal fixation of fracture
JP5218951B2 (en) High strength and high modulus biodegradable bone anchoring material
JP5188857B2 (en) Method for producing osteosynthesis material
JP3010279B2 (en) Osteosynthesis device
JP3023470B2 (en) Method for producing osteosynthesis material having through holes
JP3074410B2 (en) Osteosynthesis device
JP3262969B2 (en) Biodegradable and absorbable osteosynthesis material and method for producing the same
COSKUN et al. Hydroxyapatite reinforced poly (3-hydroxybutyrate) andpoly (3-hydroxybutyrate-co-3-hydroxyvalerate) based degradable composite bone plate